EP0373975B1 - Pumping unit for obstaining a high vacuum - Google Patents

Pumping unit for obstaining a high vacuum Download PDF

Info

Publication number
EP0373975B1
EP0373975B1 EP89402659A EP89402659A EP0373975B1 EP 0373975 B1 EP0373975 B1 EP 0373975B1 EP 89402659 A EP89402659 A EP 89402659A EP 89402659 A EP89402659 A EP 89402659A EP 0373975 B1 EP0373975 B1 EP 0373975B1
Authority
EP
European Patent Office
Prior art keywords
pump
pressure
primary pump
primary
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP89402659A
Other languages
German (de)
French (fr)
Other versions
EP0373975A1 (en
Inventor
Claude Saulgeot
Jacques Long
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel CIT SA
Original Assignee
Alcatel CIT SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9373051&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0373975(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alcatel CIT SA filed Critical Alcatel CIT SA
Priority to AT89402659T priority Critical patent/ATE90143T1/en
Publication of EP0373975A1 publication Critical patent/EP0373975A1/en
Application granted granted Critical
Publication of EP0373975B1 publication Critical patent/EP0373975B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/022Stopping, starting, unloading or idling control by means of pressure

Definitions

  • the present invention relates to a pumping assembly for obtaining high voids.
  • Such a pumping assembly requires electrical energy to power the pump drive motors. This energy can come either from a mains supply or from a storage battery integrated in the pumping unit.
  • the invention aims to save the electrical energy consumed during pumping operations.
  • the invention is particularly advantageous in the case of portable assemblies powered, precisely, by an accumulator battery, allowing the increase, for a battery of given weight and size, of the duration of the autonomy of the pumping assembly.
  • the subject of the invention is therefore a pumping assembly for obtaining high voids, comprising a primary pump and a secondary pump associated in series, the secondary pump sucking in an enclosure to be emptied, and comprising means for starting the pump. secondary when the pressure upstream of the primary pump drops below a value P1, characterized in that a passive tank, followed by an isolation valve are interposed between the discharge of the secondary pump and the suction of the primary pump, and in that it comprises means for controlling the closing of the isolation valve and stopping the primary pump when the pressure in said passive tank reaches a value P2 ⁇ P1 and opening of the isolation and restart valve of the primary pump when the pressure in said passive tank again reaches the pressure P1.
  • FIG. 1 schematically represents a pumping assembly according to the invention.
  • Figure 2 is a curve representative of the operation of the pumping assembly.
  • FIG. 1 therefore schematically represents a pumping assembly which comprises a secondary pump 1 with its drive motor 2, connected on the side of its suction to an enclosure 3 in which it is desired to carry out a high vacuum, and on the side of its discharge, to a primary pump 4 with its drive motor 5, this primary pump 4 delivering to the atmosphere.
  • the pumping assembly shown is, for example, portable and autonomous and thus comprises a storage battery 6 for supplying energy to the assembly.
  • the storage battery supplies an electrical control circuit 7 which comprises, among other things, a three-phase DC-AC converter for supplying motors 2 and 5. Lines 8 and 9 show these supplies.
  • the secondary pump 1 can only operate below a certain pressure P1 called priming pressure. Also, when the assembly starts, only the primary pump 4 is started, and when the pressure upstream of the primary pump drops below this pressure P1, the secondary pump 1 is started automatically. It is known that the intensity absorbed by the drive motor 5 is an increasing function of the suction pressure. Also, the secondary pump starts up when the current absorbed by the drive motor 5 drops below a value which corresponds to this priming pressure P1. To this end, the control circuit 7 comprises for example a current relay operating for a predetermined value of the current in the line 9.
  • a passive tank 10 followed by an isolation valve 11 are interposed between the discharge 12 of the secondary pump 1 and the suction 13 of the primary pump 4.
  • the passive tank 10 is only one simple cavity having a certain volume, it is for this reason that it is called passive.
  • the control circuit 7 comprises a relay operating between two maximum I1 and minimum I2 values of the motor 2 driving the secondary pump 1, values I1 and I Needless of the current which correspond to two values of the pressure P in the isolation tank 10: the first P1 priming value and a second P2 ⁇ P1 value.
  • This pressure P2 corresponds to a value P l of the pressure in the vacuum enclosure 3.
  • This pressure P l is the suction limit pressure of the secondary pump 1.
  • the control circuit 7 controls, through line 14, the closing of the valve 11 and the stopping of the drive motor 5 of the primary pump 4.
  • the control circuit 7 controls the re-opening of the valve isolation 11 and restarting of the primary pump 4.
  • the pressure in the reservoir 10 drops again to the value P2, which again causes the primary pump 4 to stop and the isolation valve 11.
  • the pressure in the isolation tank 10 thus oscillates between these two values P1 and P2, with an operation for the first time of the two pumps followed by a second time where only the secondary pump operates.
  • the pumping unit starts and only the primary pump 4 operates.
  • the pressure in the reservoir 10 reaches the value P1 and the secondary pump 1 is started.
  • the intensity absorbed by its drive motor 2 is maximum and equal to I1.
  • the pressure decreases until P2 at time t2, the current absorbed by the motor 2 has dropped to a minimum value I2, the relay trips and the primary pump 4 is stopped and the valve 11 closed.
  • the pressure P2 is the pressure in the reservoir 10 at the time when the suction of the secondary pump 1 reaches its limit pressure P l . At this moment, the regime is permanent, and the flow Q pumped by the primary pump 4 is equal to the degassing flow Q1 of the enclosure 3.
  • the on-off time ratio of the primary pump 4 is directly linked to the importance of the degassing flow Q1 of the enclosure 3 and to the magnitude of the volume V of the tank 10.
  • P1 - P2 Q1 your V ta being the stopping time of the primary pump 4: t3 - t2 or t5 - t4 in figure 2.
  • ta V Q1 (P1 - P2)
  • stop times ta are all the greater the greater the volume V of the reservoir 10, the greater the priming pressure P1 of the secondary pump 1 and the degassing flow Q1 of the enclosure 3 is smaller.
  • the running time t m of the primary pump 4 (corresponding to the times t2 - t1 or t4 - t3 or t6-t5 in FIG. 2) depends on the volume V of the reservoir 10 and the pumping rate S of the pump primary 4.
  • this running time of the primary pump 4 is all the smaller the smaller the volume V of the reservoir 10, the more the pressure ratio P1 P2 is smaller and that the flow rate S of the primary pump 4 is greater.
  • this ratio is lower the lower the degassing flow Q1 of the enclosure, the lower the ratio of P1 P2 is low, that the pumping rate S of the primary pump is large and that the difference in pressures P1 - P2 is large.
  • the energy consumed by the primary pump 4 with such a pumping assembly during a time t of use of the assembly represents 2.3 10 ⁇ 3 of the energy consumed by the primary pump if this primary pump 4 had been running continuously for all this time t, instead of only working intermittently.
  • the secondary pump operating continuously from time t1.
  • the primary pump 4 is a fixing pump, for example a static pump of the "molecular sieve” or zeolite type. Pumping by capture of molecules is only effective at very low temperatures and this type of pump requires a powerful cooling system, for example by circulation of liquid nitrogen.
  • the drive motor 5 does not exist and is replaced by the cooling system.
  • the control circuit 7 therefore acts on this cooling circuit 5 to stop it, under the same conditions in which the drive motor was stopped in the case of the use of a rotary primary pump delivering to the atmosphere.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Massaging Devices (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PCT No. PCT/FR89/00494 Sec. 371 Date Aug. 14, 1990 Sec. 102(e) Date Aug. 14, 1990 PCT Filed Sep. 27, 1989 PCT Pub. No. WO90/07061 PCT Pub. Date Jun. 28, 1990.A pumping assembly for obtaining a high vacuum, the assembly comprising a primary pump (4) and a secondary pump (1) associated in series, the inlet of the secondary pump (1) being taken from an enclosure (3) to be evacuated, the assembly further including means (7) for starting the secondary pump (1) when the pressure upstream from the primary pump (4) drops below a value P1, the assembly being characterized in that a passive tank (10) followed by an isolating valve (11) are interposed between the outlet (12) from the secondary pump (1) and the inlet (13) to the primary pump (4), and in that it includes control means (7) for closing the isolating valve (11) and stopping the primary pump (4) when the pressure in said passive tank (10) reaches a value P2<P1, and for opening the isolating valve (11) and restarting the primary pump (4) when the pressure in said passive tank ( 10) returns to the pressure P1.

Description

La présente invention concerne un ensemble de pompage pour l'obtention de vides élevés.The present invention relates to a pumping assembly for obtaining high voids.

Il est bien connu que pour obtenir des pressions inférieures à 10⁻³ mbar, on associe en série une pompe primaire et une pompe secondaire. Au démarrage de l'ensemble, seule la pompe primaire est mise en route jusqu'à ce que la pression en amont de la pompe primaire descende à une valeur P₁ telle que la pompe secondaire puisse être mise en marche. La pompe secondaire est alors mise en route et les deux pompes, primaire et secondaire, fonctionnent simultanément en série, en permanence. La pression désirée dans l'enceinte est ainsi atteinte au bout d'un temps plus ou moins long.It is well known that to obtain pressures below 10⁻³ mbar, a primary pump and a secondary pump are combined in series. When the assembly starts, only the primary pump is started until the pressure upstream of the primary pump drops to a value P₁ such that the secondary pump can be started. The secondary pump is then started and the two pumps, primary and secondary, operate simultaneously in series, permanently. The desired pressure in the enclosure is thus reached after a more or less long time.

Un tel ensemble de pompage nécessite de l'énergie électrique pour l'alimentation des moteurs d'entraînement des pompes. Cette énergie peut provenir soit d'une alimentation secteur, soit d'une batterie d'accumulateur intégrée à l'ensemble de pompage.Such a pumping assembly requires electrical energy to power the pump drive motors. This energy can come either from a mains supply or from a storage battery integrated in the pumping unit.

L'invention a pour but d'économiser l'énergie électrique consommée pendant les opérations de pompage. L'invention est particulièrement intéressante dans le cas des ensembles portatifs alimentés, précisément, par une batterie d'accumulateur, en permettant l'augmentation, pour une batterie de poids et d'encombrement donnés, de la durée de l'autonomie de l'ensemble de pompage.The invention aims to save the electrical energy consumed during pumping operations. The invention is particularly advantageous in the case of portable assemblies powered, precisely, by an accumulator battery, allowing the increase, for a battery of given weight and size, of the duration of the autonomy of the pumping assembly.

L'invention a ainsi pour objet un ensemble de pompage pour l'obtention de vides élevés, comprenant une pompe primaire et une pompe secondaire associées en série, la pompe secondaire aspirant dans une enceinte à vider, et comportant des moyens de démarrage de la pompe secondaire lorsque la pression en amont de la pompe primaire descend au-dessous d'une valeur P₁, caractérisé en ce qu'un réservoir passif, suivi d'une vanne d'isolement sont intercalés entre le refoulement de la pompe secondaire et l'aspiration de la pompe primaire, et en ce qu'il comprend des moyens de commande de fermeture de la vanne d'isolement et d'arrêt de la pompe primaire lorsque la pression dans ledit réservoir passif atteint une valeur P₂ < P₁ et d'ouverture de la vanne d'isolement et de remise en marche de la pompe primaire lorsque la pression dans ledit réservoir passif atteint de nouveau la pression P₁.The subject of the invention is therefore a pumping assembly for obtaining high voids, comprising a primary pump and a secondary pump associated in series, the secondary pump sucking in an enclosure to be emptied, and comprising means for starting the pump. secondary when the pressure upstream of the primary pump drops below a value P₁, characterized in that a passive tank, followed by an isolation valve are interposed between the discharge of the secondary pump and the suction of the primary pump, and in that it comprises means for controlling the closing of the isolation valve and stopping the primary pump when the pressure in said passive tank reaches a value P₂ <P₁ and opening of the isolation and restart valve of the primary pump when the pressure in said passive tank again reaches the pressure P₁.

On va maintenant donner la description d'un exemple de mise en oeuvre de l'invention en se référant au dessin annexé dans lequel :We will now give the description of an example of implementation of the invention with reference to the appended drawing in which:

La figure 1 représente schématiquement un ensemble de pompage selon l'invention.FIG. 1 schematically represents a pumping assembly according to the invention.

La figure 2 est une courbe représentative du fonctionnement de l'ensemble de pompage.Figure 2 is a curve representative of the operation of the pumping assembly.

La figure 1 représente donc schématiquement un ensemble de pompage qui comprend une pompe secondaire 1 avec son moteur d'entraînement 2, reliée du côté de son aspiration à une enceinte 3 dans laquelle on souhaite effectuer un vide poussé, et du côté de son refoulement, à une pompe primaire 4 avec son moteur d'entraînement 5, cette pompe primaire 4 refoulant à l'atmosphère.FIG. 1 therefore schematically represents a pumping assembly which comprises a secondary pump 1 with its drive motor 2, connected on the side of its suction to an enclosure 3 in which it is desired to carry out a high vacuum, and on the side of its discharge, to a primary pump 4 with its drive motor 5, this primary pump 4 delivering to the atmosphere.

L'ensemble de pompage représenté est, par exemple, portable et autonome et comprend ainsi une batterie d'accumulateurs 6 pour l'alimentation en énergie de l'ensemble. La batterie d'accumulateur alimente un circuit électrique de commande 7 qui comporte entre autre un convertisseur continu-alternatif triphasé pour l'alimentation des moteurs 2 et 5. Les lignes 8 et 9 figurent ces alimentations.The pumping assembly shown is, for example, portable and autonomous and thus comprises a storage battery 6 for supplying energy to the assembly. The storage battery supplies an electrical control circuit 7 which comprises, among other things, a three-phase DC-AC converter for supplying motors 2 and 5. Lines 8 and 9 show these supplies.

Comme on le sait, la pompe secondaire 1 ne peut fonctionner qu'au-dessous d'une certaine pression P₁ dite pression d'amorçage. Aussi, au démarrage de l'ensemble, seule la pompe primaire 4 est mise en route, et lorsque la pression en amont de la pompe primaire descend au-dessous de cette pression P₁, la pompe secondaire 1 est mise en route automatiquement. On sait que l'intensité absorbée par le moteur d'entraînement 5 est une fonction croissante de la pression d'aspiration. Aussi, la pompe secondaire se met en route lorsque le courant absorbé par le moteur d'entraînement 5 descend au-dessous d'une valeur qui correspond à cette pression d'amorçage P₁. A cet effet, le circuit de commande 7 comprend par exemple un relais d'intensité fonctionnant pour une valeur prédéterminée du courant dans la ligne 9.As is known, the secondary pump 1 can only operate below a certain pressure P₁ called priming pressure. Also, when the assembly starts, only the primary pump 4 is started, and when the pressure upstream of the primary pump drops below this pressure P₁, the secondary pump 1 is started automatically. It is known that the intensity absorbed by the drive motor 5 is an increasing function of the suction pressure. Also, the secondary pump starts up when the current absorbed by the drive motor 5 drops below a value which corresponds to this priming pressure P₁. To this end, the control circuit 7 comprises for example a current relay operating for a predetermined value of the current in the line 9.

Selon l'invention, un réservoir passif 10 suivi d'une vanne d'isolement 11 sont intercalés entre le refoulement 12 de la pompe secondaire 1 et l'aspiration 13 de la pompe primaire 4. Le réservoir passif 10 n'est qu'une simple cavité ayant un certain volume, c'est pour cette raison qu'il est appelé passif.According to the invention, a passive tank 10 followed by an isolation valve 11 are interposed between the discharge 12 of the secondary pump 1 and the suction 13 of the primary pump 4. The passive tank 10 is only one simple cavity having a certain volume, it is for this reason that it is called passive.

Le circuit de commande 7 comprend un relais fonctionnant entre deux valeurs maximales I₁ et minimales I₂ du moteur 2 d'entraînement de la pompe secondaire 1, valeurs I₁ et I₂ du courant qui correspondent à deux valeurs de la pression P dans le réservoir d'isolement 10 : la première valeur P₁ d'amorçage et une seconde valeur P₂ < P₁. Cette pression P₂ correspond à une valeur Pl de la pression dans l'enceinte à vide 3. Cette pression Pl est la pression limite d'aspiration de la pompe secondaire 1.The control circuit 7 comprises a relay operating between two maximum I₁ and minimum I₂ values of the motor 2 driving the secondary pump 1, values I₁ and I valeurs of the current which correspond to two values of the pressure P in the isolation tank 10: the first P₁ priming value and a second P₂ <P₁ value. This pressure P₂ corresponds to a value P l of the pressure in the vacuum enclosure 3. This pressure P l is the suction limit pressure of the secondary pump 1.

Ainsi, lorsque la pression dans le réservoir 10 atteint la valeur P₂, le circuit de commande 7 commande, par la ligne 14, la fermeture de la vanne 11 et l'arrêt du moteur d'entraînement 5 de la pompe primaire 4. Inversement, lorsque la pression dans le réservoir d'isolement 10 remonte jusqu'à la valeur P₁ du fait que la pompe secondaire 1 fonctionne toujours et du dégazage des parois de l'enceinte 3, le circuit de commande 7 commande la ré-ouverture de la vanne d'isolement 11 et la remise en route de la pompe primaire 4. La pression dans le réservoir 10 s'abaisse de nouveau jusqu'à la valeur P₂, ce qui provoque de nouveau l'arrêt de la pompe primaire 4 et la fermeture de la vanne d'isolement 11. La pression dans le réservoir d'isolement 10 oscille ainsi entre ces deux valeurs P₁ et P₂, avec un fonctionnement pendant un premier temps des deux pompes suivi d'un deuxième temps où seule la pompe secondaire fonctionne.Thus, when the pressure in the reservoir 10 reaches the value P₂, the control circuit 7 controls, through line 14, the closing of the valve 11 and the stopping of the drive motor 5 of the primary pump 4. Conversely, when the pressure in the isolation tank 10 rises to the value P₁ owing to the fact that the secondary pump 1 is still operating and to the degassing of the walls of the enclosure 3, the control circuit 7 controls the re-opening of the valve isolation 11 and restarting of the primary pump 4. The pressure in the reservoir 10 drops again to the value P₂, which again causes the primary pump 4 to stop and the the isolation valve 11. The pressure in the isolation tank 10 thus oscillates between these two values P₁ and P₂, with an operation for the first time of the two pumps followed by a second time where only the secondary pump operates.

La figure 2 représente ce fonctionnement.Figure 2 shows this operation.

Du temps 0 au temps t₁, l'ensemble de pompage démarre et seule la pompe primaire 4 fonctionne. Au temps t₁, la pression dans le réservoir 10 atteint la valeur P₁ et la pompe secondaire 1 est mise en route. A ce moment, l'intensité absorbée par son moteur d'entraînement 2 est maximale et égale à I₁. La pression diminue jusqu'en P₂ au temps t₂, l'intensité absorbée par le moteur 2 s'est abaissée jusqu'à une valeur minimale I₂, le relais déclenche et la pompe primaire 4 est arrêtée et la vanne 11 fermée. De t₂ à t₃ seule la pompe secondaire fonctionne. En t₃, la pompe primaire se remet en marche et la vanne 11 s'ouvre de nouveau,etc... De t₃ à t₄ les deux pompes fonctionnent, de t₄ à t₅, seule la pompe secondaire 1 fonctionne.....From time 0 to time t₁, the pumping unit starts and only the primary pump 4 operates. At time t₁, the pressure in the reservoir 10 reaches the value P₁ and the secondary pump 1 is started. At this time, the intensity absorbed by its drive motor 2 is maximum and equal to I₁. The pressure decreases until P₂ at time t₂, the current absorbed by the motor 2 has dropped to a minimum value I₂, the relay trips and the primary pump 4 is stopped and the valve 11 closed. From t₂ to t₃ only the secondary pump works. In t₃, the primary pump starts up again and the valve 11 opens again, etc ... From t₃ to t₄ the two pumps operate, from t₄ to t₅, only the secondary pump 1 operates .....

Si l'on définit le flux de pompage Q comme le produit du débit S par la pression P du débit pompé, on a Q = PS.If we define the pumping flow Q as the product of the flow S by the pressure P of the pumped flow, we have Q = PS.

On a dit plus haut que la pression P₂ est la pression dans le réservoir 10 au moment où l'aspiration de la pompe secondaire 1 atteint sa pression limite Pl. A ce moment, le régime est permanent, et le flux Q pompé par la pompe primaire 4 est égal au flux de dégazage Q₁ de l'enceinte 3.It was said above that the pressure P₂ is the pressure in the reservoir 10 at the time when the suction of the secondary pump 1 reaches its limit pressure P l . At this moment, the regime is permanent, and the flow Q pumped by the primary pump 4 is equal to the degassing flow Q₁ of the enclosure 3.

Or, à ce moment, le flux pompé par la pompe primaire est Q = P₂ S = Q₁, si S est le débit de pompage de la pompe primaire 4. On a ainsi, P₂ = Q1 S

Figure imgb0001
.Now, at this moment, the flow pumped by the primary pump is Q = P₂ S = Q₁, if S is the pumping flow rate of the primary pump 4. We thus have, P₂ = Q1 S
Figure imgb0001
.

Le rapport des temps marche-arrêt de la pompe primaire 4 est directement lié à l'importance du flux Q₁ de dégazage de l'enceinte 3 et à la grandeur du volume V du réservoir 10. La relation suivante lie ces différentes grandeurs : P₁ - P₂ = Q1 ta V

Figure imgb0002

ta étant le temps d'arrêt de la pompe primaire 4 : t₃ - t₂ ou t₅ - t₄ sur la figure 2.
On a ainsi ta = V Q₁ (P₁ - P₂)
Figure imgb0003
The on-off time ratio of the primary pump 4 is directly linked to the importance of the degassing flow Q₁ of the enclosure 3 and to the magnitude of the volume V of the tank 10. The following relationship links these different quantities: P₁ - P₂ = Q1 your V
Figure imgb0002

ta being the stopping time of the primary pump 4: t₃ - t₂ or t₅ - t₄ in figure 2.
We have thus ta = V Q₁ (P₁ - P₂)
Figure imgb0003

Ainsi, les temps d'arrêts ta sont d'autant plus grand que le volume V du réservoir 10 est plus grand, que la pression d'amorçage P₁ de la pompe secondaire 1 est plus grande et que le flux de dégazage Q₁ de l'enceinte 3 est plus petit.Thus, the stop times ta are all the greater the greater the volume V of the reservoir 10, the greater the priming pressure P₁ of the secondary pump 1 and the degassing flow Q₁ of the enclosure 3 is smaller.

Par ailleurs, le temps de marche tm de la pompe primaire 4 (correspondant aux temps t₂ - t₁ ou t₄ - t₃ ou t₆-t₅ sur la figure 2) dépend du volume V du réservoir 10 et du débit de pompage S de la pompe primaire 4.Furthermore, the running time t m of the primary pump 4 (corresponding to the times t₂ - t₁ or t₄ - t₃ or t₆-t₅ in FIG. 2) depends on the volume V of the reservoir 10 and the pumping rate S of the pump primary 4.

La relation suivante lie ces éléments : t m = 2,3 V S log P1 P₂

Figure imgb0004
The following relationship links these elements: t m = 2.3 V S log P1 P₂
Figure imgb0004

Ainsi, ce temps de marche de la pompe primaire 4 est d'autant plus petit que le volume V du réservoir 10 est plus petit, que le rapport de pression P1 P2

Figure imgb0005
est plus petit et que le débit S de la pompe primaire 4 est plus grand.Thus, this running time of the primary pump 4 is all the smaller the smaller the volume V of the reservoir 10, the more the pressure ratio P1 P2
Figure imgb0005
is smaller and that the flow rate S of the primary pump 4 is greater.

On a : tm ta = 2,3 V S log P1 P2 V Q₁ (P₁ - P₂) = 2,3 Q1 S log P1 P2 P₁ - P₂

Figure imgb0006
We have : tm your = 2.3 V S log P1 P2 V Q₁ (P₁ - P₂) = 2.3 Q1 S log P1 P2 P₁ - P₂
Figure imgb0006

Ainsi, ce rapport est d'autant plus faible que le flux de dégazage Q₁ de l'enceinte est faible, que le rapport des P1 P₂

Figure imgb0007
est faible, que le débit de pompage S de la pompe primaire est grand et que la différence des pressions P₁ - P₂ est grande.Thus, this ratio is lower the lower the degassing flow Q₁ of the enclosure, the lower the ratio of P1 P₂
Figure imgb0007
is low, that the pumping rate S of the primary pump is large and that the difference in pressures P₁ - P₂ is large.

A titre d'exemple, si le débit S de la pompe primaire 4 est de : S = 3,6 m³/h = 1 litre/seconde, le flux de dégazage Q₁ = 10⁻² mbxlitre/seconde, la pression maximale d'amorçage P₁ = 40 mb, la pression minimale P₂ = 4.10⁻³ mb.
On a alors tm = 9,2 secondes et ta = 4000 secondes tm ta = 2,3 1000     tm tm+ta = 2,3 1002,3 ≃ 2,3·10⁻³

Figure imgb0008
For example, if the flow rate S of the primary pump 4 is: S = 3.6 m³ / h = 1 liter / second, the degassing flow Q₁ = 10⁻² mbxliter / second, the maximum pressure of priming P₁ = 40 mb, minimum pressure P₂ = 4.10⁻³ mb.
We then have t m = 9.2 seconds and t a = 4000 seconds tm your = 2.3 1000 tm tm + ta = 2.3 1002.3 ≃ 2.310⁻³
Figure imgb0008

Ainsi, l'énergie consommée par la pompe primaire 4 avec un tel ensemble de pompage pendant un temps t d'utilisation de l'ensemble représente les 2,3 10⁻³ de l'énergie consommée par la pompe primaire si cette pompe primaire 4 avait fonctionné en permanence pendant tout ce temps t, au lieu de ne fonctionner que par intermittance. La pompe secondaire fonctionnant elle en permanence à partir du temps t₁.Thus, the energy consumed by the primary pump 4 with such a pumping assembly during a time t of use of the assembly represents 2.3 10⁻³ of the energy consumed by the primary pump if this primary pump 4 had been running continuously for all this time t, instead of only working intermittently. The secondary pump operating continuously from time t₁.

On voit ainsi l'intérêt de l'invention et particulièrement dans le cas d'un ensemble autonome alimenté par batterie.This shows the advantage of the invention and particularly in the case of an autonomous assembly powered by battery.

L'invention s'applique également dans le cas où la pompe primaire 4 est une pompe à fixation, par exemple une pompe statique du type "tamis moléculaire" ou zéolithe. Le pompage par capture des molécules n'est effectif qu'à très basse température et ce type de pompe nécessite un système de refroidissement puissant par exemple par circulation d'azote liquide.The invention also applies in the case where the primary pump 4 is a fixing pump, for example a static pump of the "molecular sieve" or zeolite type. Pumping by capture of molecules is only effective at very low temperatures and this type of pump requires a powerful cooling system, for example by circulation of liquid nitrogen.

Dans ce cas, le moteur d'entraînement 5 n'existe pas et est remplacé par le système de refroidissement. Le circuit de commande 7 agit donc sur ce circuit de refroidissement 5 pour l'arrêter, dans les mêmes conditions dans lesquelles le moteur d'entraînement était arrêté dans le cas de l'utilisation d'une pompe primaire rotative refoulant à l'atmosphère.In this case, the drive motor 5 does not exist and is replaced by the cooling system. The control circuit 7 therefore acts on this cooling circuit 5 to stop it, under the same conditions in which the drive motor was stopped in the case of the use of a rotary primary pump delivering to the atmosphere.

Claims (2)

  1. A pumping assembly for obtaining a high vacuum, the assembly comprising a primary pump (4) and a secondary pump (1) associated in series, the secondary pump (1) sucking from an enclosure (3) to be evacuated, and comprising means (7) for starting the secondary pump (1) when the pressure upstream from the primary pump (4) drops below a value P₁, the assembly being characterized in that a passive tank (10) followed by an isolating valve (11) is interposed between the outlet (12) from the secondary pump (1) and the inlet (13) of the primary pump (4), and that it includes control means (7) for closing the isolating valve (11) and stopping the primary pump (4) when the pressure in said passive tank (10) reaches a value P₂ < P₁, and for opening the isolating valve (11) and restarting the primary pump (4) when the pressure in said passive tank (10) returns to the pressure P₁.
  2. A pumping assembly according to claim 1, characterized in that said primary pump is an absorber pump (4) provided with a cooling device (5), said means for stopping the primary pump (4) acting on the cooling device (5).
EP89402659A 1988-12-16 1989-09-27 Pumping unit for obstaining a high vacuum Revoked EP0373975B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89402659T ATE90143T1 (en) 1988-12-16 1989-09-27 PUMP UNIT FOR REACHING HIGH VACUUM.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8816644A FR2640697B1 (en) 1988-12-16 1988-12-16 PUMPING ASSEMBLY FOR PROVIDING HIGH VACUUMS
FR8816644 1988-12-16

Publications (2)

Publication Number Publication Date
EP0373975A1 EP0373975A1 (en) 1990-06-20
EP0373975B1 true EP0373975B1 (en) 1993-06-02

Family

ID=9373051

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89402659A Revoked EP0373975B1 (en) 1988-12-16 1989-09-27 Pumping unit for obstaining a high vacuum

Country Status (9)

Country Link
US (1) US5039280A (en)
EP (1) EP0373975B1 (en)
JP (1) JPH03500440A (en)
AT (1) ATE90143T1 (en)
DD (1) DD284944A5 (en)
DE (1) DE68906869T2 (en)
ES (1) ES2041429T3 (en)
FR (1) FR2640697B1 (en)
WO (1) WO1990007061A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104541061A (en) * 2012-07-19 2015-04-22 阿迪克森真空产品公司 Method and device for pumping of a process chamber

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4213763B4 (en) * 1992-04-27 2004-11-25 Unaxis Deutschland Holding Gmbh Process for evacuating a vacuum chamber and a high vacuum chamber, and high vacuum system for carrying it out
US5217273A (en) * 1992-05-14 1993-06-08 H-Square Corporation Serial pumping for portable handling tool of electronic workpieces
US5261793A (en) * 1992-08-05 1993-11-16 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Miniature mechanical vacuum pump
US5733104A (en) * 1992-12-24 1998-03-31 Balzers-Pfeiffer Gmbh Vacuum pump system
JP3847357B2 (en) * 1994-06-28 2006-11-22 株式会社荏原製作所 Vacuum exhaust system
EP0717970A1 (en) * 1994-12-20 1996-06-26 GRIESHABER &amp; CO. AG SCHAFFHAUSEN Opthalmic aspiration and irrigation device and its operation procedure
DE19524609A1 (en) * 1995-07-06 1997-01-09 Leybold Ag Device for the rapid evacuation of a vacuum chamber
KR0183912B1 (en) * 1996-08-08 1999-05-01 김광호 Pumping facility connected to the multi-reaction chamber and method thereof
KR100196631B1 (en) * 1997-01-28 1999-06-15 윤종용 Vacuum unit and method of multi-mixing type
US5944049A (en) * 1997-07-15 1999-08-31 Applied Materials, Inc. Apparatus and method for regulating a pressure in a chamber
IT1297347B1 (en) * 1997-12-24 1999-09-01 Varian Spa VACUUM PUMP.
DE19854243C2 (en) * 1998-11-24 2000-10-19 Luk Automobiltech Gmbh & Co Kg Control for a vacuum pump
DE19913593B4 (en) * 1999-03-24 2004-09-23 Ilmvac Gmbh Controlled pumping station
DE60015003T2 (en) * 1999-04-07 2005-06-02 Alcatel Pressure control device for a vacuum chamber, and provided with such a device vacuum pump unit
FR2808098B1 (en) * 2000-04-20 2002-07-19 Cit Alcatel METHOD AND DEVICE FOR CONDITIONING THE ATMOSPHERE IN A PROCESS CHAMBER
DE10130426B4 (en) * 2001-06-23 2021-03-18 Pfeiffer Vacuum Gmbh Vacuum pump system
US6589023B2 (en) * 2001-10-09 2003-07-08 Applied Materials, Inc. Device and method for reducing vacuum pump energy consumption
US7185651B2 (en) * 2002-06-18 2007-03-06 Nektar Therapeutics Flow regulator for aerosol drug delivery and methods
GB0214273D0 (en) * 2002-06-20 2002-07-31 Boc Group Plc Apparatus for controlling the pressure in a process chamber and method of operating same
GB0401396D0 (en) * 2004-01-22 2004-02-25 Boc Group Plc Pressure control method
JP4633370B2 (en) * 2004-02-17 2011-02-16 財団法人国際科学振興財団 Vacuum equipment
US20060011829A1 (en) * 2004-03-05 2006-01-19 Oi Corporation Gas chromatograph and mass spectrometer
WO2006006906A1 (en) * 2004-07-13 2006-01-19 Delaval Holding Ab Controllable vacuum source
GB0418771D0 (en) * 2004-08-20 2004-09-22 Boc Group Plc Evacuation of a load lock enclosure
FR2883934B1 (en) * 2005-04-05 2010-08-20 Cit Alcatel QUICK ENCLOSURE PUMPING WITH ENERGY LIMITATION
US7604615B2 (en) * 2006-03-20 2009-10-20 Alcon, Inc. Surgical cassette with bubble separating structure
FR2888894A1 (en) * 2005-07-20 2007-01-26 Alcatel Sa QUICK PUMPING OF ENCLOSURE WITH ENERGY SAVING
CA2631167C (en) * 2005-11-29 2014-02-04 Unico, Inc. Estimation and control of a resonant plant prone to stick-slip behavior
JP4737770B2 (en) * 2006-09-12 2011-08-03 アネスト岩田株式会社 Vacuum pump operation control device and method
FR2952683B1 (en) * 2009-11-18 2011-11-04 Alcatel Lucent METHOD AND APPARATUS FOR PUMPING WITH REDUCED ENERGY CONSUMPTION
EP2458218A1 (en) * 2010-11-30 2012-05-30 Converteam Technology Ltd A system for maintaining a high vacuum
CH706231B1 (en) 2012-03-05 2016-07-29 Ateliers Busch Sa pumping system and method for controlling such an installation.
CN102777371B (en) * 2012-07-19 2015-11-25 奇瑞汽车股份有限公司 A kind of endurance test mechanism of vehicle vacuum pump and durability test method thereof
CN103790808A (en) * 2012-11-02 2014-05-14 深圳市文川实业有限公司 Movable vacuum high vacuum unit
GB2510829B (en) 2013-02-13 2015-09-02 Edwards Ltd Pumping system
JP6749857B2 (en) 2017-03-24 2020-09-02 株式会社日立ハイテク Automatic analyzer
JP2020056373A (en) * 2018-10-03 2020-04-09 株式会社荏原製作所 Vacuum exhaust system
US11815095B2 (en) * 2019-01-10 2023-11-14 Elival Co., Ltd Power saving vacuuming pump system based on complete-bearing-sealing and dry-large-pressure-difference root vacuuming root pumps
CN110469492A (en) * 2019-08-26 2019-11-19 西南石油大学 A kind of gas high sealing low-loss pressure charging system and method
JP7218706B2 (en) * 2019-10-18 2023-02-07 株式会社島津製作所 Evacuation device and method of starting the evacuation device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2492075A (en) * 1945-10-30 1949-12-20 Kinney Mfg Company Vacuum pump
US3785749A (en) * 1972-03-24 1974-01-15 Phillips Petroleum Co Control system for two-stage compressors
DE2430314C3 (en) * 1974-06-24 1982-11-25 Siemens AG, 1000 Berlin und 8000 München Liquid ring vacuum pump with upstream compressor
JPS60256584A (en) * 1984-05-30 1985-12-18 Honjiyou Chem Kk High vacuum device
DE3444169A1 (en) * 1984-12-04 1986-06-12 Loewe Pumpenfabrik GmbH, 2120 Lüneburg Arrangement for optimising the operation of vacuum pump installations
JPS62243982A (en) * 1986-04-14 1987-10-24 Hitachi Ltd 2-stage vacuum pump and operating method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104541061A (en) * 2012-07-19 2015-04-22 阿迪克森真空产品公司 Method and device for pumping of a process chamber
CN104541061B (en) * 2012-07-19 2017-02-22 阿迪克森真空产品公司 Method and device for pumping of a process chamber

Also Published As

Publication number Publication date
FR2640697B1 (en) 1993-01-08
DD284944A5 (en) 1990-11-28
EP0373975A1 (en) 1990-06-20
ATE90143T1 (en) 1993-06-15
WO1990007061A1 (en) 1990-06-28
JPH03500440A (en) 1991-01-31
US5039280A (en) 1991-08-13
DE68906869T2 (en) 1993-09-09
JPH0355679B2 (en) 1991-08-26
ES2041429T3 (en) 1993-11-16
DE68906869D1 (en) 1993-07-08
FR2640697A1 (en) 1990-06-22

Similar Documents

Publication Publication Date Title
EP0373975B1 (en) Pumping unit for obstaining a high vacuum
EP0445241B1 (en) Vacuum pumping group
EP0308846B1 (en) Method for starting vacuum pumps connected in series, and device for carrying out the method
FR2680490A1 (en) BRAKE SYSTEM WITH ANTI-BLOCKING CONTROL AND TRACTION SLIDING CONTROL
FR2599786A1 (en) FUEL PUMPING APPARATUS
EP0415317B1 (en) No-return security apparatus
WO1989000239A1 (en) Choke for engines
BE1018906A3 (en) COMPRESSOR WITH WATER INJECTION.
FR2940336A1 (en) Wastewater evacuating installation for use in lavatory, has pressure switch controlled by pressure reigning in plunger tube that is placed in tank, and another pressure switch controlled by pressure reigning in outlet piping of drain pump
FR2635146A1 (en) METHOD FOR IMPROVING THE PROFITABILITY OF A PRESSURE SYSTEM OR THE LIKE
JP3390935B2 (en) Motor compressor restart time reduction device
FR2464388A1 (en) Time delayed pressure limiting valve for compressor starting - has balanced piston with controlled air leak to atmospheric to prevent motor overload
EP0903498B1 (en) Submersible pump and method of control thereof
CH516745A (en) Installation to supply compressed air to a user network
JP3066816B2 (en) Pressure switch for high pressure pump
JPH07233734A (en) Fuel pressure holding device for gas turbine
JP2504297B2 (en) Engine automatic priming device
CH618075A5 (en) Apparatus for oxygenating a fish tank
FR2757567A1 (en) Combustion engine powered by hydrogen
BE653742A (en)
FR2803837A1 (en) Automatic safety stop for hydraulic lift has actuating cylinder with pressure accumulator controlled by solenoid valve connected to lift power circuit
BE1010221A4 (en) Pump/Turbine installation
JPH08277781A (en) Water feeding device
JPS5930449Y2 (en) Power supply circuit in Penning vacuum gauge
JPS62150082A (en) Method of lowering level of water in draft pipe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901218

17Q First examination report despatched

Effective date: 19920828

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930602

Ref country code: AT

Effective date: 19930602

REF Corresponds to:

Ref document number: 90143

Country of ref document: AT

Date of ref document: 19930615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68906869

Country of ref document: DE

Date of ref document: 19930708

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930825

Year of fee payment: 5

ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930903

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19930910

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930922

Year of fee payment: 5

Ref country code: CH

Payment date: 19930922

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930930

Year of fee payment: 5

Ref country code: FR

Payment date: 19930930

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF REVOCATION BY EPO

Effective date: 19931031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2041429

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

BERE Be: lapsed

Owner name: ALCATEL CIT

Effective date: 19930930

26 Opposition filed

Opponent name: LEYBOLD AKTIENGESELLSCHAFT

Effective date: 19940228

NLR1 Nl: opposition has been filed with the epo

Opponent name: LEYBOLD AKTIENGESELLSCHAFT

RDAC Information related to revocation of patent modified

Free format text: ORIGINAL CODE: 0009299REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19940501

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 940501

R27W Patent revoked (corrected)

Effective date: 19940501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLR2 Nl: decision of opposition