EP0374271A1 - Dispositif de commande d'une porte coulissant horizontalement sur des poulies le long d'un rail de guidage - Google Patents
Dispositif de commande d'une porte coulissant horizontalement sur des poulies le long d'un rail de guidage Download PDFInfo
- Publication number
- EP0374271A1 EP0374271A1 EP19880121120 EP88121120A EP0374271A1 EP 0374271 A1 EP0374271 A1 EP 0374271A1 EP 19880121120 EP19880121120 EP 19880121120 EP 88121120 A EP88121120 A EP 88121120A EP 0374271 A1 EP0374271 A1 EP 0374271A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pinion
- drive unit
- bushing
- threaded rod
- base plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002184 metal Substances 0.000 claims abstract description 42
- 239000004033 plastic Substances 0.000 claims abstract description 17
- 239000004952 Polyamide Substances 0.000 claims description 5
- 229920002647 polyamide Polymers 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 abstract 2
- 210000003739 neck Anatomy 0.000 abstract 1
- 239000000463 material Substances 0.000 description 12
- 125000006850 spacer group Chemical group 0.000 description 8
- 238000010079 rubber tapping Methods 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910000639 Spring steel Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05F—DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
- E05F15/00—Power-operated mechanisms for wings
- E05F15/60—Power-operated mechanisms for wings using electrical actuators
- E05F15/603—Power-operated mechanisms for wings using electrical actuators using rotary electromotors
- E05F15/632—Power-operated mechanisms for wings using electrical actuators using rotary electromotors for horizontally-sliding wings
- E05F15/635—Power-operated mechanisms for wings using electrical actuators using rotary electromotors for horizontally-sliding wings operated by push-pull mechanisms, e.g. flexible or rigid rack-and-pinion arrangements
- E05F15/638—Power-operated mechanisms for wings using electrical actuators using rotary electromotors for horizontally-sliding wings operated by push-pull mechanisms, e.g. flexible or rigid rack-and-pinion arrangements allowing or involving a secondary movement of the wing, e.g. rotational or transversal
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2201/00—Constructional elements; Accessories therefor
- E05Y2201/40—Motors; Magnets; Springs; Weights; Accessories therefor
- E05Y2201/43—Motors
- E05Y2201/434—Electromotors; Details thereof
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2201/00—Constructional elements; Accessories therefor
- E05Y2201/60—Suspension or transmission members; Accessories therefor
- E05Y2201/622—Suspension or transmission members elements
- E05Y2201/71—Toothed gearing
- E05Y2201/722—Racks
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2400/00—Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
- E05Y2400/61—Power supply
- E05Y2400/612—Batteries
- E05Y2400/614—Batteries charging thereof
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2400/00—Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
- E05Y2400/65—Power or signal transmission
- E05Y2400/656—Power or signal transmission by travelling contacts
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2400/00—Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
- E05Y2400/65—Power or signal transmission
- E05Y2400/66—Wireless transmission
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2600/00—Mounting or coupling arrangements for elements provided for in this subclass
- E05Y2600/40—Mounting location; Visibility of the elements
- E05Y2600/46—Mounting location; Visibility of the elements in or on the wing
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2800/00—Details, accessories and auxiliary operations not otherwise provided for
- E05Y2800/26—Form or shape
Definitions
- the invention relates to the drive of so-called all-round gates, as gates which consist of a multiplicity of narrow, vertically arranged slats. At least on the top of such gates there are rollers that run on a guide rail, so that such a gate can be moved horizontally with relatively little effort.
- the individual slats are mutually flexibly connected so that the gate can also be moved around curves.
- drive units For the motor-driven opening and closing of such gates, drive units have hitherto been known which have been fastened to the inside of the gates in the vicinity of the upper edge thereof and, via an electric motor, drive a drive roller which has been provided with a peripheral surface which has a high coefficient of friction, such as rubber , had. If such a friction wheel was pressed onto the guide rail sufficiently firmly and driven, this moved the entire door along the guide rail.
- the pressure of the friction wheel on the guide rail was mostly achieved by the fact that the friction wheel, usually including the motor-gear unit or even the entire drive unit, was pivotable about an axis outside the friction wheel, so that the dead weight of these parts or even additional weights attached pressed the friction wheel onto the guide rail.
- electromagnets were alternatively applied, which also pressed the friction wheel against the guide rail by means of a corresponding lever arm when the engine was switched on.
- the gates driven in this way were in their end positions, i.e. the open and closed positions, brought to a standstill via fixed limit switches installed on the building, which were operated directly by the gate to be moved. These drive units were powered by means of cable loops.
- the friction wheel drive is in principle susceptible to faults, since the pressure forces that press the friction wheel against the guide rail are usually only designed for optimal or at most average frictional relationships between the friction wheel and the guide rail of time, however, the guide rail is contaminated, to which condensation or, in the worst case, oil or soot residues, for example from diesel exhaust gases, can be added, as a result of which the friction between the friction wheel and the guide rail is drastically reduced, so that the friction wheel often spins and not in Was able to move the gate.
- the high pressure forces of the friction wheel drive are avoided by using a toothed wheel instead of a friction wheel, which meshes with a toothed rack that runs along the guide rail and runs approximately vertically. Slipping would only be possible here if the force of the gear drive is sufficient to lift the gear together with the drive unit and the gate attached to it beyond the teeth of the rack. This can be avoided by simply reaching under the guide rail from the drive unit.
- the rack used usually consists of a single-sided toothed, only a few millimeters thick band material, which is sufficiently flexible to be best arranged directly on the guide rail, in one piece or in several pieces.
- the pinion In order to prevent the pinion from disengaging transversely to the rack, the pinion must be designed to be substantially wider than the rack, and in practice it is about ten times as wide as the rack. In this way, greater inaccuracies in the impact run between the pinion, that is to say the gate as a whole, and the guide rail, for example in the region of the curves, can be coped with. Of course, with such a transverse offset, scraping occurs in the transverse direction between the pinion and the rack.
- the pinion is advantageously made of plastic, namely of polyamide, which not only ensures that the pinion runs quietly on the rack, but also makes any lubrication between the plastic pinion and the metal rack unnecessary.
- this tooth form of the rack enables a tooth form on the pinion in which the thickness of the teeth as a whole and especially in the region of the tooth head is very large.
- the tooth flanks of the pinion represent an involute
- the semicircular shape of the tooth head results in a tooth cross-section which tapers only slightly from the tooth base to the tooth head. This corresponds to the lower resilience of the plastic of the pinion compared to the metal of the rack and still results in a clean rolling of the flanks of the pinion on those of the rack.
- the drive unit according to the invention has in common with the known drive units that it usually has a housing which consists of a base plate on the one hand, on which all components to be accommodated within the housing are fastened, and a cover which is fastened to the base plate, and which in parts housed in this housing protects against contamination.
- the output shaft of the motor-gear unit mounted on the base plate inside the housing extends through an opening in the base plate outwards from the housing, where the pinion running on the rack is attached to the output shaft.
- At least one accumulator is additionally accommodated in the housing, which also supplies the electric motor with energy without being connected to the power supply.
- This accumulator is connected to contact points outside the housing, for example on the front side of the gate, which is only connected to the power supply for recharging via mating contacts attached to the building when, depending on the mating contacts, the gate is completely closed open or closed position.
- This tap can take place outside the housing, for example in the vicinity of the pinion, with the result that a return of this tap into the housing to the limit switches is necessary. If, on the other hand, the output shaft is tapped within the housing, this means that the motor-gear unit is not mounted directly on the base plate, but by means of spacers on the base plate in order to provide enough space between the motor-gear unit and the base plate for tapping to create the rotary movement towards the limit switches.
- the tapping from the output shaft or pinion should take place on a threaded rod on which elements with a corresponding internal thread are screwed on, which are prevented from rotating when the threaded rod rotates and are thus screwed along the threaded rod until they are in a position which correspond to the open or closed position of the gate, each reach and operate one of the two limit switches. Since these elements can only be adjusted on site after the drive unit has been installed, adjustment must be as simple as possible on the one hand and conversion of the door movement as precise as possible on the other hand.
- the pinion itself is not entirely made of plastic due to the usual attachment to the output shaft of the motor-gear unit by means of a conical seat, since this would not be able to cope with the pressure load in the long run without play. Rather, a metal bushing is attached to the tapered seat of the abrasion shaft, with which the pinion made of plastic is screwed in several places.
- the tapping from the pinion to the threaded rod for the limit switches is now carried out in that a socket is pushed onto an outer circumference of the metal bushing which is formed by a shoulder and points towards the motor-gear unit and which, after being pushed on, by means of an annular bead arranged on its inner circumference a corresponding groove engages on the outer circumference of the metal bushing.
- the pushing on of the socket is done by the multiple axial slits of the bushing possible over the circumference.
- the bushing and spring then elastically return to their original shape.
- one or more notch nails are inserted axially through the metal bushing into the bushing. Since the material of the bushing has to give way when pushed on and then spring back again, the bushing can be made of plastic, preferably of polyamide, which brings cost advantages in particular with regard to the bevel gear teeth to be fitted on the bushing.
- the axial length of the bushing is chosen such that it extends straight through the base plate into the interior of the housing.
- a bevel gear toothing is worked into the bushing, which meshes with a bevel pinion, which is located at the end of the threaded rod, which is arranged and mounted parallel to the base plate between the base plate and the motor-gearbox unit, i.e. transversely to the output shaft of the motor.
- the bevel pinion is preferably also made of plastic material and, in the event that the threaded rod is made of metal, is sprayed directly onto the end of the threaded rod provided with a multi-tooth profile.
- the bevel gear teeth on the socket protrude just beyond the base plate so that the gripping threaded rod with the bevel pinion attached can be stored as low as possible above the base plate.
- the metal threaded rod is conventionally stored in bearing blocks that are screwed onto the base plate, for example.
- the motor-gear unit can be placed directly on the base plate without spacers having to be arranged in between.
- This spacer would not only bring larger dimensions of the entire housing but also an increase in weight, since this spacer normally has to be made of metal in order to achieve sufficient heat dissipation through this spacer when the motor is heated, for example in the event of an overload. If, on the other hand, this spacer were made of polystyrene, the spacer would possibly melt away if the motor were heated and, if the drive unit was nevertheless put into operation, would severely damage the entire drive unit.
- the drive unit there is a lighting which is switched on with every impulse which contains the drive unit, so that the function of the drive unit in operation can be checked not only when the cover is removed, but also in a dark environment, but also because of a special design of the cover of the drive unit, an illumination of the one below existing area is given.
- the cover is not formed horizontally in its lower area, but rather at an angle, and is equipped with an at least partially translucent area in order to let the light of the light source arranged inside the housing pass through.
- the all-round gate can be pushed open by hand without changes to the drive unit, since the motor-gear unit is not designed to be self-locking.
- the worm gear contained in the gear unit it is advisable to design the worm gear contained in the gear unit to have multiple threads, i.e. that the pitch of the worm is so large that several threads of the worm are simultaneously engaged on the worm wheel.
- the operation of the door lock, a bolt or the like must be done by hand, because when the door is opened when the motor is opened, an electromagnet is activated inside the drive unit at the same time as the motor gear unit is started, which, for example, has a fastening device protruding outwards from the housing pulls a cable or a fastening rod which is connected to the door latch. Since there is no electrical impulse when the gate is opened by hand, this opening must be carried out as with any manual operation.
- the control of the drive unit also includes protection against jamming of people or objects: as soon as there is resistance to the moving gate, the drive switches briefly to the opposite direction to release this obstacle and then switches off.
- Fig. 1 shows a sectional view of the lintel over a gate entrance and parts of the ceiling of a building 49 to which a guide rail 7 is attached, in the open profile of which the slats of the gate 3 are guided by means of guide rollers 48, the actual ones shown in FIG 1 not visible idlers, grip the guide rail 7 on the inside of the door and roll on the top 47 of the guide rail 7.
- a rack 87 is fastened running in parallel, which consists of a strip material standing vertically in profile, which has a toothing 77 on its upper edge. This toothing 77 engages in the pinion, which is arranged on the output shaft 50 of the motor-gear unit 2 in a rotationally fixed manner.
- the motor-gear unit 2 is on the base plate 5 of the drive unit 1 attached, which in turn is screwed to the gate 3 via spacer elements 34, for example.
- the motor-gear unit 2 is screwed onto the base plate 5 via a plurality of feet 35, the tap from the bushing 12 via its bevel gear teeth 13 to the bevel pinion 14 and thus the threaded rod between the motor-gear unit 2 and the base plate 5 9 with the nuts 10 running on it.
- the threaded rod 9 is mounted in bearing bridges 15, which are also screwed onto the base plate 5 as an angle profile.
- the pinion 70 is screwed to a metal bushing 18, which is non-positively attached to the conical seat of the output shaft 50 of the motor-gear unit 2, so that the pinion 70 is arranged in a rotationally fixed manner against the output shaft 50.
- a bushing 12 While the pinion 70 is placed on the metal bushing 18 from the side facing away from the motor-gear unit 2, a bushing 12 is pushed onto an outer diameter 11 of the metal bushing 18 formed by a shoulder, from the side facing the motor-gearbox unit 2 .
- the bushing 12 engages with a ring-shaped projection 23 in a corresponding annular groove 22 in the metal bushing 18 and is connected to the metal bushing 18 in a rotationally fixed manner with respect to the metal bushing 18 by, for example, notched nails 26 or other connecting elements.
- This bushing 12 is just so long that it protrudes from the metal bushing 18 through the opening 33 of the base plate 5 coaxially to the output shaft 50 and back into the housing 4, to the extent that it is on the other end face of the bushing 12 arranged bevel gear teeth 13 just protrudes beyond the base plate 5 in order to allow a bevel pinion 14 to engage in the bevel gear teeth 13.
- This bevel pinion 14 is located on one end of the threaded rod 9, which is mounted parallel to the base plate 5 and transversely to the output shaft 50 between the motor-gear unit 2 and the base plate 5.
- brackets screwed onto the base plate 5 can serve as bearing blocks 15.
- FIG. 1 one leg of the angle 16 can be seen behind the threaded rod 9, which is better shown in FIG. 2 and prevents the nuts 10 running on the threaded rod 9 from rotating with the threaded rod 9.
- a board 31 is arranged on corresponding struts of the base plate 5, which carries the electrical components for realizing the control of the entire drive unit, as symbolically shown in FIG. 1.
- a light source 24 which not only illuminates the components of the drive unit 1 located within the housing 4 during operation of the drive unit, but also emits light through the cover 6 of the drive unit 1, since in the lower area of the cover 6 in the vicinity of the light source 24, a translucent area 25 is arranged in order to illuminate the area below the drive unit 1.
- the cover 6 is placed on the base plate 5, so that the objects underneath are protected from dirt, etc.
- FIG. 2 shows a top view of the base plate 5 of the drive unit 1, the motor-gear unit 2 being removed and shown in its original position only in dashed lines around the threaded rods 9 underneath and their tapping from to show the output shaft 50 better.
- the bushing 12 which is shown in more detail in FIGS. 3a and 3b, extends through the opening 33 of the base plate 5 coaxially to the output shaft 50 through the base plate.
- the bevel pinion 14 at one end of the threaded rod 9, like the bushing 12, consists of a plastic, preferably polyamide, and is sprayed onto the end of the metallic threaded rod 9, which has a multi-tooth profile.
- the two limit switches 8 are fastened on one side, which are pressed into the adjustment webs 29 provided for this purpose and then screwed onto the base plate. These limit switches 8 are located at such a distance from the threaded rod 9 that the axially displaceable nuts 10 on the threaded rod 9 actuate them when passing the limit switches 8.
- the nuts 10 are prevented by an angle 16 on the other side of the threaded rod from rotating with the threaded rod 9, by screwing the angle 16 with its one leg onto the base plate 5 and its other leg projecting parallel to the threaded rod 9 at such a distance that the nuts 10 slide with one of their outer surfaces along the outer surface of this leg of the angle 16 without being able to rotate with the threaded rod.
- the two legs of the angle 16 are stiffened against one another by struts 27.
- the desired distance and the desired parallelism of the angle 16 to the threaded rod 9 can be set and, in the case of readjustment of the limit switch positions, ie the position of the nuts 10 on the threaded rod 9, the fastening screws 39 can be loosened somewhat and then the angle 16 so withdrawn far from the threaded rod 9, that a turning of the nuts 10 is possible.
- the motor-gear unit 2 which is only shown in broken lines in FIG. 2, is located above this limit switch control and is screwed to the base plate 5 via the feet 35.
- the circuit board 31 for the control of the drive unit 1, which can still be seen in FIG. 1 and is still located above the motor-transmission unit 2, can be seen in FIG. 2, however, a part of the struts 40 carry the board 31 in its complete condition.
- the motor-transmission unit 2 At the lower end of the motor-transmission unit 2 there is also a light source 24 which lights up when the drive unit 1 is started up. Furthermore, two 12 volt accumulators 21 are arranged on the base plate 5, which are connected in series and are used to supply energy to the motor-transmission unit 2 and the light source 24 and the electromagnet 37.
- This electromagnet 37 energizes the cable 42, which is connected to the locking mechanism, that is to say the lock, of the gate 3 in such a way that this slide mechanism is unlocked when the electromagnet 37 is tightened.
- 3a and 3b show the socket 12 in an enlarged detail. From this it can be seen that the bushing 12 can be pushed onto the outer diameter 11 of the metal bushing 18 by the fact that the bushing 12 distributes a plurality of slots 41 from the side with which it is pushed onto the metal bushing 18 has, so that the intermediate segments 42 can bend slightly in order to be able to introduce the annular projection 23 over the outer diameter 11 of the metal bushing 18 and into the annular groove 22.
- FIG. 1 shows, additional (as only indicated in FIG. 1) notch nails 26, which protrude from the end face of the metal bushing 18 into the end face of the bushing 12, prevent the bushing 12 from rotating relative to the metal bushing 18.
- an approximately closed clamping ring for example made of spring steel, could in turn be pushed onto the socket 12 after being pushed onto the metal socket 18, preferably for its secure fit in the outer circumference of the socket 12 in the area of the slots 24 an annular groove 43 would be arranged, as shown in Fig. 3a, but not shown in Fig. 1.
- the diameter of the bushing 12 decreases from the side facing the metal bushing 18 to the other end in order to get by with the smallest possible diameter of the opening 33 in the base plate 5.
- the pinion teeth 71 of the pinion 70 are made of plastic, preferably polyamide, and can therefore absorb significantly less forces than a toothing made of metal with the same dimensions.
- the pinion teeth 71 are dimensioned much larger in cross-section, in particular in the area of the tooth heads 78, which is achieved in that the approximately semicircular tooth heads 78 merge into tooth flanks 79 in accordance with an involute toothing.
- the pinion teeth 71 are dimensioned much larger in cross-section, in particular in the area of the tooth heads 78, which is achieved in that the approximately semicircular tooth heads 78 merge into tooth flanks 79 in accordance with an involute toothing.
Landscapes
- Power-Operated Mechanisms For Wings (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE8888121120T DE3875738D1 (de) | 1988-12-16 | 1988-12-16 | Antriebseinheit fuer waagerecht mittels rollen entlang einer fuehrungsschiene verschiebbares tor. |
AT88121120T ATE82034T1 (de) | 1988-12-16 | 1988-12-16 | Antriebseinheit fuer waagerecht mittels rollen entlang einer fuehrungsschiene verschiebbares tor. |
EP88121120A EP0374271B1 (fr) | 1988-12-16 | 1988-12-16 | Dispositif de commande d'une porte coulissant horizontalement sur des poulies le long d'un rail de guidage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP88121120A EP0374271B1 (fr) | 1988-12-16 | 1988-12-16 | Dispositif de commande d'une porte coulissant horizontalement sur des poulies le long d'un rail de guidage |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0374271A1 true EP0374271A1 (fr) | 1990-06-27 |
EP0374271B1 EP0374271B1 (fr) | 1992-11-04 |
Family
ID=8199676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88121120A Expired - Lifetime EP0374271B1 (fr) | 1988-12-16 | 1988-12-16 | Dispositif de commande d'une porte coulissant horizontalement sur des poulies le long d'un rail de guidage |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0374271B1 (fr) |
AT (1) | ATE82034T1 (fr) |
DE (1) | DE3875738D1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19739820A1 (de) * | 1997-09-11 | 1999-04-01 | Kaba Gallenschuetz Gmbh | Türanlage |
WO2021146314A1 (fr) * | 2020-01-13 | 2021-07-22 | Alpine Overhead Doors, Inc. | Dispositif de sécurité de position de fin de course pour porte roulante |
US11486195B2 (en) | 2020-01-13 | 2022-11-01 | Alpine Overhead Doors, Inc. | Limit position safety device for a rolling door |
US11643849B2 (en) | 2020-01-13 | 2023-05-09 | Alpine Overhead Doors, Inc. | Planetary gearbox system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3996697A (en) * | 1975-12-24 | 1976-12-14 | Overhead Door Corporation | Door operator with screw drive |
DE2643905B1 (de) * | 1976-09-29 | 1978-02-23 | Siemens Ag | Raumteilungs-wandelement mit motorischem antrieb |
DE3205675A1 (de) * | 1982-02-17 | 1983-09-01 | Kurt 7403 Ammerbuch Berner | Antriebsvorrichtung fuer ein schiebetor |
-
1988
- 1988-12-16 EP EP88121120A patent/EP0374271B1/fr not_active Expired - Lifetime
- 1988-12-16 DE DE8888121120T patent/DE3875738D1/de not_active Expired - Fee Related
- 1988-12-16 AT AT88121120T patent/ATE82034T1/de not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3996697A (en) * | 1975-12-24 | 1976-12-14 | Overhead Door Corporation | Door operator with screw drive |
DE2643905B1 (de) * | 1976-09-29 | 1978-02-23 | Siemens Ag | Raumteilungs-wandelement mit motorischem antrieb |
DE3205675A1 (de) * | 1982-02-17 | 1983-09-01 | Kurt 7403 Ammerbuch Berner | Antriebsvorrichtung fuer ein schiebetor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19739820A1 (de) * | 1997-09-11 | 1999-04-01 | Kaba Gallenschuetz Gmbh | Türanlage |
US6073394A (en) * | 1997-09-11 | 2000-06-13 | Kaba Gallenschutz Gmbh | Door system |
WO2021146314A1 (fr) * | 2020-01-13 | 2021-07-22 | Alpine Overhead Doors, Inc. | Dispositif de sécurité de position de fin de course pour porte roulante |
US11486195B2 (en) | 2020-01-13 | 2022-11-01 | Alpine Overhead Doors, Inc. | Limit position safety device for a rolling door |
US11643849B2 (en) | 2020-01-13 | 2023-05-09 | Alpine Overhead Doors, Inc. | Planetary gearbox system |
US11725422B2 (en) | 2020-01-13 | 2023-08-15 | Alpine Overhead Doors, Inc. | Power transfer device for a rolling door operator |
Also Published As
Publication number | Publication date |
---|---|
ATE82034T1 (de) | 1992-11-15 |
DE3875738D1 (de) | 1992-12-10 |
EP0374271B1 (fr) | 1992-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2553667C3 (de) | Elektrischer Fensterheber für Kraftfahrzeuge | |
DE3834643C2 (de) | Antriebseinheit | |
EP3245904A1 (fr) | Entraînement électromoteur pour un meuble | |
DE4025134C1 (fr) | ||
DE202012001762U1 (de) | Kettenantrieb für einen Stellantrieb zum automatischen Öffnen und Schließen einer Lüftungsvorrichtung | |
DE4436326C1 (de) | Schloß, insbesondere zum Verriegeln der Lenkspindel oder der Zahnstange des Lenkgetriebes oder der Ausgangswelle des Antriebsgetriebes eines Kraftfahrzeugs | |
DE2854713C2 (fr) | ||
DE102006059224A1 (de) | Antrieb für Drehflügeltüren | |
DE9210801U1 (de) | Verstelleinrichtung für ein Lattenrost | |
EP1449994B1 (fr) | Fenêtre, porte ou analogue avec une unité d'entraínement motorisée pour crémone-serrure | |
EP0374271B1 (fr) | Dispositif de commande d'une porte coulissant horizontalement sur des poulies le long d'un rail de guidage | |
AT403145B (de) | Antrieb für einen trennschalter, insbesondere für einen fahrleitungsschalter | |
EP1002923A2 (fr) | Dispositif d'ouverture et de fermeture d'une ouverture dans une paroi au moyen d'une porte coulissante | |
DE3608988A1 (de) | Vorrichtung zur handbetaetigung einer elektromotorisch antreibbaren wickelwelle z.b. eines rolladens | |
EP1407901A1 (fr) | Attelage pour véhicules de traction | |
DE102014015388B4 (de) | Vorrichtung zum Betätigen einer Arretiereinrichtung | |
DE3737385C2 (de) | Vorrichtung zum Öffnen und Schließen eines Tores | |
DE19839078A1 (de) | Elektromechanisch betätigtes Fensterrollo, besonders für Kraftfahrzeuge | |
DE10106674A1 (de) | Verriegelungsvorrichtung für ein Dreh-oder Schiebetor | |
AT513983B1 (de) | Vorrichtung zum Bewegen einer Abdeckung zur Isolierung von Becken | |
DE10301584B4 (de) | Vorrichtung zur verschieblichen Anordnung eines Paneels | |
EP0500984B1 (fr) | Dispositif de commande avec quatre interrupteurs de fin de course | |
EP0491133A1 (fr) | Mécanisme d'actionnement pour serrures de fenêtres et portes ou similaire | |
AT401082B (de) | Ein- oder zweiflügelige schiebe-, schwenkschiebe- oder taschentür | |
EP0373254B1 (fr) | Dispositif de commande pour portes basculantes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT CH DE LI |
|
17P | Request for examination filed |
Effective date: 19900810 |
|
17Q | First examination report despatched |
Effective date: 19911203 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FIRMA KURT BERNER |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE LI |
|
REF | Corresponds to: |
Ref document number: 82034 Country of ref document: AT Date of ref document: 19921115 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3875738 Country of ref document: DE Date of ref document: 19921210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19921216 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19931229 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19940119 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19941231 Ref country code: CH Effective date: 19941231 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19950901 |