EP0364214B1 - Vorrichtungen zur Umwandlung von optischen Wellenlängen - Google Patents

Vorrichtungen zur Umwandlung von optischen Wellenlängen Download PDF

Info

Publication number
EP0364214B1
EP0364214B1 EP89310353A EP89310353A EP0364214B1 EP 0364214 B1 EP0364214 B1 EP 0364214B1 EP 89310353 A EP89310353 A EP 89310353A EP 89310353 A EP89310353 A EP 89310353A EP 0364214 B1 EP0364214 B1 EP 0364214B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
substrate
layer
metal layer
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89310353A
Other languages
English (en)
French (fr)
Other versions
EP0364214A2 (de
EP0364214A3 (de
Inventor
Masahiro C/O Patents Division Sony Corp. Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP25562088A external-priority patent/JPH02101440A/ja
Priority claimed from JP30423088A external-priority patent/JP2687517B2/ja
Application filed by Sony Corp filed Critical Sony Corp
Publication of EP0364214A2 publication Critical patent/EP0364214A2/de
Publication of EP0364214A3 publication Critical patent/EP0364214A3/de
Application granted granted Critical
Publication of EP0364214B1 publication Critical patent/EP0364214B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/374Cherenkov radiation

Definitions

  • This invention relates to optical wavelength conversion devices, and to processes for manufacturing such devices.
  • This SHG device has an optical waveguide 2 formed on the surface of a lithium niobate (LiNbO3) single crystal substrate 1 by an ion exchange method using benzoic acid.
  • a fundamental wave f enters one end of the waveguide 2 and a secondary harmonic (SH) wave s is emitted from the substrate 1.
  • SH wave (SH light) s having one half the wavelength of the fundamental wave f is generated due to the non-linear optical effect of LiNbO3 and the high energy density of the fundamental wave f.
  • the thus-generated SH light s is radiated in the depthwise direction of the substrate 1 at a certain angle ⁇ , the Cerenkov angle in a radiation mode.
  • EP-A-0 206 220 Another example of a secondary harmonic generator is disclosed in EP-A-0 206 220.
  • This generator comprises a first optical waveguide having a structure which can guide a fundamental wave, and a second optical waveguide having a structure which can guide a secondary harmonic wave.
  • the optical waveguides are optically connected with one another and are arranged in parallel on a substrate of non-linear optical material.
  • the first and second waveguides have the same refractive index in order to enhance the conversion efficiency from the fundamental wave to the secondary harmonic wave.
  • Optical waveguides of different types have also been proposed, including the so-called ridge type waveguide which has a narrow strip-like ridge formed on a substrate as shown in Figure 6.
  • the ridge type waveguide has a laminated structure composed of a first substrate 11 with a refractive index n1 and a second substrate 12 with a refractive index n2, where n2 > n1.
  • n1 refractive index
  • n2 refractive index
  • a ridge angle ⁇ is formed between the lateral side surface of the ridge 12a and the horizontal face of the substrate.
  • a ridge type waveguide as shown in Figure 6 can be formed by a selective growth or etching process. For instance, techniques of forming a ridge by a fine etching process were presented at the 1986 General National Meeting of the Society of Electronic Communications (Lecture No. 868). In this process, for example, Ti is first deposited on a substrate of LiNbO3 to form a metal layer thereon, and then a layer of photoresist which has a trade name of "AZ-1350J" is selectively formed on the metal layer by photo lithography, followed by patterning of the metal layer by wet etching using the photoresist layer as a mask.
  • ECR-RIE electronic cyclotron resonance-reactive ion etching
  • Such an SHG device has the drawback that the beam of SH light s is emitted in a crescent shape in section as shown in Figure 5, instead of in a circular shape which is desirable.
  • the light source is required to be able to emit a beam of a circular or elliptical shape rather than a beam of crescent shape, which would lower the efficiency of utilization.
  • the ridge angles which have been achieved are 70° to 80° at most, which is insufficient for efficient light confining. Moreover, the suppression of surface roughening has been insufficient. Especially in the case of the techniques which use a so-called lift-off process, the side surfaces of a formed metal layer are susceptible to bruises or blemishes which will be reflected by roughening of the side surfaces of a ridge when the metal layer is subsequently used as a mask in a ridge-forming process.
  • the ratio of the etch rate (that is, the selectivity ratio of etching) of the crystal substrate to that of the mask metal is approximately as small as 2 to 3, which is not necessarily sufficient in terms of the economy, reliability and productivity of the process.
  • an optical wavelength conversion device comprising: an optical waveguide formed on a substrate of a non-linear optical material so as to generate a secondary harmonic wave by Cerenkov radiation, the waveguide comprising a first waveguide passage for confining a fundamental wave and converting it into a secondary harmonic wave, and a second waveguide passage for confining said secondary harmonic wave and propagating it towards an end face for emission therefrom, characterised in that: said waveguide is formed in a ridge shape on said substrate, and said first waveguide passage is formed so as to be in contact with said second waveguide passage along at least one of the lateral sides of the ridge; and in that n2 > n3 > n1, where n1, n2 and n3 are, respectively, the refractive indices of said substrate, said first waveguide passage and said second waveguide passage; and in that said first and second waveguide passages are formed so as to satisfy: W r f ⁇ a ⁇ W r s, W r
  • a process for manufacturing such an optical wavelength conversion device comprising the steps of: forming, on a substrate of a non-linear optical material which has a refractive index n1, an optical waveguide layer which is to be used as a second waveguide passage and which has a refractive index n3 (n3 > n1) by diffusion of titanium; forming a metal layer on said substrate; selectively forming a photoresist layer on said metal layer; selectively removing said metal layer where it is not masked with said photoresist layer using electron cyclotron resonance etching with argon gas; removing said photoresist layer; etching out a ridge on said substrate using said metal layer as a mask by electron cyclotron resonance etching using a fluorocarbon gas; forming, on a lateral side of said optical waveguide layer, a proton exchange layer which is to be used as a first waveguide passage and which has a refractive index n2 (n
  • a process for manufacturing such an optical wavelength conversion device comprising the steps of: forming, on a substrate of a non-linear optical material which has a refractive index n1, an optical waveguide layer which is to be used as a second waveguide passage and which has a refractive index n3 (n3 > n1) by diffusion of titanium; forming a metal layer on said substrate; selectively forming a photoresist layer on said metal layer; selectively removing a part of said metal layer and said optical waveguide layer, using said photoresist layer as a mask; forming, on a lateral side of said optical waveguide layer, a proton exchange layer which is to be used as a first waveguide passage and which has a refractive index n2 (n2 > n3 > n1), by a heat treatment in an aqueous solution capable of proton exchange with optical waveguide portions which are exposed by removal of said metal layer; etching said proton exchange layer into
  • the beam shape of the secondary harmonic wave which is emitted from an optical wavelength conversion device varies depending upon the condition of propagation of the Cerenkov radiation within the device, and the condition of propagation can be varied by changing the shape of the waveguide. It follows that the beam of the secondary harmonic wave emitted from the device could be reformed into a circular or elliptical shape by employing a waveguide of a suitable shape.
  • Figure 3 diagrammatically shows an optical waveguide 2 which is formed on a substrate 1 of a non-linear optical material such as single crystal LiNbO3.
  • the optical waveguide 2 has a sectional shape with a thickness a in the direction parallel to the surface of the substrate 1, and a thickness b in the depthwise direction of the substrate 1.
  • the optical waveguide 2 in a sectional shape where the thicknesses a and b are greater than thicknesses which prevent the propagation of the fundamental wave, namely, greater than a cut-off thickness W r f of the fundamental wave, the thickness a is smaller than the secondary harmonic wave cut-off thickness W r s, and the thickness b is larger than the secondary harmonic cut-off thickness W r s, the secondary harmonic wave can be propagated parallel to the surface of the substrate 1 without propagation in the depthwise direction of the substrate 1.
  • Figure 1 shows an embodiment of the invention, which has an optical waveguide 2 formed on a substrate 1 of single crystal LiNbO3, in a shape which satisfies the conditions which will be discussed.
  • the substrate 1 has a ridge type optical waveguide 2 formed in a ridge portion l1.
  • the optical waveguide 2 is composed of first waveguide passages 2a and 2c which are formed symmetrically in the opposite side portions of the ridge l1, and a second waveguide passage 2b which is formed between the first waveguide passages 2a and 2c.
  • the first waveguide passages 2a and 2c and the second waveguide passage 2b each have a required refractive index.
  • the first waveguide passages are dimensioned so that: W r f ⁇ a ⁇ W r s W r f or W r s ⁇ b
  • a is the width of the first waveguide passages 2a and 2c in a direction parallel to the surface of the ridge portion l1, namely, in the direction of x
  • b is the thickness (or height) of the first waveguide passages 2a and 2c in a direction parallel to lateral side surfaces of the ridge portion l1, or in the direction of y
  • W r f is the fundamental wave cut-off thickness
  • W r s is the secondary harmonic wave cut-off thickness of the waveguide.
  • the fundamental wave is confined in both the x and y directions, while the secondary harmonic wave is confined in the y direction but is radiated in the x direction.
  • the second waveguide member 2b is formed in a ridge structure which is greater than the secondary harmonic wave cut-off thickness W r s in thickness, or of thickness c in the y direction, satisfying: W r s ⁇ c and which confines the secondary harmonic wave in both the y and x directions.
  • the laser light is condensed towards both or one of the end faces of the first waveguide 2a and 2c and the second waveguide 2b, and is confined in both or one of the first waveguide 2a and 2c and the second waveguide 2b.
  • the confined laser light Due to the energy density of the laser light itself and the non-linear optical effect of the waveguide and substrate 1, the confined laser light is efficiently converted into a wave which is one half the wavelength of the fundamental wave, namely, into a secondary harmonic wave (SH light), is confined in the waveguide including the first and second waveguide passages 2a to 2c, is propagated in the z-direction in the guided mode or by repeated reflections between the first and second waveguide passages 2a and 2c, and is emitted from the opposite end face of the secondary wave in the form of a beam of a circular or elliptic shape.
  • SH light secondary harmonic wave
  • either one of the first waveguide passages 2a and 2c of the above-described embodiment may be omitted. Even in such a case, the secondary harmonic wave can be generated in a similar manner.
  • a masking metal layer 3 (of Ni, Cu, Ta, Ti or the like) is then formed on the front surface of the substrate 1 by vapour deposition as shown in ( Figure 4B), and a resist 4 is coated thereon in a predetermined pattern as shown in Figure 4C.
  • the front side of the substrate 1 is subjected to ECR-RIE (electron cyclotron resonance-reactive ion etching, that is, reactive ion etching which utilizes the phenomenon of electron cyclotron resonance) using CF4, C2F6, C3F8, CHF or a like fluorocarbon as an etching gas.
  • ECR-RIE electron cyclotron resonance-reactive ion etching, that is, reactive ion etching which utilizes the phenomenon of electron cyclotron resonance
  • CF4, C2F6, C3F8, CHF or a like fluorocarbon as an etching gas.
  • a ridge can be formed by a two-stage etching process, namely, a process consisting of a stage of etching a metal layer by the use of argon and a stage of etching the substrate surface with the resulting masking metal layer by the use of a fluorocarbon gas.
  • the masking metal layer should have properties which permit easy etching by argon gas but have sufficient resistance to the fluorocarbon gas to be used.
  • the substrate should have properties which ensure sufficient resistance to argon gas but permit easy etching by the fluorocarbon gas used.
  • Table 1 shows the etch rates of various substances by argon gas in comparison with etch rates by CF4 gas, taken as an example of fluorocarbon gases.
  • the substances shown here include LiNiO3 which is widely used as a non-linear optical material for the substrate, and Ta, Ti, Ag, Al, Ni and Cu which are used as a masking metal.
  • etch rates of known photoresists, TSMR8900 and AZ4210 products of Tokyo Ohka Kogyo
  • ECR etching electron cyclotron resonance type etching apparatus, which utilizes the phenomenon that, when the cyclotron angular frequency of electrons in circular motion in a magnetic field come into synchronism with the angular frequency of an electric field or microwaves introduced through a wave tube, the electrons are accelerated by resonantly absorbing the microwave energy, efficiently producing plasma through collision against neutral molecules and ionization.
  • ECR etching electron cyclotron resonance type etching
  • an ion beam of good directivity can be obtained at a gas pressure as low as 1.3 x 10 ⁇ 2 Pa, so that it is possible to carry out the etching in a stable manner against reactive gases, and coupled with advantages such as high accuracy of etching shape and the improbability of re-decomposition and re-deposition of reaction products.
  • the ECR etching can be carried out under generally acceptable conditions, for example, with a gas flow rate of 2 SCCM, a gas pressure of 1.3 x 10 ⁇ 3 to 1.3 x 10 ⁇ 1 Pa, a microwave power of 200 W, and an acceleration voltage of 400 V.
  • a ridge having a ridge angle ⁇ close to 90° can be formed on the substrate by the ECR etching with excellent directivity, and through the utilization of the properties of the respective materials.
  • a SHG device which has, along one lateral side of the ridge, a region with a refractive index which is higher than that of the ridge which can serve as a first waveguide for propagating a fundamental wave (radiated directly from a light source), and, in the remaining ridge portion, a second waveguide is formed for propagating the secondary harmonic wave radiated from the region of higher refractive index.
  • a SHG device has a ridge angle of approximately 90°, it can efficiently confine into the ridge the secondary harmonic wave which is radiated from the above-mentioned region at a predetermined Cerenkov angle.
  • the workpiece is subjected to etching again in an ECR-RIE apparatus.
  • the proton exchange layer 5 is etched only at its surface portions which are exposed by the mask 3a, and as a result a thin proton exchange layer 5 remains on the exposed surface portions.
  • the exposed portions of the proton exchange layer 5 may be totally removed if desired.
  • first waveguide passages 2a and 2c constituted by the exposed portions of the proton exchange layer 5
  • second waveguide passage 2b constituted by the titanium diffusion layer l T1 between the first waveguide passages 2a and 2c.
  • the fundamental wave is efficiently converted into the secondary harmonic wave , which is then emitted in the form of a beam having a circular or elliptical shape in section.
  • This beam of improved shape can be applied widely and efficiently as a light source in high density optical recording, as a light source for a laser printer, and so forth.
  • the process described makes it possible to form a ridge type waveguide with a ridge angle ⁇ of approximately 90° which has smooth side surfaces. Accordingly, it becomes possible to suppress the light propagation loss to an extremely low level and to enhance the degree of circuit integration.
  • the laser light beam of a circular or elliptical shape which is obtained from the ridge type wave guide of the above-described construction, it is extremely suitable for application to an optical disc system, laser printer or the like.
  • an ECR etching apparatus can be commonly used for patterning a metal layer and for shaping a ridge on a substrate, improvements in production also result due to the manufacturing techniques.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Claims (3)

  1. Vorrichtung zur Umwandlung von optischen Wellenlängen, die folgendes enthält:
    einen auf einem Substrat (1) aus einem nichtlinearen optischen Material ausgebildeten optischen Wellenleiter (2), um eine sekundäre harmonische Welle durch Tscherenkow-Strahlung zu erzeugen, wobei der Wellenleiter (2) einen ersten Wellenleiterdurchgang (2a, 2c) zur Begrenzung (Confinement) einer Grundwelle und zu deren Umwandlung in eine sekundäre harmonische Welle enthält, und einen zweiten Wellenleiterdurchgang (2b) zur Begrenzung besagter sekundärer harmonischer Welle und zu deren Ausbreitung in Richtung auf eine Stirnfläche, um von dort emittiert zu werden,
    dadurch gekennzeichnet,
    daß der besagte Wellenleiter (2) stegförmig auf dem besagten Substrat (1) ausgebildet ist und der erste Wellenleiterdurchgang (2a, 2c) derart ausgebildet ist, um in Kontakt mit dem zweiten Wellenleiterdurchgang (2b) entlang zumindest einer der lateralen Seiten des Steges zu sein, und daß n₂ > n₃ > n₁ ist, wobei n₁, n₂ und n₃ die entsprechenden Brechungsindizes des Stubstrates (1), des ersten Wellenleiterdurchganges (2a, 2c) und des zweiten Wellenleiterdurchgangs (2b) sind und daß der erste und der zweite Wellenleiterdurchgang (2a, 2c, 2b) derart ausgebildet sind, daß folgende Bedingungen erfüllt sind: W r f < a < W r s
    Figure imgb0011
    W r f oder W r s < b,
    Figure imgb0012
    und W r s < c
    Figure imgb0013
    wobei a die Breite des ersten Wellenleiterdurchganges (2a, 2c) in einer zu dem Substrat (1) parallelen Richtung bedeutet, b die Tiefe des ersten Wellenleiterdurchganges (2a, 2c) in einer senkrecht zu der Oberseite des Substrates (1) liegenden Richtung bedeutet, c die Tiefe des zweiten Wellenleiterdurchganges (2b) in einer senkrecht zu der Oberseite des Substrates (1) liegenden Richtung bedeutet, Wrf die Grenzstärke der Grundwelle bedeutet, unterhalb der die Ausbreitung der Grundwelle verhindert wird und Wrs die Grenzstärke der sekundären harmonischen Welle bedeutet, unterhalb der die Ausbreitung der sekundären harmonischen Welle verhindert wird.
  2. Verfahren zur Herstellung einer Vorrichtung zur Umwandlung von optischen Wellenlängen nach Anspruch 1, das folgende Schritte enthält:
    Ausbildung einer optischen Wellenleiterschicht (1TI), die als zweiter Wellenleiterdurchgang (2b) verwendet wird und die einen Brechungsindex n₃ (n₃ > n₁) hat, durch Diffusion von Titan auf einem Substrat (1) eines nichtlinearen optischen Materiales, das einen Brechungsindex von n₁ aufweist;
    Ausbildung einer Metallschicht (3) auf dem Substrat (1);
    selektive Ausbildung einer Photolackschicht (4) auf der Metallschicht (3);
    selektive Entfernung der Metallschicht (3) an den nicht durch die Maske mit der Photolackschicht (4) bedeckten Bereichen unter Einsatz von Elektronen-Zyklotronresonanz-Ätzen mit Argongas;
    Entfernung der Photolackschicht (4);
    Herausätzen eines Steges auf dem Substrat (1) unter Verwendung der Metallschicht (3) als Maske (3a) durch Elektronen-Zyklotronresonanz-Ätzen unter Verwendung eines Fluorkohlenstoffgases;
    Ausbildung einer Protonenaustauschschicht (5), die als ein erster Wellenleiterdurchgang (2a, 2c) verwendet wird und die einen Brechungsindex n₂ (n₂ > n₃ > n₁) hat, auf einer lateralen Seite der optischen Wellenleiterschicht (2), durch eine Wärmebehandlung in einer wässrigen Lösung, die einen Protonenaustausch mit Bereichen des optischen Wellenleiters ermöglicht, die durch die Entfernung der Metallschicht (3) freigelegt werden; und
    Entfernung der verbleibenden Bereiche der Metallschicht (3).
  3. Verfahren zur Herstellung einer Vorrichtung zur Umwandlung von optischen Wellenlängen nach Anspruch 1, das folgende Schritte enthält:
    Ausbildung einer optischen Wellenleiterschicht (1Ti) zum Einsatz als ein zweiter Wellenleiterdurchgang (2b), die einen Brechungsindex n₃ (n₃ > n₁) hat, durch Diffusion von Titan auf einem Substrat (1) eines nichtlinearen optischen Materiales, das einen Brechungsindex n₁ aufweist;
    Ausbildung einer Metallschicht (3) auf dem Substrat (1);
    selektive Ausbildung einer Photolackschicht (4) auf der Metallschicht (3);
    selektive Entfernung eines Teiles der Metallschicht (3) und der besagten optischen Wellenleiterschicht (2) unter Verwendung der besagten Photolackschicht (4) als Maske;
    Ausbildung einer Protonenaustauschschicht (5), die als ein erster Wellenleiterdurchgang (2a, 2c) eingesetzt wird und die einen Brechungsindex n₂ (n₂ > n₃ > n₁) aufweist, auf einer lateralen Seite der optischen Wellenleiterschicht (2), durch eine Wärmebehandlung in einer wässrigen Lösung, die einen Protonenaustausch mit Bereichen des optischen Wellenleiters ermöglicht, die durch die Entfernung der Metallschicht (3) freigelegt werden;
    Ätzen der Protonenaustauschschicht (5) zu einer Dünnschicht durch reaktives Ionenätzen unter Verwendung selektiv nicht entfernter Bereiche der Metallschicht (3) als Maske (3a); und
    Entfernung der verbleibenden Bereiche der Metallschicht (3).
EP89310353A 1988-10-11 1989-10-10 Vorrichtungen zur Umwandlung von optischen Wellenlängen Expired - Lifetime EP0364214B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP255620/88 1988-10-11
JP25562088A JPH02101440A (ja) 1988-10-11 1988-10-11 光波長変換素子
JP304230/88 1988-12-02
JP30423088A JP2687517B2 (ja) 1988-12-02 1988-12-02 リッジ型光導波路の製造方法

Publications (3)

Publication Number Publication Date
EP0364214A2 EP0364214A2 (de) 1990-04-18
EP0364214A3 EP0364214A3 (de) 1991-06-12
EP0364214B1 true EP0364214B1 (de) 1995-01-11

Family

ID=26542318

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89310353A Expired - Lifetime EP0364214B1 (de) 1988-10-11 1989-10-10 Vorrichtungen zur Umwandlung von optischen Wellenlängen

Country Status (3)

Country Link
US (1) US4973117A (de)
EP (1) EP0364214B1 (de)
DE (1) DE68920537T2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0432390A1 (de) * 1989-11-10 1991-06-19 Ibiden Co., Ltd. Zweite harmonische Welle erzeugende Vorrichtung und Verfahren zu ihrer Herstellung
US5175784A (en) * 1989-12-19 1992-12-29 Ibiden Co., Ltd. Second harmonic wave generating device
US5227011A (en) * 1990-06-22 1993-07-13 Ibiden Co., Ltd. Method for producing a second harmonic wave generating device
US7054512B2 (en) 2003-03-20 2006-05-30 Fujitsu Limited Optical waveguide, optical device, and method of manufacturing optical waveguide

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2753118B2 (ja) * 1990-06-28 1998-05-18 シャープ株式会社 光波長変換装置
US5233621A (en) * 1991-06-27 1993-08-03 Intellectual Property Development Associates Of Connecticut, Inc. Second harmonic generation and self frequency doubling laser materials comprised of bulk germanosilicate and aluminosilicate glasses
US5493628A (en) * 1991-10-17 1996-02-20 Lawandy; Nabil M. High density optically encoded information storage using second harmonic generation in silicate glasses
US5185752A (en) * 1992-02-18 1993-02-09 Spectra Diode Laboratories, Inc. Coupling arrangements for frequency-doubled diode lasers
TW238438B (de) * 1992-08-13 1995-01-11 Philips Electronics Nv
DE69321539T2 (de) * 1992-08-26 1999-05-27 Sony Corp Optischer Wellenlängenkonverter
DE69413572T2 (de) * 1993-02-08 1999-05-20 Sony Corp Optischer Wellenleiter für die Frequenzverdopplung
DE69637984D1 (de) * 1995-12-28 2009-09-17 Panasonic Corp Optischer Wellenleiter, Vorrichtung zur Umwandlung optischer Wellenlängen und Verfahren zu ihrer Herstellung
US10541152B2 (en) 2014-07-31 2020-01-21 Skyworks Solutions, Inc. Transient liquid phase material bonding and sealing structures and methods of forming same
TWI661494B (zh) 2014-07-31 2019-06-01 美商西凱渥資訊處理科技公司 多層暫態液相接合
US10439587B2 (en) 2016-12-02 2019-10-08 Skyworks Solutions, Inc. Methods of manufacturing electronic devices formed in a cavity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310435A2 (de) * 1987-09-30 1989-04-05 Sharp Kabushiki Kaisha Vorrichtung zur Änderung der Lichtwellenlänge

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3660673A (en) * 1970-04-16 1972-05-02 North American Rockwell Optical parametric device
US3822927A (en) * 1972-11-16 1974-07-09 Perkin Elmer Corp Phase matched optical wave generator for integrated optical circuits
FR2471617A1 (fr) * 1979-12-14 1981-06-19 Thomson Csf Dispositif optique non lineaire a guide d'onde composite et source de rayonnement utilisant un tel dispositif
US4564997A (en) * 1981-04-21 1986-01-21 Nippon-Telegraph And Telephone Public Corporation Semiconductor device and manufacturing process thereof
JPS592008A (ja) * 1982-06-28 1984-01-07 Nippon Telegr & Teleph Corp <Ntt> 埋め込み型石英光導波路の製造方法
JPS59218406A (ja) * 1983-05-27 1984-12-08 Nippon Telegr & Teleph Corp <Ntt> 光導波路およびその製造方法
JPS61240207A (ja) * 1985-04-17 1986-10-25 Nec Corp 光導波路
JPS61290426A (ja) * 1985-06-18 1986-12-20 Sharp Corp 高調波発生器
US4763019A (en) * 1986-09-09 1988-08-09 American Telephone And Telegraph Company, At&T Bell Laboratories Apparatus comprising harmonic generation means
JPS6468735A (en) * 1987-09-10 1989-03-14 Omron Tateisi Electronics Co Waveguide type shg element
JPS6477034A (en) * 1987-09-18 1989-03-23 Fujitsu Ltd Waveguide type higher harmonic generating element
DE3884383T2 (de) * 1987-11-30 1994-05-11 Ibiden Co Ltd Verfahren zur herstellung eines eine zweite harmonische erzeugenden elementes.
JP2525879B2 (ja) * 1988-10-14 1996-08-21 パイオニア株式会社 ファイバ―型光波長変換素子

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310435A2 (de) * 1987-09-30 1989-04-05 Sharp Kabushiki Kaisha Vorrichtung zur Änderung der Lichtwellenlänge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0432390A1 (de) * 1989-11-10 1991-06-19 Ibiden Co., Ltd. Zweite harmonische Welle erzeugende Vorrichtung und Verfahren zu ihrer Herstellung
US5175784A (en) * 1989-12-19 1992-12-29 Ibiden Co., Ltd. Second harmonic wave generating device
US5227011A (en) * 1990-06-22 1993-07-13 Ibiden Co., Ltd. Method for producing a second harmonic wave generating device
US7054512B2 (en) 2003-03-20 2006-05-30 Fujitsu Limited Optical waveguide, optical device, and method of manufacturing optical waveguide
EP1705515A3 (de) * 2003-03-20 2006-10-18 Fujitsu Limited Gebogener Steglichtwellenleiter, Optisches-Gerät, und Herstellungsmethode
US7177490B2 (en) 2003-03-20 2007-02-13 Fujitsu Limited Optical waveguide, optical device, and method of manufacturing optical waveguide

Also Published As

Publication number Publication date
DE68920537T2 (de) 1995-06-14
US4973117A (en) 1990-11-27
EP0364214A2 (de) 1990-04-18
EP0364214A3 (de) 1991-06-12
DE68920537D1 (de) 1995-02-23

Similar Documents

Publication Publication Date Title
EP0364214B1 (de) Vorrichtungen zur Umwandlung von optischen Wellenlängen
US5632910A (en) Multilayer resist pattern forming method
US4707059A (en) Integrated optical circuit element and method of making the same
US6684011B2 (en) Spot size converter and method of manufacturing the same
JPH07168045A (ja) 周期結合を強化した集積光学偏光変換器
EP0379358B1 (de) Verfahren zur Herstellung eines Beugungsgitters für optische Elemente
US5032220A (en) Manufacturing method of frequency doubler
US4946240A (en) Optical harmonic generation device
Li et al. Experimental study of waveguide grating couplers with parallelogramic tooth profiles
JP2687517B2 (ja) リッジ型光導波路の製造方法
EP0270381A2 (de) Lichtaussendende Halbleitervorrichtung
JP2000275415A (ja) 共振モード格子フィルター
JP2824314B2 (ja) 反射型光曲げ導波路の製造方法
JPH11167037A (ja) 誘導結合プラズマ装置を利用する光導波路素子製造方法
JPH09197154A (ja) 光導波路
JP3198649B2 (ja) 光導波路装置
JP3136386B2 (ja) プラズマ処理装置
KR100315695B1 (ko) 실리카 평면형 광도파로 소자의 제조 방법
JPH0468607A (ja) 弾性表面波デバイスの製造方法
KR19990030653A (ko) 광도파로 제조방법
EP0565261A1 (de) Optische Vorrichtungen
JPH05196825A (ja) 光導波路の入出力構造
KR100265861B1 (ko) 반응성 이온 식각법을 이용한 점차 가늘어지는 도파로의 제조 방법
JPH07159638A (ja) 光導波路デバイスの製造方法
JPH05232416A (ja) 光変調器の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19911029

17Q First examination report despatched

Effective date: 19930802

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 68920537

Country of ref document: DE

Date of ref document: 19950223

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951002

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951010

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951012

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951024

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST