EP0384756B1 - Halbleiterlaservorrichtung - Google Patents

Halbleiterlaservorrichtung Download PDF

Info

Publication number
EP0384756B1
EP0384756B1 EP90301908A EP90301908A EP0384756B1 EP 0384756 B1 EP0384756 B1 EP 0384756B1 EP 90301908 A EP90301908 A EP 90301908A EP 90301908 A EP90301908 A EP 90301908A EP 0384756 B1 EP0384756 B1 EP 0384756B1
Authority
EP
European Patent Office
Prior art keywords
layer
cladding layer
upper cladding
conductivity type
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90301908A
Other languages
English (en)
French (fr)
Other versions
EP0384756A3 (de
EP0384756A2 (de
Inventor
Mariko C/O Intellectual Property Div. Suzuki
Kazuhiko C/O Intellectual Property Div. Itaya
Masayuki C/O Intellectual Property Div. Ishikawa
Yukio C/O Intellectual Property Div. Watanabe
Genichi C/O Intellectual Property Div. Hatakoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of EP0384756A2 publication Critical patent/EP0384756A2/de
Publication of EP0384756A3 publication Critical patent/EP0384756A3/de
Application granted granted Critical
Publication of EP0384756B1 publication Critical patent/EP0384756B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32325Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm red laser based on InGaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • H01S5/209Methods of obtaining the confinement using special etching techniques special etch stop layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • H01S5/221Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/321Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures having intermediate bandgap layers

Definitions

  • the p-type GaAs contact layer 7 is formed by second MOCVD, thus completing a ridge-buried type semiconductor laser device shown in Fig. 1.
  • a characteristic feature of the semiconductor laser device according to the present invention shown in Fig. 3 is as follows.
  • the first upper cladding layer 16 of p-type In 0.5 Ga 0.15 Al 0.35 P, serving as an upper cladding layer of the double hetero structure, has a function for generating a barrier due to band discontinuity at on the hetero junction interface between the first upper cladding layer 16 and the p-type GaAs contact layer 19 to cause current blocking, and also has a function as an etching stopping layer required when the second upper cladding layer 17 of p-type In 0.5 Al 0.5 P is etched into a mesa stripe shape.
  • Figs. 4A and 4B are sectional views showing the steps in manufacturing the semiconductor laser device shown in Fig. 3.
  • a 0.5- ⁇ m thick first buffer layer 13 of n-type GaAs Si doping, carrier concentration: 3 to 5 ⁇ 1017 atoms/cm3
  • 0.8- ⁇ m thick cladding layer 14 of n-type In 0.5 Ga 0.15 Al 0.35 P Si doping, carrier concentration: 3 to 5 ⁇ 1017 atoms/cm3
  • a first upper cladding layer 16 of p-type In 0.5 Ga 0.15 Al 0.35 P having a thickness of 0.2 to 0.3 ⁇ m Zn doping, carrier concentration: 3 to 5 ⁇ 1017 atoms/cm3)
  • a second cladding layer 17 of p-type In 0.5 Al 0.5 P having a thickness of 0.5 ⁇ m (Zn doping, carrier
  • phosphorus hydride and an organic compound of In e.g., TMI (trimethyl iodide, TEI (triethyl iodide) are supplied to a growth room, and the wafer is heated and held at about 800°C in a vapor atmosphere containing P and In to remove a surface oxide film of the wafer.
  • TMI trimethyl iodide
  • TEI triethyl iodide
  • Fig. 5 denotes the same parts as in Fig. 3.
  • Fig. 6 shows current - voltage characteristics of the current blocking section shown in Fig. 5.
  • An Al content y of the first cladding layer 16 of p-type In 1-w (Ga1 ⁇ Al y ) w P is changed as a parameter.
  • a carrier concentration of the first upper cladding layer 16 of p-type In 1-w (Ga 1-y Al y ) w P is 3 ⁇ 1017 atoms/cm3.
  • a current is more easily supplied to the current blocking section shown in Fig. 5.
  • a dotted line in Fig. 6 represents current - voltage characteristics obtained when the InGaAlP series semiconductor laser device (a contact area: 5 ⁇ 300 cm) shown in Fig. 1 is operated at a voltage of about 2.0 to 2.5 V.
  • an Al content y of the first upper cladding layer 16 of p-type In 1-w (Ga 1-y Al y ) w P is defined as 0.6 ⁇ y ⁇ 1 for current blocking
  • a relationship between the Al content y of the first upper cladding layer 16 and the Al content z of the second upper cladding layer 17 is defined as 0.6 ⁇ y ⁇ z ⁇ 1. Therefore, a relationship between the Al contents y and z must be defined as 0.6 ⁇ y ⁇ z ⁇ 1.
  • a buffer layer of n-type In 0.5 Ga 0.5 P (In 1-w (Ga 1-p Al p ) w P, 0.50 ⁇ w ⁇ 0.54, and 0 ⁇ p ⁇ 1) may be formed between the n-type buffer layer 13 and the n-type cladding layer 14.
  • the thickness of the cladding layer for mode control can be controlled to be a desired value without obstructing current blocking. Therefore, an InGaAlP series visible semiconductor laser device having a stable lateral mode can be manufactured at high production yield.
  • an etching stopping layer 23 of p-type In 0.5 Ga 0.5 P (In 1-w (Ga 1-u Al u ) w P, 0 ⁇ u ⁇ z ⁇ 1, and 0.50 ⁇ w ⁇ 0.54) is formed on a cladding layer 16 of p-type In 0.5 Ga 0.15 Al 0.35 P in the semiconductor laser device shown in Fig. 3.
  • an Al content y of the first upper cladding layer 16 is defined as 0.6 ⁇ y ⁇ 1 to provide a current blocking function.
  • an Al content u of the etching stopping layer 23 is defined as 0 ⁇ u ⁇ z ⁇ 1 to allow the layer 23 to function as an etching stopper.
  • FIG. 8A A method of manufacturing a semiconductor laser device shown in Fig. 7 will be described below with reference to Figs. 8A and 8B.
  • Fig. 8A in the same manner as in the steps shown in Fig. 4A, an n-type GaAs buffer layer 13, a cladding layer 14 of n-type In 0.5 Ga 0.15 Al 0.35 P, an active layer 15 of In 0.5 Ga 0.5 P, and a first upper cladding layer 16 of p-type In 0.5 Ga 0.15 Al 0.35 P are sequentially stacked on an n-type GaAs substrate 12.
  • the intermediate contact layer 18 of p-type In 0.5 Ga 0.5 P is etched into a stripe pattern by a solution mixture of hydrobromic acid, bromine and water, and the second upper cladding layer 17 of p-type In 0.15 A 10.5 P is etched into a stripe pattern by hot sulfuric acid or hot phosphoric acid. Thereafter, the surface oxide film is removed in the same manner as in the steps in Fig. 4A, and a contact layer 19 of p-type GaAs is formed by MOCVD. Au/Zn and Au/Ge electrodes 20 and 21 are formed on the upper and lower surfaces, respectively, of the structure.
  • the etching stopping layer 23 of p-type InGaP has a function as an etching stopper to etch the second upper cladding layer 17 of p-type InAlP into a stripe pattern
  • an Al content of the etching stopping layer 23 is set smaller than that of the second upper cladding layer 17 of p-type InAlP.
  • the first upper cladding layer 16 of p-type In 0.5 Ga 0.15 Al 0.35 P serving as a lower layer has a current blocking function with respect to the contact layer 19 of p-type GaAs in the same manner as in Fig. 3, the thickness of the etching stopping layer 23 of p-type InGaP may be set to be 100 ⁇ or less.
  • FIG. 9 shows voltage drop V generated across the first upper cladding layer 16, the etching stopping layer 23, and the contact layer 19, when a thickness d of the etching stopping layer 23 of p-type InGaP is varied.
  • an operation voltage of about 2.0 V or more is required.
  • a voltage drop of 2.5 V or more is required.
  • the thickness d of the etching stopping layer 23 of p-type InGaP must be 100 ⁇ or less.
  • a semiconductor laser device shown in Fig. 10 is obtained by removing an etching stopping layer 23 of p-type InGaP located on both sides of a ridge portion from the semiconductor laser device shown in Fig. 7, except for the layer portion formed under the second upper cladding layer 17 of p-type In 0.5 Al 0.5 P patterned stripe shape.
  • a method of manufacturing the semiconductor laser device shown in Fig. 10 will be described below. Initial steps are the same as in Figs. 8A and 8B.
  • the etching stopping layer 23 formed on both the sides of the mesa stripe is further etched from the structure shown in Fig. 8B by a solution mixture of hydrobromic acid, bromine and water using an SiO2 film 22 as a mask.
  • Fig. 12 is a schematic sectional view of another semiconductor laser device.
  • a current blocking layer 24 of n-type GaAs (Ga 1-R Al R As, 0 ⁇ R ⁇ 1) having a current blocking function is formed on both sides of an etching stopping layer 23 of p-type In 0.5 Ga 0.5 P and a second upper cladding layer 17 of p-type InAlP which constitute a mesa stripe shown in Fig. 10.
  • a p-type GaAs contact layer 25 is formed on the n-type GaAs current blocking layer 24 and a p-type InGaP intermediate contact layer 18.
  • a method of manufacturing the semiconductor laser device shown in Fig. 12 will be described hereinafter.
  • the initial steps are the same as in Figs. 8A, 8B, and 11.
  • selective growth is performed using an SiO2 film 22 as a mask by MOCVD in the state shown in Fig. 11, and the current blocking layer 24 of n-type GaAs is formed on both sides of the etching stopping layer 23 of p-type In 0.5 Ga 0.5 P and the second cladding layer 17 of p-type In 0.5 Al 0.5 P which constitute a mesa stripe.
  • the SiO2 film 22 is removed, and the contact layer 25 of p-type GaAs is formed by MOCVD.
  • Au/Zn and Au/Ge electrodes 20 and 21 are formed.
  • the semiconductor laser device thus manufactured was oscillated at a threshold value of 35 mA when the length of a resonator was set to be 300 ⁇ m, and excellent characteristics in a single lateral mode could be obtained up to 20 mW. In a service life test, a stable operation for 2,000 hours or more was confirmed under the conditions of 50°C and 5 mW. In addition, the above characteristics could be obtained with good reproducibility in a wafer surface having a size of 30 ⁇ 30 mm.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Claims (18)

  1. Halbleiterlaservorrichtung mit einem Halbleitersubstrat (12) eines ersten Leitfähigkeitstyps, einer Doppelheterostruktur aus einer unteren Überzugschicht (14) des ersten Leitfähigkeitstyps, einer Aktivschicht (15) und einer ersten oberen Überzugschicht (16) aus In1-w(Ga1-yAly)wP eines zweiten Leitfähigkeitstyps, gebildet auf dem Halbleitersubstrat, einer zweiten oberen Überzugschicht (17) aus In1-w(Ga1-zAlz)wP des zweiten Leitfähigkeitstyps, partiell gebildet auf der ersten oberen Überzugschicht (16), einer ersten Kontaktschicht (18) aus In1-w(Ga1-sAls)wP (0 ≦ s < z ≦ 1) des zweiten Leitfähigkeitstyps, gebildet auf der zweiten oberen Überzugschicht (17), und einer zweiten Kontaktschicht (19) aus GaAs des zweiten Leitfähigkeitstyps, gebildet in Kontakt mit der ersten oberen Überzugschicht (16) und der ersten Kontaktschicht (18), wobei der Wert von y in In1-w(Ga1-yAly)wP, das die erste obere Überzugschicht (16) bildet, und der Wert von z in In1-w(Ga1-zAlz)wP, das die zweite obere Überzugschicht (17) bildet, eine Beziehung 0,6 ≦ y < z ≦ 1 erfüllen.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Wertvon w in In1-w(Ga1-yAly)wP, das die erste obere Überzugschicht bildet, und in In1-w(Ga1-zAlz)wP, das die zweite obere Überzugschicht (17) bildet, Beziehungen von 0,50 ≦ w ≦ 0,54 erfüllt.
  3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Werte von w, s und z in In1-w(Ga1-sAls)wP, das die erste Kontaktschicht (18) bildet, Beziehungen von 0,50 ≦ w ≦ 0,54 und 0 ≦ s ≦ z ≦ 1 erfüllen.
  4. Vorrichtung nach Anspruch 1, gekennzeichnet durch weiterhin eine Schicht aus In1-w(Ga1-uAlu)wP des zweiten Leitfähigkeitstyps mit einer Dicke von nicht mehr als 100 Å (1 Å = 10⁻¹⁰ m) auf der ersten oberen Überzugschicht (16), wobei der wert von u eine Beziehung 0 ≦ u < z ≦ 1 erfüllt.
  5. Vorrichtung nach Anspruch 1, gekennzeichnet durch weiterhin eine Schicht (23) aus In1-w(Ga1-uAlu)wP des zweiten Leitfähigkeitstyps zwischen der ersten und zweiten oberen Überzugschicht (16, 17), wobei der Wert von u eine Beziehung 0 ≦ u < z ≦ 1 erfüllt.
  6. Vorrichtung nach Anspruch 1, weiterhin mit einer Pufferschicht (13) des ersten Leitfähigkeitstyps zwischen dem Halbleitersubstrat (12) und der unteren Überzugschicht (14).
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß das Halbleitersubstrat (12) und die Pufferschicht (13) GaAs umfassen.
  8. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die untere Überzugschicht In1-w(Ga1-vAlv)wP umfaßt, die Aktivschicht (15) In1-w(Ga1-xAlx)wP aufweist, und daß die Werte von v, x und w Beziehungen von 0 ≦ x ≦ 1, 0 ≦ x < v ≦ 1 und 0,50 < w < 0,54 erfüllen.
  9. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß erste und zweite Elektrodenschichten (20, 21) auf einer unteren Oberfläche des Halbleitersubstrates bzw. auf der zweiten Kontaktschicht gebildet sind.
  10. Halbleiterlaservorrichtung mit einem Halbleitersubstrat (12) eines ersten Leitfähigkeitstyps, einer Doppelheterostruktur aus einer unteren Überzugschicht (14) des ersten Leitfähigkeitstyps, einer Aktivschicht (15) und einer ersten oberen Überzugschicht (16) aus In1-w(Ga1-yAly)wP eines zweiten Leitfähigkeitstyps, gebildet auf dem Halbleitersubstrat (12), einer Ätzstopschicht (23) aus In1-w(Ga1-uAlu)wP des zweiten Leitfähigkeitstyps mit einer Dicke von nicht mehr als 100 Å (1 Å = 10⁻¹⁰ m) auf der ersten oberen Überzugschicht (16), einer zweiten oberen Überzugschicht (17) aus In1-w(Ga1-zAlz)wP des zweiten Leitfähigkeitstyps, partiell gebildet auf der Ätzstopschicht (23), einer ersten Kontaktschicht (18) aus In1-w(Ga1-sAls)wP, 0 ≦ s < z ≦ 1, des zweiten Leitfähigkeitstyps, gebildet auf der zweiten oberen Überzugschicht (17), und einer zweiten Kontaktschicht (19) aus GaAs des zweiten Leitfähigkeitstyps, gebildet in Kontakt mit der Ätzstopschicht (23) und der ersten Kontaktschicht (18), wobei der Wert von y in In1-w(Ga1-yAlY)wP, das die erste obere Überzugschicht (16) bildet, der Wert von u in In1-w(G1-uAlu)wP, das die Ätzstopschicht (23) bildet, und der Wert von z in In1-w(Ga1-zAlz)wP, das die zweite obere Überzugschicht (17) bildet, Beziehungen von 0,6 ≦ y ≦ 1 und 0 ≦ u < z ≦ 1 erfüllen.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß der Wert von w in In1-w(Ga1-yAly)wP, das die erste obere Überzugschicht (16) bildet, und in In1-w(Ga1-zAlz)wP, das die zweite obere Überzugschicht (17) bildet, Beziehungen 0,50 ≦ w ≦ 0,54 erfüllt.
  12. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Werte von w, s und z in In1-w(Ga1-sAls)wP, das die erste Kontaktschicht (18) bildet, Beziehungen von 0,50 ≦ w ≦ 0,54 und 0 ≦ s ≦ z < 1 erfüllen.
  13. Vorrichtung nach Anspruch 10, gekennzeichnet durch weiterhin eine Pufferschicht (13) des ersten Leitfähigkeitstyps zwischen dem Halbleitersubstrat (12) und der unteren Überzugschicht (14).
  14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß das Halbleitersubstrat (12) und die Pufferschicht (13) GaAs umfassen.
  15. Halbleiterlaservorrichtung mit einem Halbleitersubstrat (12) eines ersten Leitfähigkeitstyps, einer Doppelheterostruktur aus einer unteren Überzugschicht (14) des ersten Leitfähigkeitstyps, einer Aktivschicht (15) und einer ersten oberen Überzugschicht (15) aus In1-w(Ga1-yAly)wP eines zweiten Leitfähigkeitstyps, gebildet auf dem Halbleitersubstrat (12), einer Ätzstopschicht (23) aus In1-w(Ga1-uAlu)wP des zweiten Leitfähigkeitstyps auf der ersten oberen Überzugschicht (16), einer zweiten oberen Überzugschicht (17) aus In1-w(Ga1-zAlz)wP des zweiten Leitfähigkeitstyps, partiell gebildet auf der Ätzstopschicht (23), einer ersten Kontaktschicht (18) aus In1-w(Ga1-sAls)wP, 0 ≦ s < z ≦ 1, des zweiten Leitfähigkeitstyps, gebildet auf der zweiten oberen Überzugschicht (17), und einer zweiten Kontaktschicht (19) aus GaAs des zweiten Leitfähigkeitstyps, gebildet in Kontakt mit der Ätzstopschicht (23) und der ersten Kontaktschicht (18), wobei der Wert von y in In1-w(Ga1-yAly)wP, das die erste obere Überzugschicht (16) bildet, der Wert von u in In1-w(Ga1-uAlu)wP, das die Ätzstopschicht (23) bildet, und der Wert von z in In1-w(Ga1-zAlz)wP, das die zweite obere Überzugschicht (17) bildet, Beziehungen von 0,6 ≦ y ≦ 1 und 0 ≦ u < z ≦ 1 erfüllen.
  16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß der Wert von w in In1-w(Ga1-yAly)wP, das die erste obere Überzugschicht (16) bildet, und in In1-w(Ga1-zAlz)wP, das die zweite obere Überzugschicht (17) bildet, Beziehungen von 0,50 ≦ w ≦ 0,54 erfüllt.
  17. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß die Werte von w, s und z in In1-w(Ga1-sAls)wP, das die erste Kontaktschicht (18) bildet, Beziehungen von 0,50 ≦ w ≦ 0,54 und 0 ≦ s ≦ z ≦ 1 erfüllen.
  18. Vorrichtung nach Anspruch 15, weiterhin mit einer Pufferschicht (13) des ersten Leitfähigkeitstyps zwischen dem Halbleitersubstrat (12) und der unteren Überzugschicht (14).
EP90301908A 1989-02-22 1990-02-22 Halbleiterlaservorrichtung Expired - Lifetime EP0384756B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP40201/89 1989-02-22
JP1040201A JP2807250B2 (ja) 1989-02-22 1989-02-22 半導体レーザ装置

Publications (3)

Publication Number Publication Date
EP0384756A2 EP0384756A2 (de) 1990-08-29
EP0384756A3 EP0384756A3 (de) 1991-06-26
EP0384756B1 true EP0384756B1 (de) 1996-05-15

Family

ID=12574171

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90301908A Expired - Lifetime EP0384756B1 (de) 1989-02-22 1990-02-22 Halbleiterlaservorrichtung

Country Status (4)

Country Link
US (1) US5023880A (de)
EP (1) EP0384756B1 (de)
JP (1) JP2807250B2 (de)
DE (1) DE69026972T2 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210767A (en) * 1990-09-20 1993-05-11 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser
JP2677901B2 (ja) * 1990-10-23 1997-11-17 三菱電機株式会社 半導体レーザの製造方法
JP2965668B2 (ja) * 1990-11-13 1999-10-18 株式会社東芝 半導体レーザ素子及びその製造方法
JPH05211372A (ja) * 1992-01-14 1993-08-20 Nec Corp 半導体レーザの製造方法
JP3242967B2 (ja) * 1992-01-31 2001-12-25 株式会社東芝 半導体発光素子
US5359619A (en) * 1992-02-20 1994-10-25 Sumitomo Electric Industries, Ltd. Multi-beam semiconductor laser and method for producing the same
EP0571021B1 (de) * 1992-05-18 1997-08-06 Koninklijke Philips Electronics N.V. Optoelektronische Halbleiteranordnung
DE69312799T2 (de) * 1992-05-18 1998-02-12 Philips Electronics Nv Optoelektronische Halbleiteranordnung
US5388116A (en) * 1992-09-25 1995-02-07 The Furukawa Electric Co., Ltd. Semiconductor laser device
JPH06268334A (ja) * 1993-03-16 1994-09-22 Mitsubishi Kasei Corp レーザーダイオード及びその製造方法
JPH06296060A (ja) * 1993-04-08 1994-10-21 Mitsubishi Electric Corp 半導体可視光レーザダイオードの製造方法
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JP3521792B2 (ja) 1999-03-03 2004-04-19 松下電器産業株式会社 半導体レーザの製造方法
JP2003060306A (ja) * 2001-08-13 2003-02-28 Rohm Co Ltd リッジ型半導体レーザ素子
JP4751024B2 (ja) * 2004-01-16 2011-08-17 シャープ株式会社 半導体レーザおよびその製造方法
DE102008021674A1 (de) 2008-03-31 2009-10-01 Osram Opto Semiconductors Gmbh Halbleiterbauelement und Verfahren zur Herstellung eines Halbleiterbauelements
US11228160B2 (en) * 2018-11-15 2022-01-18 Sharp Kabushiki Kaisha AlGaInPAs-based semiconductor laser device and method for producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2139422B (en) * 1983-03-24 1987-06-03 Hitachi Ltd Semiconductor laser and method of fabricating the same
US4792958A (en) * 1986-02-28 1988-12-20 Kabushiki Kaisha Toshiba Semiconductor laser with mesa stripe waveguide structure
DE3789695T2 (de) * 1986-08-08 1994-08-25 Toshiba Kawasaki Kk Doppelheterostruktur-Halbleiterlaser mit streifenförmigem Mesa-Wellenleiter.
JPS63164484A (ja) * 1986-12-26 1988-07-07 Sharp Corp 半導体レ−ザ素子

Also Published As

Publication number Publication date
DE69026972D1 (de) 1996-06-20
US5023880A (en) 1991-06-11
JP2807250B2 (ja) 1998-10-08
JPH02220488A (ja) 1990-09-03
DE69026972T2 (de) 1996-10-02
EP0384756A3 (de) 1991-06-26
EP0384756A2 (de) 1990-08-29

Similar Documents

Publication Publication Date Title
EP0384756B1 (de) Halbleiterlaservorrichtung
EP1437809B1 (de) Verbindungshalbleiterlaser
US5656539A (en) Method of fabricating a semiconductor laser
KR100624598B1 (ko) 반도체 발광 소자 및 그 제조 방법
US5737351A (en) Semiconductor laser including ridge structure extending between window regions
EP0503211A1 (de) Halbleiteranordnung mit einer auf einem strukturierten Substrat aufgewachsenen Schichtstruktur
EP0666625B1 (de) Verfahren zur Herstellung einer Nut in einer Halbleiter-Laserdiode und Halbleiter-Laserdiode
US5838028A (en) Semiconductor device having a ridge or groove
US5420066A (en) Method for producing semiconductor laser device using etch stop layer
US5149670A (en) Method for producing semiconductor light emitting device
JP2863677B2 (ja) 半導体レーザ及びその製造方法
US5304507A (en) Process for manufacturing semiconductor laser having low oscillation threshold current
EP0604965B1 (de) Halbleiterlaser mit Begrenzungsschicht aus AlGaInP
JP2911751B2 (ja) 半導体レーザ及びその製造方法
US5887011A (en) Semiconductor laser
EP0432843B1 (de) Halbleiterdiodenlaser und Verfahren zur Herstellung desselben
JP2629678B2 (ja) 半導体レーザ装置およびその製造方法
JP2003046193A (ja) 半導体レーザおよびその製造方法
JP2675692B2 (ja) 半導体レーザ素子の製造方法
EP0032401B1 (de) Halbleiterlaser
US5674779A (en) Method for fabricating a ridge-shaped laser in a channel
JP2944312B2 (ja) 半導体レーザ素子の製造方法
JP3523432B2 (ja) 半導体レーザ装置の製造方法
EP0427003A1 (de) Lichtemittierende Halbleitervorrichtung und Herstellungsverfahren
JPH06338657A (ja) 半導体レーザ及びその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900312

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19931007

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69026972

Country of ref document: DE

Date of ref document: 19960620

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19981007

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030210

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030219

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040222

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041029

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080214

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901