EP0373445B1 - Joule-thomson cooling device - Google Patents

Joule-thomson cooling device Download PDF

Info

Publication number
EP0373445B1
EP0373445B1 EP89122190A EP89122190A EP0373445B1 EP 0373445 B1 EP0373445 B1 EP 0373445B1 EP 89122190 A EP89122190 A EP 89122190A EP 89122190 A EP89122190 A EP 89122190A EP 0373445 B1 EP0373445 B1 EP 0373445B1
Authority
EP
European Patent Office
Prior art keywords
inlet end
peltier
gas
elements
lead conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89122190A
Other languages
German (de)
French (fr)
Other versions
EP0373445A3 (en
EP0373445A2 (en
Inventor
Uwe Dr. Hingst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bodenseewerk Geratetechnik GmbH
Original Assignee
Bodenseewerk Geratetechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bodenseewerk Geratetechnik GmbH filed Critical Bodenseewerk Geratetechnik GmbH
Publication of EP0373445A2 publication Critical patent/EP0373445A2/en
Publication of EP0373445A3 publication Critical patent/EP0373445A3/en
Application granted granted Critical
Publication of EP0373445B1 publication Critical patent/EP0373445B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect

Definitions

  • DE-OS 36 42 683 describes a cryostat based on the Joule - Thomson effect for cooling an infrared detector.
  • this cryostat there is a counterflow heat exchanger with a flow line in a Dewar vessel.
  • the flow line ends in an expansion nozzle.
  • the infrared detector is located on the front of the inner wall of the Dewar vessel.
  • a heat-insulating layer is arranged between the Dewar vessel and a base.
  • an inlet end of the flow line is cooled by Peltier elements.
  • the inlet end of the flow line is mounted on a carrier made of a good heat-conducting material in good, heat-conducting contact with it.
  • the carrier is held on a heat-dissipating base via Peltier elements.
  • the cold sides of the Peltier elements are in contact with the wearer and the warm sides of the Peltier elements are in contact with the base.
  • FIG. 8 shows how the heat is removed through an evaporator b), the evaporating liquid being condensed again in a heat exchanger a) and flowing back into the evaporator. A condenser then sits on the cold side of the Peltier elements. There is no heat exchanger directly connected to the warm sides of the Peltier elements. It is not a Joule-Thomson cooler and it is not the warm side of the Peltier elements in heat exchange with the relaxed and cooled gas of the Joule-Thomson cooler.
  • US-A-4 718 249 describes a cooling and heating device with a heat pump.
  • a "thermoelectric module” can also serve as such a heat pump.
  • the cold and warm sides of the Peltier elements are each connected to a transmission medium circuit that contains a heat exchanger.
  • US-A-4 400 948 relates to an air dryer in which the air is passed through a heat exchanger.
  • the heat exchanger is connected to the cold sides of a "thermoelectric module".
  • the warm side of the Peltier elements are cooled by an air flow drawn in by a fan.
  • DE-A-35 41 645 relates to a device for extracting water from air, in which Peltier elements are also used. The warm sides of the Peltier elements are exposed to the outside air with heat exchangers (see Fig. 4, part 26).
  • EP-A-0 271 704 relates to a cool box which also works with Peltier elements.
  • the refrigerated goods are cooled by an air flow which is connected to the cold side of Peltier elements 26 via a heat exchanger 20.
  • the heat from the warm sides of the Peltier elements is cooled by a coolant circuit 29, the coolant in turn emitting its heat to the ambient air through a heat exchanger 31.
  • the invention is based on the object of improving the heat dissipation from the Peltier elements in a cooling device of the type defined in the introduction and either achieving greater pre-cooling of the inlet end of the flow line with a predetermined power consumption of the Peltier elements or increasing the power requirement of the Peltier elements reduce.
  • the warm sides of the Peltier elements are therefore not connected to a base from which the heat must flow away by means of heat conduction, but rather to heat exchanger means through which the gas from the return flows.
  • this gas When leaving the return line, this gas is still sufficiently cold that it presses the warm side of the Peltier element to a temperature which is lower than the temperature of the "base” and accordingly accordingly lowers the temperature of the cold side of the Peltier element.
  • the gas As it passes through the heat exchanger means, the gas is heated from the return line, so that the temperature of the warm sides of the Peltier elements also rises towards the outlet side of the heat exchanger means.
  • the temperature profile of the cold sides of the Peltier elements is pulled down, and accordingly the temperature profile of the compressed gas as it passes through the inlet end of the flow line.
  • Peltier elements achieve greater precooling of the compressed gas at the inlet end of the flow line, or the power consumption can be reduced accordingly.
  • the gas removes the heat from the Peltier elements by convection so that the surroundings of the cooling device are not burdened by this heat.
  • Embodiments of the invention are the subject of the dependent claims.
  • FIG. 1 is a schematic illustration of a cooling device for cooling an infrared detector.
  • FIG. 2 shows a longitudinal section of the rear part of the cooling device, that is to say the part facing away from the infrared detector and the expansion nozzle, with the inlet end of the flow line, which is cooled by Peltier elements.
  • FIG. 3 is a broken perspective view of a ring of Peltier elements with the associated heat exchanger means, as is used in the cooling device of FIG. 2.
  • a dewar is designated by 10.
  • the Dewar vessel consists of two pot-shaped wall parts 12 and 14 arranged coaxially one inside the other, which are connected to one another at their edges.
  • the wall parts 12 and 14 are provided on their lateral surfaces with a mirror coating 16 and 18, respectively.
  • the space between the wall parts is evacuated.
  • the end face 20 of the outer wall part 12 is not mirrored and forms a window that is transparent to infrared radiation.
  • An infrared detector 24 sits on the end face 22 of the inner wall part 14 within the space between the wall parts 12 and 14.
  • the infrared detector 24 is cooled by a cooling device 26 based on the Joule-Thomson effect. This cooling device 26 sits in the pot-shaped, inner wall part 14.
  • the cooling device 26 contains a flow line 28 which ends in a relaxation nozzle 30.
  • the flow line 28 is coiled within the wall part 14 and provided with a multiplicity of heat-exchanging ribs 32, as can be seen from FIG.
  • a pressurized gas from a pressurized gas source (not shown) is applied to the feed line. This compressed gas relaxes at the expansion nozzle 30 and cools down in the process. The expanded and cooled gas then flows back through a return. This return is formed here by the wall part 14 of the Dewar vessel 10. The gas enters into heat exchange via the heat-exchanging fins with the compressed gas flowing in the feed line 28. This pressurized gas is pre-cooled.
  • the pre-cooled compressed gas is further cooled down during the expansion and in turn causes a further pre-cooling.
  • the wall part 14 and the coiled flow line 28 with the ribs 32 form a counterflow heat exchanger, which is generally designated 33 is. In this way, very low temperatures can be reached.
  • the infrared detector 24 is cooled to these temperatures.
  • the dewar 10 sits on a flange portion 34.
  • the flange portion is gimbaled, not shown, with a finder containing the detector 20 opposite a structure supporting the finder, e.g. a missile.
  • the viewfinder can thus align the detector 20 with a target.
  • the compressed gas is supplied via a flexible connecting line 36.
  • the flange part 34 has an outlet 38 for the expanded gas from the return.
  • the inlet end 40 of the flow line 28 is helically wound on a cylindrical support 42.
  • the cylindrical support 42 forms an annular space 46 with a jacket part 44 concentric with it.
  • Peltier elements 48 are arranged radially in the annular space 46, their cold sides 50 being connected to the inlet end 40 of the flow line 28 and their warm sides 52 being connected to heat exchanger means 54, which protrude into the annular space 46.
  • the expanded gas from the return ie the interior 56 of the inner wall part 14 of the dewar vessel 10, is passed through the annular space 46 and flushes around the heat exchanger means 54.
  • the cold sides 50 of the Peltier elements 48 are in direct contact with (the inlet end 40 of the feed line 28.
  • An insulation layer 58 is applied between the inlet end 40 of the feed line 28 and the carrier 42.
  • the Peltier elements 48 are arranged in a plurality of meandering rings 60, 62 and 64, in which the Peltier elements 48 are electrically connected in series Plate 50 A is electrically connected, which is in heat-conducting but electrically insulated contact with the inlet end 40 of the feed line 28.
  • the Peltier element 48 B of this pair is together with the next Peltier element 48 C of the ring 60 with the warm side with a circuit-section-shaped printed circuit board 52 A.
  • Heat exchange means 54 sit on the plate 52 A.
  • the heat exchange means 54 are formed by radial aluminum ribs 66. The expanded gas emerges from the return of the Joule-Thomson cooling device 26 between the aluminum fins 66.
  • the different rings 60, 62 and 64 are arranged one behind the other in the axial direction.
  • the individual rings 60, 62 and 64 are thermally decoupled from one another.
  • the ring 60 is most strongly cooled on its warm side 52 by the gas. As a result, however, the gas is heated up somewhat.
  • the warm side of the second ring 62 is therefore cooled less and remains at a higher temperature.
  • the warm side of the third ring 64 experiences even less cooling due to the further heated gas.
  • the thermal decoupling of the rings 60, 62 and 64 ensures that each of the rings is optimally effective.
  • the temperature profile of the gas emerging from the return of the Joule-Thomson cooling device 26 when it passes through the heat exchanger means 54 is designated by 68.
  • the gas is heated by heat exchange with the warm sides of the Peltier elements 48.
  • the warm sides 52 of the Peltier elements 48 are cooled.
  • the Peltier elements 48 adjacent to the return are cooled more than the outlet-side ones.
  • the temperature of the warm sides 52 of the Peltier elements 48 in the three rings 60, 62 and 64 can therefore be represented in a simplified manner by a line 70 falling from right to left in FIG.
  • the left end of the line 70 corresponds to the warm side of the Peltier elements in the ring 60.
  • the right end of the line 70 corresponds to the warm side of the Peltier elements in the ring 64.
  • the cold sides 50 of the Peltier elements 48 are around that of the Peltier elements 48 generated temperature difference colder.
  • the temperature of these cold sides 50 can be represented in a simplified manner by line 72.
  • the cold sides 50 of the Peltier elements cool the compressed gas in the inlet end 40 of the flow line 28.
  • the temperature of the compressed gas changes on the way through the inlet end 40 according to line 74.
  • This line runs from the ambient temperature, which corresponds approximately to the temperature of the warm sides of the Peltier elements on the right in FIG. 2, to a point on the left in FIG. 2, which lies above line 72 by a certain amount. This amount corresponds to the temperature difference required for heat transfer. It can be seen that the cooling of the compressed gas obtained in this way is substantially greater than the temperature difference at the Peltier elements.
  • the arrangement described offers a number of advantages: a stronger pre-cooling of the compressed gas at the inlet end of the flow line 28 is achieved than would be possible by the temperature difference at the Peltier elements alone. This allows a reduction in the electrical power supplied to the Peltier elements.
  • the Peltier elements are connected directly to the inlet end 40 of the flow line 28. This inlet end 40 is separated from the carrier 42 by an insulation layer 58. It practically only needs to be cooled the inlet end 40 with the compressed gas flowing through it and not the entire carrier. This also reduces the required cooling capacity of the Peltier elements 48.
  • the heat is removed from the escaping gas. This eliminates the problem of heat dissipation from the environment of the cooling device. This is particularly important if, as in the present case, the cooling device with the associated view finder is gimbaled and movable towards a target and the compressed gas is supplied via a flexible line piece. If the precooling then takes place on the non-moving parts, that is to say upstream of the flexible line section, then the precooled compressed gas in the flexible line section, which acts like a heat exchanger, is reheated. On the other hand, the heat cannot be dissipated from the movable viewfinder or can only be dissipated with difficulty.
  • an air-permeable aluminum wire mesh can also be provided as the heat exchange means 54.

Description

Die Erfindung betrifft eine Kühlvorrichtung, bei welcher der Joule - Thomson Effekt ausgenutzt wird, enthaltend

  • (a) eine Vorlaufleitung mit einem Einlaßende und einem Auslaßende, deren Einlaßende mit einer Druckgasquelle verbindbar ist,
  • (b) eine Entspannungsdüse, die an einem Auslaßende der Vorlaufleitung vorgesehen ist, wobei über die Vorlaufleitung zuströmendes Druckgas sich an der Entspannungsdüse unter Abkühlung entspannt,
  • (c) einen Rücklauf für das abgekühlte und entspannte Gas,
  • (d) einen Gegenstrom - Wärmetauscher, durch welchen das über die Vorlaufleitung zuströmende Druckgas in wärmeleitendem Kontakt mit dem über den Rücklauf abströmenden, abgekühlten und entspannten Gas steht, und
  • (e) Peltier - Elemente mit einer warmen Seite und einer mit dem Einlaßende der Vorlaufleitung verbundenen kalten Seite zum zusätzlichen Kühlen des Einlaßendes der Vorlaufleitung,
The invention relates to a cooling device in which the Joule - Thomson effect is used, comprising
  • (a) a flow line with an inlet end and an outlet end, the inlet end of which can be connected to a compressed gas source,
  • (b) an expansion nozzle which is provided at an outlet end of the supply line, compressed gas flowing in via the supply line expanding at the expansion nozzle while cooling,
  • (c) a return for the cooled and expanded gas,
  • (d) a countercurrent heat exchanger, by means of which the pressurized gas flowing in via the feed line is in heat-conducting contact with the cooled and relaxed gas flowing out through the return line, and
  • (e) Peltier elements with a warm side and a cold side connected to the inlet end of the feed line for additional cooling of the inlet end of the feed line,

Die DE-OS 36 42 683 beschreibt einen auf dem Joule - Thomson Effekt beruhenden Kryostaten zur Kühlung eines Infrarotdetektors. Bei diesem Kryostaten sitzt ein Gegenstrom - Wärmetauscher mit einer Vorlaufleitung in einem Dewar - Gefäß. Die Vorlaufleitung endet in einer Entspannungsdüse. Der Infrarotdetektor sitzt auf der Stirnseite der Innenwandung des Dewar - Gefäßes. Zur Verringerung der Wärmebelastung ist zwischen dem Dewar - Gefäß und einer Basis eine wärmeisolierende Schicht angeordnet. Zur Verbesserung der mit einem vorgegebenen Druckmassegasstrom erzielbaren Kühlleistung des Joule - Thomson Prozesses wird ein Einlaßende der Vorlaufleitung durch Peltier - Elemente gekühlt.DE-OS 36 42 683 describes a cryostat based on the Joule - Thomson effect for cooling an infrared detector. In this cryostat there is a counterflow heat exchanger with a flow line in a Dewar vessel. The flow line ends in an expansion nozzle. The infrared detector is located on the front of the inner wall of the Dewar vessel. To reduce the heat load, a heat-insulating layer is arranged between the Dewar vessel and a base. In order to improve the cooling capacity of the Joule - Thomson process that can be achieved with a given pressure mass gas flow, an inlet end of the flow line is cooled by Peltier elements.

Bei dem Kryostaten nach der DE-OS 36 42 683 ist das Einlaßende der Vorlaufleitung auf einem Träger aus gut wärmeleitendem Material in gutem, wärmeleitendem Kontakt mit diesem montiert. Der Träger ist über Peltier - Elemente an einer wärmeabführenden Basis gehaltert. Dabei sind die kalten Seiten der Peltier - Elemente in Kontakt mit dem Träger und die warmen Seiten der Peltier - Elemente in Kontakt mit der Basis.In the cryostat according to DE-OS 36 42 683, the inlet end of the flow line is mounted on a carrier made of a good heat-conducting material in good, heat-conducting contact with it. The carrier is held on a heat-dissipating base via Peltier elements. The cold sides of the Peltier elements are in contact with the wearer and the warm sides of the Peltier elements are in contact with the base.

Es ist nun allgemein bekannt, die warmen Seiten von Peltier-Elementen über Wärmetauscher zu kühlen. Die hierzu angeführten Druckschriften zeigen jedoch keinen Joule-Thomson-Kühler.It is now generally known to cool the warm sides of Peltier elements via heat exchangers. However, the publications cited do not show a Joule-Thomson cooler.

Ein Aufsatz in "Kältetechnik" 15.Jg. Heft 5, 1963, Seiten 137-143, beschäftigt sich generell mit der Bemessung und dem Aufbau von Peltier-Agregaten. In Bild 8 wird dargestellt, wie die Wärme durch einen Verdampfer b) abgeführt wird, wobei die verdampfende Flüssigkeit in einem Wärmetauscher a) wieder kondensiert wird und in den Verdampfer zurückfließt. Auf der kalten Seite sitzt an den Peltier-Elementen dann ein Verflüssiger. Es ist dort kein Wärmetauscher unmittelbar mit den warmen Seiten der Peltier-Elemente verbunden. Es geht nicht um einen Joule-Thomson-Kühler und es sind nicht die warmen Seiten der Peltier-Elemente in Wärmeaustausch mit dem entspannten und abgekühlten Gas des Joule-ThomsonKühlers.An essay in "refrigeration technology" 15.Jg. Issue 5, 1963, pages 137-143, generally deals with the dimensioning and construction of Peltier units. Figure 8 shows how the heat is removed through an evaporator b), the evaporating liquid being condensed again in a heat exchanger a) and flowing back into the evaporator. A condenser then sits on the cold side of the Peltier elements. There is no heat exchanger directly connected to the warm sides of the Peltier elements. It is not a Joule-Thomson cooler and it is not the warm side of the Peltier elements in heat exchange with the relaxed and cooled gas of the Joule-Thomson cooler.

In ähnlicher Weise wirken die Anordnungen nach Bild 11 und 12 dieses Aufsatzes. Bei der Anordnung nach Bild 13 erfolgt eine Kühlung der warmen Seiten der PeltierElemente durch Kühlwasser.The arrangements according to Figures 11 and 12 of this article have a similar effect. In the arrangement according to Figure 13, the warm sides of the Peltier elements are cooled by cooling water.

Die US-A-4 718 249 beschreibt eine Kühl- und Heizvorrichtung mit einer Wärmepumpe. Gemäß Figur 1 c, kann als solche Wärmepumpe auch ein "thermoelektric module" dienen. Auch dort sind die kalten und warmen Seiten der Peltier-Elemente mit je einem Übertragungsmittelkreislauf verbunden, der einen Wärmetauscher enthält.US-A-4 718 249 describes a cooling and heating device with a heat pump. According to FIG. 1 c, a "thermoelectric module" can also serve as such a heat pump. There, too, the cold and warm sides of the Peltier elements are each connected to a transmission medium circuit that contains a heat exchanger.

Die US-A-4 400 948 betrifft einen Lufttrockner, bei welchem die Luft durch einen Wärmetauscher geleitet wird. Der Wärmetauscher ist mit den kalten Seiten eines "thermoelektric-module" verbunden. Die warmen Seiten der Peltier-Elemente werden von einem über einen Ventilator angesaugten Luftstrom gekühlt.US-A-4 400 948 relates to an air dryer in which the air is passed through a heat exchanger. The heat exchanger is connected to the cold sides of a "thermoelectric module". The warm side of the Peltier elements are cooled by an air flow drawn in by a fan.

Die DE-A-35 41 645 betrifft eine Vorrichtung zur Wassergewinnung aus Luft, bei welcher ebenfalls Peltier-Elemente eingesetzt werden. Die warmen Seiten der Peltier-Elemente sind mit Wärmetauschern der Außenluft ausgesetzt (vgl. Bild 4, Teil 26).DE-A-35 41 645 relates to a device for extracting water from air, in which Peltier elements are also used. The warm sides of the Peltier elements are exposed to the outside air with heat exchangers (see Fig. 4, part 26).

Die EP-A-0 271 704 betrifft eine ebenfalls mit Peltier-Elementen arbeitende Kühlbox. Das Kühlgut wird durch einen Luftstrom gekühlt, der über einen Wärmetauscher 20 mit der kalten Seite von Peltier-Elementen 26 in Verbindung steht. Die Wärme von den warmen Seiten der Peltier-Elemente wird durch einen Kühlmittelkreislauf 29 gekühlt, wobei das Kühlmittel wiederum durch einen Wärmetauscher 31 seine Wärme an die Umgebungsluft abgibt.EP-A-0 271 704 relates to a cool box which also works with Peltier elements. The refrigerated goods are cooled by an air flow which is connected to the cold side of Peltier elements 26 via a heat exchanger 20. The heat from the warm sides of the Peltier elements is cooled by a coolant circuit 29, the coolant in turn emitting its heat to the ambient air through a heat exchanger 31.

Durch die Entgegenhaltungen ist es zwar bekannt, durch irgendeine Zwangskühlung die Wärme von den warmen Enden von Peltier-Elementen abzuführen. Dies geschieht jedoch nicht in Verbindung mit einen Joule-Thomson-Kühler. Auch bei der Kühlvorrichtung nach der DE-A-3 642 683 sitzen die warmen Seiten der Peltier-Elemente einfach an der Basis 70. Zu den Überlegungen, die in der vorliegenden Anmeldung angestellt werden, daß nämlich die Wirksamkeit des Joule-Thomsonkühlers durch diese Maßnahmen überproportional verbessert werden kann, geben die entgegengehaltenen Druckschriften keine Anregung.From the references it is known to remove the heat from the warm ends of Peltier elements by some form of forced cooling. However, this does not happen in connection with a Joule-Thomson cooler. In the cooling device according to DE-A-3 642 683, too, the warm sides of the Peltier elements are simply located at the base 70. Regarding the considerations made in the present application, namely the effectiveness of the Joule-Thomson cooler through these measures can be improved disproportionately, the cited documents give no suggestion.

Der Erfindung liegt die Aufgabe zugrunde, bei einer Kühlvorrichtung der eingangs definierten Art die Wärmeabfuhr von den Peltier - Elementen zu verbessern und entweder bei einer vorgegebenen Leistungsaufnahme der Peltier - Elemente eine stärkere Vorkühlung des Einlaßendes der Vorlaufleitung zu erreichen oder den Leistungsbedarf der Peltier - Elemente zu verringern.The invention is based on the object of improving the heat dissipation from the Peltier elements in a cooling device of the type defined in the introduction and either achieving greater pre-cooling of the inlet end of the flow line with a predetermined power consumption of the Peltier elements or increasing the power requirement of the Peltier elements reduce.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß

  • (f) an den warmen Seiten der Peltier - Elemente Wärmetauschermittel vorgesehen sind, die von dem Gas aus dem Rücklauf durchströmt werden.
According to the invention, this object is achieved in that
  • (f) on the warm sides of the Peltier elements, heat exchange means are provided through which the gas from the return flows.

Die warmen Seiten der Peltier - Elemente sind somit nicht mit einer Basis verbunden, von der die Wärme durch Wärmeleitung abfließen muß, sondern mit Wärmetauschermitteln, die von dem Gas aus dem Rücklauf durchströmt sind. Dieses Gas ist beim Austritt aus dem Rücklauf noch hinreichend kalt, daß es die warme Seite des Peltier - Elements auf eine gegenüber der Temperatur der "Basis" tiefere Temperatur drückt und demnach auch die Temperatur der kalten Seite der Peltier - Elemente entsprechend erniedrigt. Beim Durchgang durch die Wärmetauschermittel wird das Gas aus dem Rücklauf erwärmt, so daß zur Auslaßseite der Wärmetauschermittel hin auch die Temperatur der warmen Seiten der Peltier - Elemente ansteigt. Insgesamt wird aber der Temperaturverlauf der Kalten Seiten der Peltier - Elemente nach unten gezogen, und dementsprechend auch der Temperaturverlauf des Druckgases bei dessen Durchgang durch das Einlaßende der Vorlaufleitung. Es läßt sich auf diese Weise, wie unten noch im einzelnen erläutert wird, bei vorgegebener Leistungsaufnahme der Peltier - Elemente eine stärkere Vorkühlung des Druckgases am Einlaßende der Vorlaufleitung erzielen, oder es kann die Leistungsaufnahme entsprechend vermindert werden. Das Gas führt die Wärme von den Peltier - Elementen durch Konvektion ab, so daß die Umgebung der Kühlvorrichtung durch diese Wärme nicht belastet ist.The warm sides of the Peltier elements are therefore not connected to a base from which the heat must flow away by means of heat conduction, but rather to heat exchanger means through which the gas from the return flows. When leaving the return line, this gas is still sufficiently cold that it presses the warm side of the Peltier element to a temperature which is lower than the temperature of the "base" and accordingly accordingly lowers the temperature of the cold side of the Peltier element. As it passes through the heat exchanger means, the gas is heated from the return line, so that the temperature of the warm sides of the Peltier elements also rises towards the outlet side of the heat exchanger means. Overall, however, the temperature profile of the cold sides of the Peltier elements is pulled down, and accordingly the temperature profile of the compressed gas as it passes through the inlet end of the flow line. It can be done in this way, as will be explained in detail below, given the power consumption Peltier elements achieve greater precooling of the compressed gas at the inlet end of the flow line, or the power consumption can be reduced accordingly. The gas removes the heat from the Peltier elements by convection so that the surroundings of the cooling device are not burdened by this heat.

Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.Embodiments of the invention are the subject of the dependent claims.

Ein Ausführungsbeispiel der Erfindung ist nachstehend unter Bezugnahme auf die zugehörigen Zeichnungen näher erläutert.An embodiment of the invention is explained below with reference to the accompanying drawings.

Fig.1 ist eine schematische Darstellung einer Kühlvorrichtung zur Kühlung eines Infrarotdetektors.1 is a schematic illustration of a cooling device for cooling an infrared detector.

Fig.2 zeigt einen Längsschnitt des hinteren, also dem Infrarotdetektor und der Entspannungsdüse abgewandten Teiles der Kühlvorrichtung mit dem Einlaßende der Vorlaufleitung, das durch Peltier - Elemente gekühlt ist.2 shows a longitudinal section of the rear part of the cooling device, that is to say the part facing away from the infrared detector and the expansion nozzle, with the inlet end of the flow line, which is cooled by Peltier elements.

Fig.3 ist eine abgebrochen perspektivische Darstellung eines Ringes von Peltier - Elementen mit den zugehörigen Wärmetauschermitteln, wie er bei der Kühlvorrichtung von Fig.2 benutzt wird.FIG. 3 is a broken perspective view of a ring of Peltier elements with the associated heat exchanger means, as is used in the cooling device of FIG. 2.

Mit 10 ist ein Dewar - Gefäß bezeichnet. Das Dewar - Gefäß besteht aus zwei koaxial ineinander angeordneten, topfförmigen Wandungsteilen 12 und 14, die an ihren Rändern miteinander verbunden sind. Die Wandungsteile 12 und 14 sind auf ihren Mantelflächen mit einer Verspiegelung 16 bzw. 18 versehen. Der Raum zwischen den Wandungsteilen ist evakuiert. Die Stirnfläche 20 des äußeren Wandungsteils 12 ist nicht verspiegelt und bildet ein für infrarote Strahlung durchlässiges Fenster. Auf der Stirnfläche 22 des inneren Wandungsteils 14 sitzt innerhalb des Zwischenraumes zwischen den Wandungsteilen 12 und 14 ein Infrarotdetektor 24. Der Infrarotdetektor 24 wird von einer auf dem Joule - Thomson Effekt beruhenden Kühlvorrichtung 26 gekühlt. Diese Kühlvorrichtung 26 sitzt in dem topfförmigen, inneren Wandungsteil 14. Die Kühlvorrichtung 26 enthält eine Vorlaufleitung 28, die in einer Entspannungsdüse 30 endet. Die Vorlaufleitung 28 ist innerhalb des Wandungsteils 14 gewendelt und mit einer Vielzahl von wärmetauschenden Rippen 32 versehen, wie aus Fig.2 ersichtlich ist. Auf die Vorlaufleitung wird ein Druckgas von einer (nicht dargestellten) Druckgasquelle gegeben. Dieses Druckgas entspannt sich an der Entspannungsdüse 30 und kühlt sich dabei ab. Das entspannte und abgekühlte Gas fließt dann über einen Rücklauf zurück. Dieser Rücklauf ist hier von dem Wandungsteil 14 des Dewar - Gefäßes 10 gebildet. Dabei tritt das Gas über die wärmetauschenden Rippen in Wärmeaustausch mit dem in der Vorlaufleitung 28 fließenden Druckgas. Dieses Druckgas wird dadurch vorgekühlt. Das vorgekühlte Druckgas wird bei der Entspannung weiter abgekühlt und bewirkt wiederum eine weitere Vorkühlung. Der Wandungsteil 14 und die gewendelte Vorlaufleitung 28 mit den Rippen 32 bilden einen Gegenstrom - Wärmetauscher, der generell mit 33 bezeichnet ist. Es lassen sich auf diese Weise sehr niedrige Temperaturen erreichen. Auf diese Temperaturen wird der Infrarotdetektor 24 abgekühlt.A dewar is designated by 10. The Dewar vessel consists of two pot-shaped wall parts 12 and 14 arranged coaxially one inside the other, which are connected to one another at their edges. The wall parts 12 and 14 are provided on their lateral surfaces with a mirror coating 16 and 18, respectively. The space between the wall parts is evacuated. The end face 20 of the outer wall part 12 is not mirrored and forms a window that is transparent to infrared radiation. An infrared detector 24 sits on the end face 22 of the inner wall part 14 within the space between the wall parts 12 and 14. The infrared detector 24 is cooled by a cooling device 26 based on the Joule-Thomson effect. This cooling device 26 sits in the pot-shaped, inner wall part 14. The cooling device 26 contains a flow line 28 which ends in a relaxation nozzle 30. The flow line 28 is coiled within the wall part 14 and provided with a multiplicity of heat-exchanging ribs 32, as can be seen from FIG. A pressurized gas from a pressurized gas source (not shown) is applied to the feed line. This compressed gas relaxes at the expansion nozzle 30 and cools down in the process. The expanded and cooled gas then flows back through a return. This return is formed here by the wall part 14 of the Dewar vessel 10. The gas enters into heat exchange via the heat-exchanging fins with the compressed gas flowing in the feed line 28. This pressurized gas is pre-cooled. The pre-cooled compressed gas is further cooled down during the expansion and in turn causes a further pre-cooling. The wall part 14 and the coiled flow line 28 with the ribs 32 form a counterflow heat exchanger, which is generally designated 33 is. In this way, very low temperatures can be reached. The infrared detector 24 is cooled to these temperatures.

Das Dewar - Gefäß 10 sitzt auf einem Flanschteil 34. Der Flanschteil ist in nicht dargestellter Weise mit einem den Detektor 20 enthaltenden Sucher kardanisch gegenüber einer den Sucher tragenden Struktur, z.B. einem Flugkörper, gelagert. Der Sucher kann sich so mit dem Detektor 20 auf ein Ziel ausrichten. Das Druckgas wird über eine flexible Verbindungsleitung 36 zugeführt. Wie aus Fig.2 ersichtlich ist, weist der Flanschteil 34 einen Auslaß 38 für das entspannte Gas aus dem Rücklauf auf.The dewar 10 sits on a flange portion 34. The flange portion is gimbaled, not shown, with a finder containing the detector 20 opposite a structure supporting the finder, e.g. a missile. The viewfinder can thus align the detector 20 with a target. The compressed gas is supplied via a flexible connecting line 36. As can be seen from FIG. 2, the flange part 34 has an outlet 38 for the expanded gas from the return.

In der DE-OS 36 42 683 ist erläutert, daß sich die Kühlleistung einer Joule - Thomson Kühlvorrichtung wesentlich verbessern läßt, wenn das Einlaßende der Vorlaufleitung durch Peltier - Elemente gekühlt wird.DE-OS 36 42 683 explains that the cooling capacity of a Joule-Thomson cooling device can be significantly improved if the inlet end of the supply line is cooled by Peltier elements.

Bei der vorliegenden Anordnung ist das Einlaßende 40 der Vorlaufleitung 28 schraubenförmig auf einen zylindrischen Träger 42 gewickelt. Der zylindrische Träger 42 bildet mit einem dazu konzentrischen Mantelteil 44 einen Ringraum 46. Peltier - Elemente 48 sind radial in dem Ringraum 46 angeordnet, wobei ihre kalten Seiten 50 mit dem Einlaßende 40 der Vorlaufleitung 28 und ihre warmen Seiten 52 mit Wärmetauschermitteln 54 verbunden sind, welche in den Ringraum 46 ragen. Das entspannte Gas aus dem Rücklauf, also dem Innenraum 56 des inneren Wandungsteils 14 des Dewar - Gefäßes 10, wird durch den Ringraum 46 geleitet und umspült die Wärmetauschermittel 54.In the present arrangement, the inlet end 40 of the flow line 28 is helically wound on a cylindrical support 42. The cylindrical support 42 forms an annular space 46 with a jacket part 44 concentric with it. Peltier elements 48 are arranged radially in the annular space 46, their cold sides 50 being connected to the inlet end 40 of the flow line 28 and their warm sides 52 being connected to heat exchanger means 54, which protrude into the annular space 46. The expanded gas from the return, ie the interior 56 of the inner wall part 14 of the dewar vessel 10, is passed through the annular space 46 and flushes around the heat exchanger means 54.

Die kalten Seiten 5o der Peltier - Elemente 48 sind in unmittelbarem Kontakt mit (dem Einlaßende 40 der Vorlaufleitung 28. Zwischen dem Einlaßende 40 der Vorlaufleitung 28 und dem Träger 42 ist eine Isolationsschicht 58 aufgebracht. Wie aus Fig.2 und 3 ersichtlich ist, sind die Peltier - Elemente 48 in mehreren mäanderförmigen Ringen 60, 62 und 64 angeordnet, in denen die Peltier-Elemente 48 elektrisch in Reihe geschaltet sind. Jeweils zwei benachbarte Peltier - Elementschenkel 48 A, 48 B sind an ihrer kalten Seite mit einer gemeinsamen, ringabschnittförmigen Platte 50 A elektrisch verbunden, die in wärmeleitendem, aber elektrisch isoliertem Kontakt mit dem Einlaßende 40 der Vorlaufleitung 28 steht. Das Peltier - Element 48 B dieses Paares ist zusammen mit dem nächstfolgenden Peltier - Element 48 C des Ringes 60 mit der warmen Seite mit einer ringabschnittförmigen Leiterplatte 52 A verbunden. Auf der Platte 52 A sitzen Wärmetauschermittel 54. Die Wärmetauschermittel 54 sind von radialen Aluminiumrippen 66 gebildet. Zwischen den Aluminiumrippen 66 tritt das entspannte Gas aus dem Rücklauf der Joule - Thomson Kühlvorrichtung 26 aus.The cold sides 50 of the Peltier elements 48 are in direct contact with (the inlet end 40 of the feed line 28. An insulation layer 58 is applied between the inlet end 40 of the feed line 28 and the carrier 42. As can be seen from FIGS the Peltier elements 48 are arranged in a plurality of meandering rings 60, 62 and 64, in which the Peltier elements 48 are electrically connected in series Plate 50 A is electrically connected, which is in heat-conducting but electrically insulated contact with the inlet end 40 of the feed line 28. The Peltier element 48 B of this pair is together with the next Peltier element 48 C of the ring 60 with the warm side with a circuit-section-shaped printed circuit board 52 A. Heat exchange means 54 sit on the plate 52 A. The heat exchange means 54 are formed by radial aluminum ribs 66. The expanded gas emerges from the return of the Joule-Thomson cooling device 26 between the aluminum fins 66.

Die verschiedenen Ringe 60,62 und 64 sind in axialer Richtung hintereinander angeordnet. Die einzelnen Ringe 60, 62 und 64 sind thermisch voneinander entkoppelt. Durch das Gas wird der Ring 60 auf seiner warmen Seite 52 am stärksten gekühlt. Dadurch wird aber das Gas schon etwas erwärmt. Die warme Seite des zweiten Ringes 62 wird daher schon weniger gekühlt und bleibt auf einer höheren Temperatur. Die warme Seite des dritten Ringes 64 erfährt durch das weiter erwärmte Gas eine noch geringere Kühlung. Die thermische Entkopplung der Ringe 60,62 und 64 sorgt aber dafür, daß jeder der Ringe optimal wirksam wird.The different rings 60, 62 and 64 are arranged one behind the other in the axial direction. The individual rings 60, 62 and 64 are thermally decoupled from one another. The ring 60 is most strongly cooled on its warm side 52 by the gas. As a result, however, the gas is heated up somewhat. The warm side of the second ring 62 is therefore cooled less and remains at a higher temperature. The warm side of the third ring 64 experiences even less cooling due to the further heated gas. The thermal decoupling of the rings 60, 62 and 64 ensures that each of the rings is optimally effective.

Die Wirkungsweise der beschriebenen Anordnung ist aus dem Diagramm im unteren Teil von Fig.2 ersichtlich.The mode of operation of the arrangement described can be seen from the diagram in the lower part of FIG.

Mit 68 ist der Temperaturverlauf des aus dem Rücklauf der Joule - Thomson Kühlvorrichtung 26 austretenden Gases beim Durchtritt durch die Wärmetauschermittel 54 bezeichnet. Das Gas wird durch Wärmeaustausch mit den warmen Seiten der Peltier - Elemente 48 erwärmt. Die warmen Seiten 52 der Peltier - Elemente 48 werden gekühlt. Dabei werden die dem Rücklauf benachbarten Peltier - Elemente 48 stärker gekühlt als die auslaßseitigen. Die Temperatur der warmen Seiten 52 der Peltier - Elemente 48 in den drei Ringen 60, 62 und 64 kann daher vereinfacht durch eine von rechts nach links in Fig.2 abfallende Linie 70 dargestellt werden. Das linke Ende der Linie 70 entspricht dabei der warmen Seite der Peltier - Elemente im Ring 60. Das rechte Ende der Linie 70 entspricht der warmen Seite der Peltier-Elemente im Ring 64. Die kalten Seiten 50 der Peltier - Elemente 48 sind um die von den Peltier - Elementen 48 erzeugte Temperaturdifferenz kälter. Die Temperatur dieser kalten Seiten 50 kann vereinfacht durch die Linie 72 dargestellt werden. Durch die kalten Seiten 50 der Peltier-Elemente wird das Druckgas im Einlaßende 40 der Vorlaufleitung 28 gekühlt. Die Temperatur des Druckgases ändert sich dabei auf dem Weg durch das Einlaßende 40 gemäß Linie 74. Diese Linie verläuft von der Umgebungstemperatur, die etwa der Temperatur der warmen Seiten der Peltier - Elemente rechts in Fig.2 entspricht, zu einem Punkt links in Fig.2, der um einen bestimmten Betrag oberhalb der Linie 72 liegt. Dieser Betrag entspricht der für den Wärmeübergang erforderlichen Temperaturdifferenz. Es ist erkennbar, daß die auf diese Weise erhaltene Abkühlung des Druckgases wesentlich größer ist als die Temperaturdifferenz an den Peltier - Elementen.The temperature profile of the gas emerging from the return of the Joule-Thomson cooling device 26 when it passes through the heat exchanger means 54 is designated by 68. The gas is heated by heat exchange with the warm sides of the Peltier elements 48. The warm sides 52 of the Peltier elements 48 are cooled. The Peltier elements 48 adjacent to the return are cooled more than the outlet-side ones. The temperature of the warm sides 52 of the Peltier elements 48 in the three rings 60, 62 and 64 can therefore be represented in a simplified manner by a line 70 falling from right to left in FIG. The left end of the line 70 corresponds to the warm side of the Peltier elements in the ring 60. The right end of the line 70 corresponds to the warm side of the Peltier elements in the ring 64. The cold sides 50 of the Peltier elements 48 are around that of the Peltier elements 48 generated temperature difference colder. The temperature of these cold sides 50 can be represented in a simplified manner by line 72. The cold sides 50 of the Peltier elements cool the compressed gas in the inlet end 40 of the flow line 28. The temperature of the compressed gas changes on the way through the inlet end 40 according to line 74. This line runs from the ambient temperature, which corresponds approximately to the temperature of the warm sides of the Peltier elements on the right in FIG. 2, to a point on the left in FIG. 2, which lies above line 72 by a certain amount. This amount corresponds to the temperature difference required for heat transfer. It can be seen that the cooling of the compressed gas obtained in this way is substantially greater than the temperature difference at the Peltier elements.

Die beschriebene Anordnung bietet eine Reihe von Vorteilen: Es wird eine stärkere Vorkühlung des Druckgases am Einlaßende der Vorlaufleitung 28 erreicht als es durch die Temperaturdifferenz an den Peltier - Elementen allein möglich wäre. Das gestattet eine Verminderung der den Peltier - Elementen zugeführten elektrischen Leistung. Die Peltier - Elemente sind unmittelbar mit dem Einlaßende 40 der Vorlaufleitung 28 verbunden. Dieses Einlaßende 40 ist von dem Träger 42 durch eine Isolationsschicht 58 getrennt. Es braucht also praktisch nur das Einlaßende 40 mit dem dort hindurchfließenden Druckgas gekühlt zu werden und nicht etwa der gesamte Träger. Auch das vermindert die erforderliche Kühlleistung der Peltier - Elemente 48.The arrangement described offers a number of advantages: a stronger pre-cooling of the compressed gas at the inlet end of the flow line 28 is achieved than would be possible by the temperature difference at the Peltier elements alone. This allows a reduction in the electrical power supplied to the Peltier elements. The Peltier elements are connected directly to the inlet end 40 of the flow line 28. This inlet end 40 is separated from the carrier 42 by an insulation layer 58. It practically only needs to be cooled the inlet end 40 with the compressed gas flowing through it and not the entire carrier. This also reduces the required cooling capacity of the Peltier elements 48.

Die Wärme wird von dem austretenden Gas abgeführt. Damit entfällt das Problem der Wärmeableitung von der Umgebung der Kühlvorrichtung. Das ist besonders wichtig, wenn, wie im vorliegenden Fall, die Kühlvorrichtung mit dem zugehörigen Sucher kardanisch aufgehängt und nach einem Ziel beweglich ist und die Druckgaszufuhr über ein flexibles Leitungsstück erfolgt. Wenn dann nämlich die Vorkühlung an den nicht-beweglichen Teilen, also stromauf von dem flexiblen Leitungsstück erfolgt, dann wird das vorgekühlte Druckgas in dem flexiblen Leitungsstück, das wie ein Wärmetauscher wirkt, wieder erwärmt. Von dem beweglichen Sucher kann die Wärme dagegen nicht oder nur schwer abgeleitet werden.The heat is removed from the escaping gas. This eliminates the problem of heat dissipation from the environment of the cooling device. This is particularly important if, as in the present case, the cooling device with the associated view finder is gimbaled and movable towards a target and the compressed gas is supplied via a flexible line piece. If the precooling then takes place on the non-moving parts, that is to say upstream of the flexible line section, then the precooled compressed gas in the flexible line section, which acts like a heat exchanger, is reheated. On the other hand, the heat cannot be dissipated from the movable viewfinder or can only be dissipated with difficulty.

Statt der Aluminiumrippen 66 kann als Wärmeaustauschmittel 54 auch ein luftdurchlässiges Aluminiumdrahtgeflecht vorgesehen werden.Instead of the aluminum ribs 66, an air-permeable aluminum wire mesh can also be provided as the heat exchange means 54.

Claims (6)

  1. A cooling apparatus utilizing the Joule-Thomson effect and containing
    (a) a lead conduit (28) having an inlet end (40) and an outlet end, the inlet end (40) being connectable to a source of pressurised gas,
    (b) a pressure relief nozzle (30) provided at an outlet end of the lead conduit (28), the pressurised gas inflowing through the lead conduit (28) being depressurised with cooling at the relief nozzle (30),
    (c) a return flow path for the cooled and depressurised gas,
    (d) a countercurrent heat exchanger through which the pressurised gas inflowing through the lead conduit (28), is in heat conductive contact with the cooled and depressurised gas outflowing through the return flow path,
    (e) Peltier-elements (48) having a warm side (52) and a cold side (50) which is connected with the inlet end (40) of the lead conduit (40) for additional cooling of the inlet end (40) of the lead conduit (23),
       characterised in that
    (f) heat exchanger means (54) are provided at the warm sides (52) of the Peltier-elements (48) and through-passed by the gas from the return flow path.
  2. Cooling apparatus according to claim 1, characterised in that the cold sides (50) of the Peltier-elements (48) are in immediate contact with the inlet end (40) of the lead conduit (28).
  3. Cooling apparatus according to claim 2, characterised in that
    (a) the inlet end (40) of the lead conduit (28) is helically wound up on a cylindrical carrier (42),
    (b) the cylindrical carrier (42) defines an annular space (46) conjointly with a shell member (44) which is concentric with the cylindrical carrier,
    (c) the Peltier-elements (48) are radially disposed in the annular space (46), whereby their cold sides (50) are connected with the inlet end (40) of the lead conduit (28) and their warm sides (52) are connected with the heat exchanger means (54) which protrude into the annular space (46), and
    (d) the depressurised gas from the return flow path is passed through the annular space (46) and flows around the heat exchanger means (54).
  4. Cooling apparatus according to claim 3, characterised in that an insulating layer (58) is applied between the inlet end (40) of the lead conduit (28) and the carrier (42).
  5. Cooling apparatus according to claim 3, characterised in that
    (a) the Peltier-elements (48) are arranged in a number of meander-shaped rings (60,62,64) in which the Peltier-elements (48) are electrically series-connected,
    (b) the different rings (60,62,64) are series arranged in axial direction and
    (c) the individual rings (60,62,64) are thermally decoupled from each other.
  6. Cooling apparatus according to claim 3, characterised in that
    (a) the cooling apparatus (26) is movably supported relative to a pressurised gas connector and connected to the pressurised gas connector via a piece of flexible conduit (36) and
    (b) the carrier (42) conjointly with the inlet end (40) of the lead conduit (28) and the Peltier-elements (48) is attached to the movable portion of the cooling apparatus.
EP89122190A 1988-12-10 1989-12-01 Joule-thomson cooling device Expired - Lifetime EP0373445B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3841635 1988-12-10
DE3841635A DE3841635A1 (en) 1988-12-10 1988-12-10 JOULE-THOMSON COOLING DEVICE

Publications (3)

Publication Number Publication Date
EP0373445A2 EP0373445A2 (en) 1990-06-20
EP0373445A3 EP0373445A3 (en) 1991-07-03
EP0373445B1 true EP0373445B1 (en) 1992-11-04

Family

ID=6368876

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89122190A Expired - Lifetime EP0373445B1 (en) 1988-12-10 1989-12-01 Joule-thomson cooling device

Country Status (3)

Country Link
US (1) US4993230A (en)
EP (1) EP0373445B1 (en)
DE (2) DE3841635A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180293A (en) * 1992-03-20 1993-01-19 Hewlett-Packard Company Thermoelectrically cooled pumping system
US5465581A (en) * 1993-08-24 1995-11-14 Hewlett-Packard Analytical system having energy efficient pump
FR2725779B1 (en) * 1994-10-18 1997-01-10 Air Liquide CRYOGENIC DEVICE FOR OPTRONIC AND / OR ELECTRONIC EQUIPMENT AND EQUIPMENT COMPRISING SUCH A DEVICE
US5551244A (en) * 1994-11-18 1996-09-03 Martin Marietta Corporation Hybrid thermoelectric/Joule-Thomson cryostat for cooling detectors
US5606870A (en) * 1995-02-10 1997-03-04 Redstone Engineering Low-temperature refrigeration system with precise temperature control
DE19520318A1 (en) * 1995-06-02 1996-12-05 Bodenseewerk Geraetetech Sensor arrangement with a sensor cooled by a Joule-Thomson cooler and electronic components
US5590538A (en) * 1995-11-16 1997-01-07 Lockheed Missiles And Space Company, Inc. Stacked multistage Joule-Thomson cryostat
DE19952331C1 (en) 1999-10-29 2001-08-30 Schott Spezialglas Gmbh Method and device for quickly cutting a workpiece from brittle material using laser beams
US6523538B1 (en) * 2000-01-05 2003-02-25 Instrumentarium Corp. Breathing circuit having improved water vapor removal
US7765811B2 (en) * 2007-06-29 2010-08-03 Laird Technologies, Inc. Flexible assemblies with integrated thermoelectric modules suitable for use in extracting power from or dissipating heat from fluid conduits
DE102008052494A1 (en) * 2008-09-30 2010-04-08 Institut für Luft- und Kältetechnik gGmbH Joule-Thomson cooler
CN107148543B (en) * 2014-10-29 2023-01-13 开利公司 Thermoelectric cleaning unit

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126710A (en) * 1964-03-31 Thermoelectric dehumidifier and reheater
US2931188A (en) * 1958-05-02 1960-04-05 Whirlpool Co Fluid cooling apparatus
US2959017A (en) * 1959-04-09 1960-11-08 Carrier Corp Heat exchangers employing thermoelectric elements for heat pumping
GB865890A (en) * 1959-09-01 1961-04-19 Minnesota Mining & Mfg Improvements in thermo-electric heat pumps
FR1301736A (en) * 1960-09-28 1962-08-17 Philips Nv Method of manufacturing a thermoelectric device such as a thermobattery or a peltier cooling device
US3372556A (en) * 1966-03-25 1968-03-12 Gen Dynamics Corp Retractable cryogenic assembly
US3386256A (en) * 1966-08-24 1968-06-04 Isotopes Inc Flexible heat-conducting mount
US3482411A (en) * 1968-03-28 1969-12-09 Westinghouse Electric Corp Direct transfer thermoelectric apparatus
US3500650A (en) * 1968-05-13 1970-03-17 Westinghouse Electric Corp Multistage direct transfer thermoelectric apparatus
DE3121764A1 (en) * 1981-06-02 1982-12-16 Dornier System Gmbh, 7990 Friedrichshafen Apparatus for gas separation
US4400948A (en) * 1981-12-28 1983-08-30 Moorehead Jack F Air dryer
US4718249A (en) * 1984-04-16 1988-01-12 Hanson Wallace G Apparatus for heating and cooling
DE3541645A1 (en) * 1985-11-26 1987-06-04 Heinrich Prof Dr Ing Reents Device for obtaining water from air using the Peltier effect
DE3639089A1 (en) * 1986-11-14 1988-05-26 Unitechnica Mobilkaelte Gmbh THERMOELECTRIC COOLING DEVICE
DE3642683A1 (en) * 1986-12-13 1988-06-16 Bodenseewerk Geraetetech CRYSTATURE FOR COOLING A DETECTOR
US4825667A (en) * 1988-02-11 1989-05-02 Ball Corporation Cryogenic cooling system

Also Published As

Publication number Publication date
US4993230A (en) 1991-02-19
EP0373445A3 (en) 1991-07-03
DE58902619D1 (en) 1992-12-10
EP0373445A2 (en) 1990-06-20
DE3841635A1 (en) 1990-06-13

Similar Documents

Publication Publication Date Title
EP0373445B1 (en) Joule-thomson cooling device
DE69932106T2 (en) System for cooling a superconducting rotor
DE19720677C1 (en) NMR measuring device with cooled measuring head
EP2891396B1 (en) Cooling arrangement for components disposed in an interior of a switch cabinet
DE602004000581T2 (en) Satellite including means for transporting heat from a device rack to radiator panels
DE4238291A1 (en) Cryo-therapy system for small areal freezing of surfaces esp. for skin alterations - has cold probe and heat exchanger which are connected heat-conducting with each other by Peltier elements having heat contact surfaces
DE112011100875T5 (en) Method and apparatus for controlling the temperature in a cryostat cooled to cryogenic temperatures using stagnant and moving gas
WO2008151751A1 (en) Heat pipe and cooling device used in cryotechnology
DD139757A5 (en) DEVICE FOR TRANSPORTING HEAT ENERGY
DE3642683C2 (en)
DE202006007585U1 (en) Fridge and / or freezer
DE19646349B4 (en) Evaporator and vehicle air conditioning system equipped therewith
DE69433589T2 (en) DEVICE FOR CONTROLLING THE TEMPERATURE
DE102006059139A1 (en) Refrigeration system with a hot and a cold connection element and a heat pipe connected to the connecting elements
DE102014222108A1 (en) Refrigeration device with a heat exchange element
DE1501106A1 (en) Gas expansion cooling device
DE3639760A1 (en) COOLANT CONTAINER
DE2803438A1 (en) COOLING DEVICE
DE3300929A1 (en) Heat exchanger for a condensing or evaporating medium and a medium without phase transition
DE2403352B2 (en) Hairdryer
EP0467189A2 (en) Cold water unit with performance adjustment
DE102015207844A1 (en) Refrigerating appliance with a heat exchanger
DE3823006C2 (en) Housing for infrared sensitive components
DE4344025C1 (en) Spacecraft with sample refrigerator
DE19520318A1 (en) Sensor arrangement with a sensor cooled by a Joule-Thomson cooler and electronic components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19910925

17Q First examination report despatched

Effective date: 19920409

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 58902619

Country of ref document: DE

Date of ref document: 19921210

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19920205

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951027

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951117

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970222

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970829

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980901