EP0369991A1 - Moteur alternatif à pistons tournant - Google Patents

Moteur alternatif à pistons tournant Download PDF

Info

Publication number
EP0369991A1
EP0369991A1 EP90100553A EP90100553A EP0369991A1 EP 0369991 A1 EP0369991 A1 EP 0369991A1 EP 90100553 A EP90100553 A EP 90100553A EP 90100553 A EP90100553 A EP 90100553A EP 0369991 A1 EP0369991 A1 EP 0369991A1
Authority
EP
European Patent Office
Prior art keywords
piston
cylinder
bearing
axis
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90100553A
Other languages
German (de)
English (en)
Other versions
EP0369991B1 (fr
Inventor
Iso Wyrsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT90100553T priority Critical patent/ATE97992T1/de
Publication of EP0369991A1 publication Critical patent/EP0369991A1/fr
Application granted granted Critical
Publication of EP0369991B1 publication Critical patent/EP0369991B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/0079Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having pistons with rotary and reciprocating motion, i.e. spinning pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/04Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces
    • F01B3/06Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces by multi-turn helical surfaces and automatic reversal
    • F01B3/08Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces by multi-turn helical surfaces and automatic reversal the helices being arranged on the pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/26Engines with cylinder axes coaxial with, or parallel or inclined to, main-shaft axis; Engines with cylinder axes arranged substantially tangentially to a circle centred on main-shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the "classic”, well-known reciprocating piston machine has pistons that only make a reciprocating movement.
  • the piston movement is usually generated by the crankshaft and connecting rod.
  • the disadvantages of the classic reciprocating piston machine include the friction of the reciprocating piston on the cylinder, the space required by the crank mechanism and normally the need for separate elements to control the inlets and outlets.
  • Rotary reciprocating piston machine here means a work machine or an engine.
  • a piston machine with one or more working spaces and with at least one piston, which carries out a rotary movement about the cylinder axis and at the same time an oscillating stroke movement parallel to the cylinder axis.
  • This piston machine is characterized in that this piston movement is generated by a bearing consisting of two parts which rotate relative to one another, the theoretical axis of this bearing not being parallel to the piston axis or e.g. to the cylinder axis, and in that either part of this bearing is attached to the piston or forms part of the piston and the other part is connected eccentrically to the cylinder, or that part of the bearing is attached to the cylinder or part of the cylinder forms and the other part, the short hollow shaft, is eccentrically connected to the piston.
  • the bearing is additionally combined with an electric motor or generator, or the short hollow shaft mentioned is used to mechanically transmit the power, or the stroke length or the compression ratio is adjustable, or the end faces (working surfaces) of the pistons are used, to synchronize the movement of the pistons or there is special lubrication of the pistons.
  • Figure 1 is a longitudinal section through a machine with four working spaces (7a and 7b), along the axis of a cylinder with the cylinder parts 1a, 1b, 1c.
  • the cylinder has openings (slots) in its wall, which are provided for the inlet (8, 10) and for the outlet (9, 11) of the working medium.
  • the slots are opened and closed by the pistons (2) and by the piston-like members (5).
  • the shape and this arrangement of the pistons of the slot-controlled rotary reciprocating machine relate to the subject of a separate patent application.
  • the object of the present invention is the way in which the movement of the rotary piston (2) is generated: a bearing consisting of two parts (35) and (38) is arranged obliquely with respect to the piston, that is, the axis ( 37) this bearing is not parallel to the axis of the piston.
  • the inner part (35) of the bearing is firmly attached to the piston (2).
  • the outer part (38) of the bearing is connected to the cylinder at the articulation point (39).
  • the two parts (35 and 38) of the bearing are rotatable relative to one another about their axis (37).
  • the pistons (2) make one stroke cycle, i.e. a reciprocating movement, per revolution.
  • the power is transferred from the piston to the outside by means of a central shaft (14).
  • the pistons (2) are connected to the central shaft (14) so that they are longitudinally displaceable along the central shaft, but that they transmit the torque to the central shaft (14).
  • Figures 2 and 3a, 3b show two examples of designs of the same type of the mechanism according to the invention, which leads the piston (2) to a rotary-stroke movement.
  • Figures 2 and 2a details of the section along the cylinder axis of a rotary reciprocating machine are drawn.
  • This mechanism corresponds to the mechanism illustrated in Figure 1, but the inner part (36) of the bearing is sunk into the piston (2).
  • the outer part (38) of the bearing rotates relative to the axis (37) of the bearing and is connected to the cylinder by a joint (39).
  • the hinge point (39) must be movable relative to the cylinder; or the connection between the bearing and the cylinder must allow a change in length.
  • FIGS. 4 and 5 show two examples of designs of another type of the mechanism according to the invention, which leads the piston (2) to the rotary-stroke movement. Details of the cut along the cylinder axis are drawn.
  • the hollow shaft (40) rotates about its own axis (41).
  • the piston (2) is connected to the hollow shaft at an eccentrically located point (42). When the hollow shaft (40) rotates, the piston (2) also rotates and additionally performs an oscillating stroke movement.
  • the articulated connection between the hollow shaft (40) and the piston (2) fulfills the following conditions: It must allow pivoting movements between the piston and the hollow shaft around all three coordinate axes or at least two coordinate axes. In the examples of FIGS. 4 and 5, a ball joint allows swiveling movements around all three coordinate axes.
  • these two coordinate axes must lie relative to the hollow shaft (40) in the plane which is perpendicular to the axis of rotation (41) of the hollow shaft.
  • the pivot point is therefore movable in an approximately radial direction to the axis of rotation of the piston (2) or in an approximately radial direction to the axis of rotation (41) of the hollow shaft.
  • cylinders all cylinder parts or non-moving parts connected to the cylinder, which could also be referred to as “housing” or “engine block” e.t.c, are called “cylinders”.
  • the invention relates to a piston machine with at least one piston (2), which has a rotary movement about the cylinder axis and at the same time a stroke movement parallel to the Executes cylinder axis and is characterized in that this piston movement is brought about by a bearing consisting of two parts which rotate relative to one another.
  • the axis of this bearing (37 or 41) is not parallel to the axis of the piston or the cylinder.
  • a part (35/36) of this bearing is attached to the piston (2) or is part of the piston, and the other part (38) is eccentrically articulated to the cylinder (1).
  • part of the bearing is attached to the cylinder or constitutes a part of the cylinder, and the other part, the hollow shaft (40), is connected eccentrically to the piston.
  • the piston performs a stroke movement per revolution.
  • the kinematics of this movement depend on the geometric details of the execution and can deviate from the sinus shape.
  • the kinematics are influenced, for example, by the size of the angle of the axis of the bearing; by the distance between the central axis of the bearing and the hinge point (39 or 42) which connects part of the bearing to the cylinder or to the piston; by the design of this articulated connection, in particular the design of the longitudinal displaceability of this connection, and by displacement of the joint (39 or 42) in the direction parallel to the axis of the bearing.
  • the structural design of the two parts of the bearing is carried out according to the known rules of technology, for example with axial and radial sliding bearings or with roller bearings.
  • Another version is characterized in that the power is mechanically transmitted to the outside of the machine by means of the hollow shaft (40) mentioned.
  • Another version is characterized in that the stroke length or the compression ratio or both is adjustable in that the angle which the axis (37 or 41) of the bearing has to the axis of the piston or the cylinder can be varied. This is achieved in that the bearing is pivotally attached to the piston or to the cylinder.
  • Another version is characterized in that the two adjacent end faces of two pistons (2) or a piston (2) and a piston-like member (5) always interlock positively like claws. - This synchronizes the rotation of neighboring pistons.
  • Another version is characterized in that the piston rests on a lubricating film, the lubricant, if it must not get into the working space or into the slots, being kept away from the working space or from the slots by a scraper ring or other sealing elements.
  • the rotating component of the piston movement is advantageous for hydrodynamic lubrication.
  • the sealing element is mounted on the cylinder, for example.
  • the working space (7) is delimited by two pistons (2), both of which perform a rotary stroke movement.
  • the movement of the piston is guided, for example, by the type of mechanism which is illustrated schematically in FIG. 4 or 5.
  • the hollow shaft (40) of this mechanism also transmits the power to the outside of the machine: for this purpose, the hollow shaft is toothed on the outside and transmits the power to a gearwheel, which is located outside the cylinder. This gear driven by the hollow shaft (40) is connected to the corresponding gear of the adjacent hollow shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Reciprocating Pumps (AREA)
  • Hydraulic Motors (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Compressor (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Transmission Devices (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Massaging Devices (AREA)
EP90100553A 1986-04-04 1987-04-03 Moteur alternatif à pistons tournant Expired - Lifetime EP0369991B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90100553T ATE97992T1 (de) 1986-04-04 1990-01-12 Dreh-hubkolben-maschine.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH131686 1986-04-04
CH1316/86 1986-10-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP87810206.0 Division 1987-04-03

Publications (2)

Publication Number Publication Date
EP0369991A1 true EP0369991A1 (fr) 1990-05-23
EP0369991B1 EP0369991B1 (fr) 1993-12-01

Family

ID=4207589

Family Applications (3)

Application Number Title Priority Date Filing Date
EP90100553A Expired - Lifetime EP0369991B1 (fr) 1986-04-04 1987-04-03 Moteur alternatif à pistons tournant
EP87810206A Expired - Lifetime EP0240467B1 (fr) 1986-04-04 1987-04-03 Machine alternative à pistons rotatifs
EP90100552A Expired - Lifetime EP0369990B1 (fr) 1986-04-04 1987-04-03 Moteur alternatif à pistons tournant

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP87810206A Expired - Lifetime EP0240467B1 (fr) 1986-04-04 1987-04-03 Machine alternative à pistons rotatifs
EP90100552A Expired - Lifetime EP0369990B1 (fr) 1986-04-04 1987-04-03 Moteur alternatif à pistons tournant

Country Status (10)

Country Link
EP (3) EP0369991B1 (fr)
JP (1) JPH0794801B2 (fr)
KR (2) KR960000436B1 (fr)
AT (3) ATE68556T1 (fr)
AU (1) AU7209387A (fr)
CA (1) CA1308155C (fr)
DE (3) DE3788358D1 (fr)
ES (3) ES2048328T3 (fr)
GB (3) GB2198788B (fr)
WO (1) WO1987005964A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999002840A1 (fr) * 1997-07-11 1999-01-21 Pavel Wenzel Moteur a combustion externe
WO2011001267A3 (fr) * 2009-07-02 2011-03-24 Haas-Mondomix B.V. Dispositif et procédé pour pomper des masses fluides
US11278841B2 (en) 2014-08-25 2022-03-22 Basf Se Removal of hydrogen sulphide and carbon dioxide from a stream of fluid

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926639A (en) * 1989-01-24 1990-05-22 Mitchell/Sterling Machines/Systems, Inc. Sibling cycle piston and valving method
GB8907984D0 (en) * 1989-04-10 1989-05-24 Szyler Jan Rotary engine
NL9000078A (nl) * 1990-01-11 1991-08-01 Philips Nv Motor-compressor eenheid.
JPH07500890A (ja) * 1991-10-15 1995-01-26 アルマッシ マンサー 内燃ロータリーピストンエンジン
GB9210139D0 (en) * 1992-05-12 1992-06-24 Fisher Hugh E Piston and cylinder devices
GB2280710A (en) * 1993-08-04 1995-02-08 Keith Andrew Maclaughan Rotating and reciprocating piston i.c. engine.
GB2287753B (en) * 1994-03-22 1997-12-10 Joanne Spinks Two stroke engine
DE4424319C1 (de) * 1994-07-09 1996-02-22 Harald Hofmann Heißgasmotor
EP0978932A1 (fr) * 1998-08-06 2000-02-09 S.C. NDR Management S.r.l. Appareil ayant un rotor et un stator
US8459028B2 (en) * 2007-06-18 2013-06-11 James B. Klassen Energy transfer machine and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2532106A (en) * 1946-12-06 1950-11-28 Korsgren Theodore Yngve Multiple opposed piston engine
GB1110084A (en) * 1965-11-19 1968-04-18 Fibora Ag Improvements in friction gearing for converting rotational movement into axial or helical movement
EP0070780A1 (fr) * 1981-07-21 1983-01-26 Bertin & Cie Convertisseur d'énergie thermique en énergie électrique à moteur Stirling et générateur électrique intégré

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB282125A (en) * 1926-07-19 1927-12-19 Cecil Law Improvements in or relating to two-stroke cycle internal combustion engines
US2352396A (en) * 1942-02-20 1944-06-27 Kenneth R Maltby Internal-combustion engine
US2473936A (en) * 1947-10-18 1949-06-21 Burrough Joe Internal-combustion engine
DE2623234A1 (de) * 1976-05-24 1977-12-01 Alberto Kling Elektromagnetische antriebsvorrichtung
DE3038673A1 (de) * 1980-10-14 1982-05-27 Wilfried 3176 Meinersen Schwant Antriebsmaschine, inbesondere brennkraftmaschine mit kurbelwellenfreier kraftuebertragung und schlitzgesteuertem ladungswechsel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2532106A (en) * 1946-12-06 1950-11-28 Korsgren Theodore Yngve Multiple opposed piston engine
GB1110084A (en) * 1965-11-19 1968-04-18 Fibora Ag Improvements in friction gearing for converting rotational movement into axial or helical movement
EP0070780A1 (fr) * 1981-07-21 1983-01-26 Bertin & Cie Convertisseur d'énergie thermique en énergie électrique à moteur Stirling et générateur électrique intégré

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999002840A1 (fr) * 1997-07-11 1999-01-21 Pavel Wenzel Moteur a combustion externe
WO2011001267A3 (fr) * 2009-07-02 2011-03-24 Haas-Mondomix B.V. Dispositif et procédé pour pomper des masses fluides
CN102753825A (zh) * 2009-07-02 2012-10-24 哈斯-蒙多米克斯公司 用于泵吸可流动的物质的装置和方法
CN102753825B (zh) * 2009-07-02 2015-07-15 哈斯-蒙多米克斯公司 用于泵吸可流动的物质的装置和方法
US9194383B2 (en) 2009-07-02 2015-11-24 Haas-Mondomix B.V. Device and method for pumping flowable masses
US11278841B2 (en) 2014-08-25 2022-03-22 Basf Se Removal of hydrogen sulphide and carbon dioxide from a stream of fluid

Also Published As

Publication number Publication date
CA1308155C (fr) 1992-09-29
GB8728277D0 (en) 1988-01-13
ATE97991T1 (de) 1993-12-15
GB2226612A (en) 1990-07-04
EP0369990B1 (fr) 1993-12-01
EP0240467A1 (fr) 1987-10-07
DE3788357D1 (de) 1994-01-13
KR960000436B1 (ko) 1996-01-06
ATE97992T1 (de) 1993-12-15
EP0240467B1 (fr) 1991-10-16
KR880701314A (ko) 1988-07-26
ATE68556T1 (de) 1991-11-15
GB2198788B (en) 1990-12-05
JPH0794801B2 (ja) 1995-10-11
GB8928578D0 (en) 1990-02-21
ES2048327T3 (es) 1994-03-16
JPS63502916A (ja) 1988-10-27
GB8928577D0 (en) 1990-02-21
EP0369990A1 (fr) 1990-05-23
AU7209387A (en) 1987-10-20
ES2048328T3 (es) 1994-03-16
EP0369991B1 (fr) 1993-12-01
DE3788358D1 (de) 1994-01-13
GB2198788A (en) 1988-06-22
ES2026942T3 (es) 1992-05-16
GB2226612B (en) 1990-12-05
WO1987005964A1 (fr) 1987-10-08
KR960000435B1 (ko) 1996-01-06
GB2226710A (en) 1990-07-04
DE3773724D1 (de) 1991-11-21
GB2226710B (en) 1990-12-05

Similar Documents

Publication Publication Date Title
DE69625814T2 (de) Gegenkolben brennkraftmaschine
DE3224482C2 (de) Kolbenmaschine
DE2450418A1 (de) Drehkolbenmaschine
EP0369991B1 (fr) Moteur alternatif à pistons tournant
DE3038673A1 (de) Antriebsmaschine, inbesondere brennkraftmaschine mit kurbelwellenfreier kraftuebertragung und schlitzgesteuertem ladungswechsel
DE1937066A1 (de) Vollkommen ausgewuchtete,schwingungsfreie Vorrichtung zur Umwandlung einer Drehbewegung in eine lineare Wechselbewegung
DE3800947C2 (fr)
DE69627167T2 (de) Rotierende brennkraftmaschine
DE2947356A1 (de) Bewegungswandler fuer die umwandlung einer linearbewegung in eine rotationsbewegung
DE3303509A1 (de) Arbeitsmaschinen mit doppeltarbeitenden kolben
DE3207344A1 (de) Sternmotorkompressor mit x und dreieckhubkolbenstangenfuehrungen am gekoppelten planetentriebwerk
DE3232974A1 (de) Triebwerk zum umwandeln von rotationsbewegung in lineare bewegung
DE4412165A1 (de) Kurbelgetriebe zur Umwandlung von geradelinigen Hin- und Herbewegungen in Drehbewegungen und umgekehrt
DE2830349C2 (de) Schrägachsige Rotationskolbenmaschine
DE2365050A1 (de) Umlaufkolbenmaschine, insbesondere verbrennungskraftmaschine
DE4118938C2 (de) Rotationsschwingkolbenmotor
DE1850238U (de) Mehrzweck-drehkolben-kraft- und arbeitsmaschine.
DE4209444A1 (de) Kreiszylinder-Rotationskolbenmotor
DE202009017893U1 (de) Verbrennungsmotor
DE3523785A1 (de) Vorrichtung zur steuerung bzw. zum an- oder abtrieb von linear- und freikolbenmaschinen
DE811519C (de) Zweitakt-Brennkraftmaschine
DE19955231B4 (de) Verbrennungsmotor mit rotierendem Zylinderblock
DE3621131A1 (de) Kolbenkraftmaschine
DE19918503C2 (de) Drehkolbenverbrennungsmotor
DE1401424A1 (de) Kolbenmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 240467

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901122

17Q First examination report despatched

Effective date: 19920124

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 240467

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR IT LI LU NL SE

REF Corresponds to:

Ref document number: 97992

Country of ref document: AT

Date of ref document: 19931215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3788358

Country of ref document: DE

Date of ref document: 19940113

ITF It: translation for a ep patent filed

Owner name: FERRAIOLO S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2048328

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
EPTA Lu: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90100553.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20010426

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010427

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010430

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010605

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020403

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020419

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020429

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020510

Year of fee payment: 16

EUG Se: european patent has lapsed

Ref document number: 90100553.8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040429

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040726

Year of fee payment: 18

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20051101