EP0373445B1 - Refroidisseur Joule-Thomson - Google Patents

Refroidisseur Joule-Thomson Download PDF

Info

Publication number
EP0373445B1
EP0373445B1 EP89122190A EP89122190A EP0373445B1 EP 0373445 B1 EP0373445 B1 EP 0373445B1 EP 89122190 A EP89122190 A EP 89122190A EP 89122190 A EP89122190 A EP 89122190A EP 0373445 B1 EP0373445 B1 EP 0373445B1
Authority
EP
European Patent Office
Prior art keywords
inlet end
peltier
gas
elements
lead conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89122190A
Other languages
German (de)
English (en)
Other versions
EP0373445A3 (fr
EP0373445A2 (fr
Inventor
Uwe Dr. Hingst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bodenseewerk Geratetechnik GmbH
Original Assignee
Bodenseewerk Geratetechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bodenseewerk Geratetechnik GmbH filed Critical Bodenseewerk Geratetechnik GmbH
Publication of EP0373445A2 publication Critical patent/EP0373445A2/fr
Publication of EP0373445A3 publication Critical patent/EP0373445A3/fr
Application granted granted Critical
Publication of EP0373445B1 publication Critical patent/EP0373445B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect

Definitions

  • DE-OS 36 42 683 describes a cryostat based on the Joule - Thomson effect for cooling an infrared detector.
  • this cryostat there is a counterflow heat exchanger with a flow line in a Dewar vessel.
  • the flow line ends in an expansion nozzle.
  • the infrared detector is located on the front of the inner wall of the Dewar vessel.
  • a heat-insulating layer is arranged between the Dewar vessel and a base.
  • an inlet end of the flow line is cooled by Peltier elements.
  • the inlet end of the flow line is mounted on a carrier made of a good heat-conducting material in good, heat-conducting contact with it.
  • the carrier is held on a heat-dissipating base via Peltier elements.
  • the cold sides of the Peltier elements are in contact with the wearer and the warm sides of the Peltier elements are in contact with the base.
  • FIG. 8 shows how the heat is removed through an evaporator b), the evaporating liquid being condensed again in a heat exchanger a) and flowing back into the evaporator. A condenser then sits on the cold side of the Peltier elements. There is no heat exchanger directly connected to the warm sides of the Peltier elements. It is not a Joule-Thomson cooler and it is not the warm side of the Peltier elements in heat exchange with the relaxed and cooled gas of the Joule-Thomson cooler.
  • US-A-4 718 249 describes a cooling and heating device with a heat pump.
  • a "thermoelectric module” can also serve as such a heat pump.
  • the cold and warm sides of the Peltier elements are each connected to a transmission medium circuit that contains a heat exchanger.
  • US-A-4 400 948 relates to an air dryer in which the air is passed through a heat exchanger.
  • the heat exchanger is connected to the cold sides of a "thermoelectric module".
  • the warm side of the Peltier elements are cooled by an air flow drawn in by a fan.
  • DE-A-35 41 645 relates to a device for extracting water from air, in which Peltier elements are also used. The warm sides of the Peltier elements are exposed to the outside air with heat exchangers (see Fig. 4, part 26).
  • EP-A-0 271 704 relates to a cool box which also works with Peltier elements.
  • the refrigerated goods are cooled by an air flow which is connected to the cold side of Peltier elements 26 via a heat exchanger 20.
  • the heat from the warm sides of the Peltier elements is cooled by a coolant circuit 29, the coolant in turn emitting its heat to the ambient air through a heat exchanger 31.
  • the invention is based on the object of improving the heat dissipation from the Peltier elements in a cooling device of the type defined in the introduction and either achieving greater pre-cooling of the inlet end of the flow line with a predetermined power consumption of the Peltier elements or increasing the power requirement of the Peltier elements reduce.
  • the warm sides of the Peltier elements are therefore not connected to a base from which the heat must flow away by means of heat conduction, but rather to heat exchanger means through which the gas from the return flows.
  • this gas When leaving the return line, this gas is still sufficiently cold that it presses the warm side of the Peltier element to a temperature which is lower than the temperature of the "base” and accordingly accordingly lowers the temperature of the cold side of the Peltier element.
  • the gas As it passes through the heat exchanger means, the gas is heated from the return line, so that the temperature of the warm sides of the Peltier elements also rises towards the outlet side of the heat exchanger means.
  • the temperature profile of the cold sides of the Peltier elements is pulled down, and accordingly the temperature profile of the compressed gas as it passes through the inlet end of the flow line.
  • Peltier elements achieve greater precooling of the compressed gas at the inlet end of the flow line, or the power consumption can be reduced accordingly.
  • the gas removes the heat from the Peltier elements by convection so that the surroundings of the cooling device are not burdened by this heat.
  • Embodiments of the invention are the subject of the dependent claims.
  • FIG. 1 is a schematic illustration of a cooling device for cooling an infrared detector.
  • FIG. 2 shows a longitudinal section of the rear part of the cooling device, that is to say the part facing away from the infrared detector and the expansion nozzle, with the inlet end of the flow line, which is cooled by Peltier elements.
  • FIG. 3 is a broken perspective view of a ring of Peltier elements with the associated heat exchanger means, as is used in the cooling device of FIG. 2.
  • a dewar is designated by 10.
  • the Dewar vessel consists of two pot-shaped wall parts 12 and 14 arranged coaxially one inside the other, which are connected to one another at their edges.
  • the wall parts 12 and 14 are provided on their lateral surfaces with a mirror coating 16 and 18, respectively.
  • the space between the wall parts is evacuated.
  • the end face 20 of the outer wall part 12 is not mirrored and forms a window that is transparent to infrared radiation.
  • An infrared detector 24 sits on the end face 22 of the inner wall part 14 within the space between the wall parts 12 and 14.
  • the infrared detector 24 is cooled by a cooling device 26 based on the Joule-Thomson effect. This cooling device 26 sits in the pot-shaped, inner wall part 14.
  • the cooling device 26 contains a flow line 28 which ends in a relaxation nozzle 30.
  • the flow line 28 is coiled within the wall part 14 and provided with a multiplicity of heat-exchanging ribs 32, as can be seen from FIG.
  • a pressurized gas from a pressurized gas source (not shown) is applied to the feed line. This compressed gas relaxes at the expansion nozzle 30 and cools down in the process. The expanded and cooled gas then flows back through a return. This return is formed here by the wall part 14 of the Dewar vessel 10. The gas enters into heat exchange via the heat-exchanging fins with the compressed gas flowing in the feed line 28. This pressurized gas is pre-cooled.
  • the pre-cooled compressed gas is further cooled down during the expansion and in turn causes a further pre-cooling.
  • the wall part 14 and the coiled flow line 28 with the ribs 32 form a counterflow heat exchanger, which is generally designated 33 is. In this way, very low temperatures can be reached.
  • the infrared detector 24 is cooled to these temperatures.
  • the dewar 10 sits on a flange portion 34.
  • the flange portion is gimbaled, not shown, with a finder containing the detector 20 opposite a structure supporting the finder, e.g. a missile.
  • the viewfinder can thus align the detector 20 with a target.
  • the compressed gas is supplied via a flexible connecting line 36.
  • the flange part 34 has an outlet 38 for the expanded gas from the return.
  • the inlet end 40 of the flow line 28 is helically wound on a cylindrical support 42.
  • the cylindrical support 42 forms an annular space 46 with a jacket part 44 concentric with it.
  • Peltier elements 48 are arranged radially in the annular space 46, their cold sides 50 being connected to the inlet end 40 of the flow line 28 and their warm sides 52 being connected to heat exchanger means 54, which protrude into the annular space 46.
  • the expanded gas from the return ie the interior 56 of the inner wall part 14 of the dewar vessel 10, is passed through the annular space 46 and flushes around the heat exchanger means 54.
  • the cold sides 50 of the Peltier elements 48 are in direct contact with (the inlet end 40 of the feed line 28.
  • An insulation layer 58 is applied between the inlet end 40 of the feed line 28 and the carrier 42.
  • the Peltier elements 48 are arranged in a plurality of meandering rings 60, 62 and 64, in which the Peltier elements 48 are electrically connected in series Plate 50 A is electrically connected, which is in heat-conducting but electrically insulated contact with the inlet end 40 of the feed line 28.
  • the Peltier element 48 B of this pair is together with the next Peltier element 48 C of the ring 60 with the warm side with a circuit-section-shaped printed circuit board 52 A.
  • Heat exchange means 54 sit on the plate 52 A.
  • the heat exchange means 54 are formed by radial aluminum ribs 66. The expanded gas emerges from the return of the Joule-Thomson cooling device 26 between the aluminum fins 66.
  • the different rings 60, 62 and 64 are arranged one behind the other in the axial direction.
  • the individual rings 60, 62 and 64 are thermally decoupled from one another.
  • the ring 60 is most strongly cooled on its warm side 52 by the gas. As a result, however, the gas is heated up somewhat.
  • the warm side of the second ring 62 is therefore cooled less and remains at a higher temperature.
  • the warm side of the third ring 64 experiences even less cooling due to the further heated gas.
  • the thermal decoupling of the rings 60, 62 and 64 ensures that each of the rings is optimally effective.
  • the temperature profile of the gas emerging from the return of the Joule-Thomson cooling device 26 when it passes through the heat exchanger means 54 is designated by 68.
  • the gas is heated by heat exchange with the warm sides of the Peltier elements 48.
  • the warm sides 52 of the Peltier elements 48 are cooled.
  • the Peltier elements 48 adjacent to the return are cooled more than the outlet-side ones.
  • the temperature of the warm sides 52 of the Peltier elements 48 in the three rings 60, 62 and 64 can therefore be represented in a simplified manner by a line 70 falling from right to left in FIG.
  • the left end of the line 70 corresponds to the warm side of the Peltier elements in the ring 60.
  • the right end of the line 70 corresponds to the warm side of the Peltier elements in the ring 64.
  • the cold sides 50 of the Peltier elements 48 are around that of the Peltier elements 48 generated temperature difference colder.
  • the temperature of these cold sides 50 can be represented in a simplified manner by line 72.
  • the cold sides 50 of the Peltier elements cool the compressed gas in the inlet end 40 of the flow line 28.
  • the temperature of the compressed gas changes on the way through the inlet end 40 according to line 74.
  • This line runs from the ambient temperature, which corresponds approximately to the temperature of the warm sides of the Peltier elements on the right in FIG. 2, to a point on the left in FIG. 2, which lies above line 72 by a certain amount. This amount corresponds to the temperature difference required for heat transfer. It can be seen that the cooling of the compressed gas obtained in this way is substantially greater than the temperature difference at the Peltier elements.
  • the arrangement described offers a number of advantages: a stronger pre-cooling of the compressed gas at the inlet end of the flow line 28 is achieved than would be possible by the temperature difference at the Peltier elements alone. This allows a reduction in the electrical power supplied to the Peltier elements.
  • the Peltier elements are connected directly to the inlet end 40 of the flow line 28. This inlet end 40 is separated from the carrier 42 by an insulation layer 58. It practically only needs to be cooled the inlet end 40 with the compressed gas flowing through it and not the entire carrier. This also reduces the required cooling capacity of the Peltier elements 48.
  • the heat is removed from the escaping gas. This eliminates the problem of heat dissipation from the environment of the cooling device. This is particularly important if, as in the present case, the cooling device with the associated view finder is gimbaled and movable towards a target and the compressed gas is supplied via a flexible line piece. If the precooling then takes place on the non-moving parts, that is to say upstream of the flexible line section, then the precooled compressed gas in the flexible line section, which acts like a heat exchanger, is reheated. On the other hand, the heat cannot be dissipated from the movable viewfinder or can only be dissipated with difficulty.
  • an air-permeable aluminum wire mesh can also be provided as the heat exchange means 54.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Claims (6)

  1. Dispositif de refroidissement dans lequel on utilise l'effet Joule-Thomson, comprenant
    (a) une conduite d'alimentation (18) munie d'une extrémité d'entrée (40) et d'une extrémité de sortie, dont l'extrémité d'entrée (40) est reliable à une source de gaz comprimé,
    (b) une tuyère de détente (30) prévue à l'extrémité de sortie de la conduite d'alimentation (28), le gaz comprimé venant par la conduite d'alimentation étant détendu à la tuyère de détente (30) sous refroidissement,
    (c) un reflux pour le gaz refroidi et détendu,
    (d) un échangeur de chaleur à contrecourant par lequel le gaz comprimé venant par la conduite d'alimentation (28) est en contact conducteur de chaleur avec le gaz refroidi et détendu revenant avec le reflux, et
    (e) des éléments Peltier (48) avec un côté chaud (52), et un côté froid (50) relié à l'extrémité d'entrée (40) de la conduite d'alimentation (40) pour un refroidissement supplémentaire de l'extrémité d'entrée (40) de la conduite d'alimentation (23),
       caractérisé par le fait que
    (f) des moyens d'échange de chaleur (54) traversés par le gaz du reflux, sont prévus aux côtés chauds (52) des éléments Peltier.
  2. Dispositif de refroidissement selon la revendication 1, caractérisé par le fait que les côtés froids (50) des éléments Peltier (48) sont en contact direct avec l'extrémité d'entrée (40) de la conduite d'alimentation (28).
  3. Dispositif de refroidissement selon la revendication 2, caractérisé par le fait que
    (a) l'extrémité d'entrée (40) de la conduite d'alimentation (28) est enroulée en spirale autour d'un support cylindrique (42),
    (b) le support cylindrique (42) forme un espace annulaire (46) avec une surface latérale concentrique à celui-ci,
    (c) les éléments Peltier (48) sont disposés radialement dans l'espace annulaire (46), leurs côtés froids (50) étant reliés à l'extrémité d'entrée (40) de la conduite d'alimentation (28) et leurs côtés chauds (52) aux moyens d'échange de chaleur (54) saillant dans l'espace annulaire (46), et
    (d) le gaz détendu est guidé du reflux à travers l'espace annulaire (46) et s'écoule autour des moyens d'échange de chaleur (54).
  4. Dispositif de refroidissement selon la revendication 3, caractérisé par le fait qu'une couche d'isolation (58) est appliquée entre l'extrémité d'entrée (40) de la conduite d'alimentation (28) et le support (42).
  5. Dispositif de refroidissement selon la revendication 3, caractérisé par le fait que
    (a) les éléments Peltier (48) sont disposés dans plusieurs anneaux en forme de méandre (60,62,64) dans lesquels les éléments Peltier (48) sont électriquement connectés en série,
    (b) les différents anneaux (60,62,64) sont disposés dans la direction axiale l'un derrière l'autre, et
    (c) les anneaux individuels (60,62,64) sont thermiquement découplés les uns des autres.
  6. Dispositif de refroidissement selon la revendication 3, caractérisé par le fait que
    (a) le dispositif de refroidissement (26) est monté mobile par rapport à un raccord de gaz comprimé et relié au raccord de gaz comprimé par une pièce de conduite flexible (36), et
    (b) le support (42) est monté avec l'extrémité d'entrée (40) de la conduite d'alimentation (28) et les éléments Peltier (48) à l'élément mobile du dispositif de refroidissement.
EP89122190A 1988-12-10 1989-12-01 Refroidisseur Joule-Thomson Expired - Lifetime EP0373445B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3841635A DE3841635A1 (de) 1988-12-10 1988-12-10 Joule-thomson kuehlvorrichtung
DE3841635 1988-12-10

Publications (3)

Publication Number Publication Date
EP0373445A2 EP0373445A2 (fr) 1990-06-20
EP0373445A3 EP0373445A3 (fr) 1991-07-03
EP0373445B1 true EP0373445B1 (fr) 1992-11-04

Family

ID=6368876

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89122190A Expired - Lifetime EP0373445B1 (fr) 1988-12-10 1989-12-01 Refroidisseur Joule-Thomson

Country Status (3)

Country Link
US (1) US4993230A (fr)
EP (1) EP0373445B1 (fr)
DE (2) DE3841635A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180293A (en) * 1992-03-20 1993-01-19 Hewlett-Packard Company Thermoelectrically cooled pumping system
US5465581A (en) * 1993-08-24 1995-11-14 Hewlett-Packard Analytical system having energy efficient pump
FR2725779B1 (fr) * 1994-10-18 1997-01-10 Air Liquide Dispositif cryogenique pour equipements optroniques et/ou electroniques et equipements comprenant un tel dispositif
US5551244A (en) * 1994-11-18 1996-09-03 Martin Marietta Corporation Hybrid thermoelectric/Joule-Thomson cryostat for cooling detectors
US5606870A (en) * 1995-02-10 1997-03-04 Redstone Engineering Low-temperature refrigeration system with precise temperature control
DE19520318A1 (de) * 1995-06-02 1996-12-05 Bodenseewerk Geraetetech Sensoranordnung mit einem durch einen Joule-Thomson Kühler gekühlten Sensor und Elektronikbauteilen
US5590538A (en) * 1995-11-16 1997-01-07 Lockheed Missiles And Space Company, Inc. Stacked multistage Joule-Thomson cryostat
DE19952331C1 (de) 1999-10-29 2001-08-30 Schott Spezialglas Gmbh Verfahren und Vorrichtung zum schnellen Schneiden eines Werkstücks aus sprödbrüchigem Werkstoff mittels Laserstrahlen
US6523538B1 (en) * 2000-01-05 2003-02-25 Instrumentarium Corp. Breathing circuit having improved water vapor removal
US7765811B2 (en) * 2007-06-29 2010-08-03 Laird Technologies, Inc. Flexible assemblies with integrated thermoelectric modules suitable for use in extracting power from or dissipating heat from fluid conduits
DE102008052494A1 (de) * 2008-09-30 2010-04-08 Institut für Luft- und Kältetechnik gGmbH Joule-Thomson-Kühler
ES2933906T3 (es) * 2014-10-29 2023-02-14 Carrier Corp Sistema de compresión de vapor con una unidad de purga termoeléctrica

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126710A (en) * 1964-03-31 Thermoelectric dehumidifier and reheater
US2931188A (en) * 1958-05-02 1960-04-05 Whirlpool Co Fluid cooling apparatus
US2959017A (en) * 1959-04-09 1960-11-08 Carrier Corp Heat exchangers employing thermoelectric elements for heat pumping
GB865890A (en) * 1959-09-01 1961-04-19 Minnesota Mining & Mfg Improvements in thermo-electric heat pumps
FR1301736A (fr) * 1960-09-28 1962-08-17 Philips Nv Procédé de fabrication d'un dispositif thermoélectrique tel qu'une thermobatterie ou un dispositif de refroidissement de peltier
US3372556A (en) * 1966-03-25 1968-03-12 Gen Dynamics Corp Retractable cryogenic assembly
US3386256A (en) * 1966-08-24 1968-06-04 Isotopes Inc Flexible heat-conducting mount
US3482411A (en) * 1968-03-28 1969-12-09 Westinghouse Electric Corp Direct transfer thermoelectric apparatus
US3500650A (en) * 1968-05-13 1970-03-17 Westinghouse Electric Corp Multistage direct transfer thermoelectric apparatus
DE3121764A1 (de) * 1981-06-02 1982-12-16 Dornier System Gmbh, 7990 Friedrichshafen "vorrichtung zur gastrennung"
US4400948A (en) * 1981-12-28 1983-08-30 Moorehead Jack F Air dryer
US4718249A (en) * 1984-04-16 1988-01-12 Hanson Wallace G Apparatus for heating and cooling
DE3541645A1 (de) * 1985-11-26 1987-06-04 Heinrich Prof Dr Ing Reents Vorrichtung zur wassergewinnung aus luft unter ausnutzung des peltier effektes
DE3639089A1 (de) * 1986-11-14 1988-05-26 Unitechnica Mobilkaelte Gmbh Thermoelektrische kuehlvorrichtung
DE3642683A1 (de) * 1986-12-13 1988-06-16 Bodenseewerk Geraetetech Kryostat zur kuehlung eines detektors
US4825667A (en) * 1988-02-11 1989-05-02 Ball Corporation Cryogenic cooling system

Also Published As

Publication number Publication date
EP0373445A3 (fr) 1991-07-03
DE58902619D1 (de) 1992-12-10
DE3841635A1 (de) 1990-06-13
EP0373445A2 (fr) 1990-06-20
US4993230A (en) 1991-02-19

Similar Documents

Publication Publication Date Title
EP0373445B1 (fr) Refroidisseur Joule-Thomson
DE69932106T2 (de) System zur Kühlung eines supraleitenden Läufers
DE19720677C1 (de) NMR-Meßvorrichtung mit gekühltem Meßkopf
EP2891396B1 (fr) Dispositif de refroidissement pour des composants placés dans l'espace interne d'une armoire de commande
DE602004000581T2 (de) Satellit einschliesslich Mittel zum Wärmetransport von einem Vorrichtungsgestell zu Radiatorpaneelen
DE4019669A1 (de) Adsorptionsthermischer speicherapparat und adsorptionsthermisches speichersystem denselben enthaltend
DE4238291A1 (de) Vorrichtung zur kleinflächigen Vereisung von Oberflächen
DE112011100875T5 (de) Verfahren und Vorrichtung zum Regeln der Temperatur in einem auf tiefe Temperaturen gekühlten Kyrostaten unter Verwendung von stehendem und sich bewegendem Gas
WO2008151751A1 (fr) Caloduc et installation frigorifique pour la cryotechnique
DD139757A5 (de) Vorrichtung zum transport von waermeenergie
DE3642683C2 (fr)
DE202006007585U1 (de) Kühl- und/oder Gefriergerät
DE19646349B4 (de) Verdampfer und damit ausgerüstete Fahrzeugklimaanlage
WO2002001133A1 (fr) Echangeur de chaleur pour installation de sechage a froid
DE3337195A1 (de) Anordnung fuer ein bei niederen temperaturen betriebsfaehiges elektronisches bauelement
DE102014222108A1 (de) Kältegerät mit einem Wärmetauschelement
DE3639760A1 (de) Kuehlmittelbehaelter
DE2543075A1 (de) Kuehlvorrichtung fuer elektrische schaltungselemente
DE2803438A1 (de) Kuehlvorrichtung
DE3300929A1 (de) Waermetauscher fuer ein kondensierendes oder verdampfendes medium und ein medium ohne phasenuebergang
DE2403352B2 (de) Haartrockner
EP0467189A2 (fr) Unité d'eau froide avec ajustement de la performance
DE102015207844A1 (de) Kältegerät mit einem Wärmetauscher
DE3823006C2 (de) Gehäuse für infrarotempfindliche Bauelemente
DE4344025C1 (de) Raumfahrzeug mit Kühleinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19910925

17Q First examination report despatched

Effective date: 19920409

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 58902619

Country of ref document: DE

Date of ref document: 19921210

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19920205

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951027

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951117

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970222

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970829

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980901