EP0361675A1 - Compositions de polyisocyanate - Google Patents
Compositions de polyisocyanate Download PDFInfo
- Publication number
- EP0361675A1 EP0361675A1 EP89308570A EP89308570A EP0361675A1 EP 0361675 A1 EP0361675 A1 EP 0361675A1 EP 89308570 A EP89308570 A EP 89308570A EP 89308570 A EP89308570 A EP 89308570A EP 0361675 A1 EP0361675 A1 EP 0361675A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- uretonimine
- polyisocyanate
- polyisocyanate composition
- composition according
- carbodiimide modified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/83—Chemically modified polymers
- C08G18/831—Chemically modified polymers by oxygen-containing compounds inclusive of carbonic acid halogenides, carboxylic acid halogenides and epoxy halides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4887—Polyethers containing carboxylic ester groups derived from carboxylic acids other than acids of higher fatty oils or other than resin acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/50—Polyethers having heteroatoms other than oxygen
- C08G18/5021—Polyethers having heteroatoms other than oxygen having nitrogen
- C08G18/5024—Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/50—Polyethers having heteroatoms other than oxygen
- C08G18/5021—Polyethers having heteroatoms other than oxygen having nitrogen
- C08G18/5024—Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
- C08G18/503—Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups being in latent form
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6666—Compounds of group C08G18/48 or C08G18/52
- C08G18/667—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
- C08G18/6681—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
- C08G18/6685—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/7806—Nitrogen containing -N-C=0 groups
- C08G18/7818—Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/7806—Nitrogen containing -N-C=0 groups
- C08G18/7818—Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
- C08G18/7837—Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/797—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing carbodiimide and/or uretone-imine groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/80—Masked polyisocyanates
- C08G18/8003—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
- C08G18/8054—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/38
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0008—Foam properties flexible
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0025—Foam properties rigid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0041—Foam properties having specified density
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2115/00—Oligomerisation
- C08G2115/02—Oligomerisation to isocyanurate groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2120/00—Compositions for reaction injection moulding processes
Definitions
- This invention relates to polyisocyanate compositions and to their use in the manufacture of polyurethane and other polymeric materials.
- polyurethane materials which may be flexible or rigid, foamed or unfoamed, are produced on a large scale by reacting polyisocyanates with low and/or high molecular weight polyhydroxy compounds.
- polyurea products are obtained by reacting polyisocyanates with polyamines.
- the organic polyisocyanates used in these reactions include simple aliphatic and aromatic diisocyanates but also more complex derivatives thereof containing urethane, urea, allophanate, biuret, carbodiimide, uretonimine or isocyanurate residues.
- these modified polyisocyanates are used in order to provide a liquid form of a normally solid isocyanate compound, for example the so-called MDI variants. In other cases, they are used to provide other desired technical effects.
- polyisocyanate compositions may be obtained by reacting uretonimine and/or carbodiimide modified polyisocyanates with carboxylic acids.
- the present invention provides a polyisocyanate composition which is the product of reacting a uretonimine and/or carbodiimide modified polyisocyanate with a carboxylic acid.
- polyisocyanates containing carbodiimide and/or uretonimine groups and methods for their preparation have been fully described in the prior art.
- these modified polyisocyanates are obtained by contacting an organic polyisocyanate such as diphenylmethane diisocyanate (MDI) with a carbodiimidisation catalyst (commonly a phosphorus compound) to form a carbodiimide modified polyisocyanate which reacts with further polyisocyanate forming a uretonimine modified polyisocyanate, the carbodiimide/uretonimine ratio varying with temperature.
- MDI diphenylmethane diisocyanate
- a carbodiimidisation catalyst commonly a phosphorus compound
- the level of uretonimine and/or carbodiimide modification of the polyisocyanates used in accordance with the invention may vary over a wide range.
- Organic polyisocyanates which may be used in the preparation of the uretonimine and/or carbodiimide modified polyisocyanates include aliphatic, cycloaliphatic and araliphatic polyisocyanates, for example hexamethylene diisocyanate, isophorone diisocyanate, cyclohexane-1,4-diisocyanate, dicyclohexylmethane-4,4′-diisocyanate and p-xylylene diisocyanate.
- aliphatic, cycloaliphatic and araliphatic polyisocyanates for example hexamethylene diisocyanate, isophorone diisocyanate, cyclohexane-1,4-diisocyanate, dicyclohexylmethane-4,4′-diisocyanate and p-xylylene diisocyanate.
- the preferred polyisocyanates are the aromatic polyisocyanates, 1,5-naphthylene diisocyanate and especially the available MDI isomers, that is to say 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate and mixtures thereof with each other or with other polyisocyanates.
- Carboxylic acids which may be used in the preparation of the polyisocyanate compositions of the invention may contain one or more carboxylic acid groups per molecule and may be polymeric or non-polymeric in structure. Suitable acids include simple aliphatic or aromatic mono- or dicarboxylic acids. Polycarboxylic acids which are liquids at the temperatures used for reaction with the uretonimine and/or carbodiimide modified polyisocyanate, that is to say at temperatures of 120° C or below, are preferred.
- liquid polycarboxylic acids examples include the commercially available dimer acids obtained by the dimerisation of unsaturated fatty acids as well as carboxy terminated polymers, for example polynitriles, polyesters or polyethers.
- Carboxy terminated polyesters may be obtained in known manner by reacting polyhydric alcohols, for example glycols, with a stoichiometric excess of a polycarboxylic acid or anhydride thereof.
- Carboxy terminated polyethers may be obtained by reacting a polyether polyol with a polycarboxylic acid or anhydride, a large excess of the acid component being used when it is desired to minimise chain extension.
- each chain end carries a single carboxy group
- a reaction product of a polyether polyol and an excess of a dicarboxylic anhydride there may be used polyethers wherein each chain end carries two or more carboxy groups, for example reaction products of a polyether polyol and a tricarboxylic acid anhydride or a tetracarboxylic acid dianhydride.
- acids or acid anhydrides such as maleic anhydride, phthalic anhydride, trimellitic anhydride or pyromellitic dianhydride.
- Suitable polyoxyalkylene polyols are well known in the art and may be based on propylene oxide, butylene oxide, ethylene oxide, tetrahydrofuran and combinations thereof. Polyoxypropylene and poly(oxypropylene/oxyethylene) polyols are generally preferred.
- Reaction between the uretonimine and/or carbodiimide modified polyisocyanate and the carboxylic acid is preferably effected under such conditions that reaction between the carboxylic acid and the free isocyanate groups of the polyisocyanate as well as reactions between the free isocyanate groups are minimised.
- Such conditions include the use of reaction temperatures below 120°C, preferably not exceeding 100°C with an initial ratio of uretonimine/carbodiimide to carboxy groups of at least 1:1 and with no catalyst present. Where it is desired that reaction should also take place between carboxy groups and some of the isocyanate groups, or between the free isocyanate groups, higher reaction temperatures and/or suitable catalysts, for example phospholene oxides, may be used.
- polyisocyanate compositions of the invention derived from uretonimine and/or carbodiimide modified polyisocyanates based on diisocyanates of the formula R(NCO)2, wherein R represents a divalent hydrocarbon radical, for example methylene-bis-phenylene, contain terminal groups of the formula : wherein n is 0 (in the case of a carbodiimide based material) or 1 (in the case of a uretonimine based material).
- polyisocyanate compositions of the invention have relatively low viscosities because of the very low degree of chain extension which takes place during their preparation. This is in marked contrast to some of the modified polyisocyanates of the prior art which are prepared from such reactants and under such conditions that a significant degree of chain extension is unavoidable.
- compositions of the invention may be reacted with active hydrogen containing materials, using known techniques, to form polyurethane, polyurea and other useful polymeric materials.
- active hydrogen containing materials such as sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bi
- a liquid stream comprising a polyisocyanate composition of the invention may be impingement mixed with a second liquid stream typically containing an isocyanate reactive softblock component, for example a polyol, polyamine, imino-functional compound or enamine compound having an equivalent weight of at least 750 and an isocyanate-reactive chain extender, for example an aromatic diamine having a molecular weight of 100 to 400 such as a diethyl toluene diamine.
- an isocyanate reactive softblock component for example a polyol, polyamine, imino-functional compound or enamine compound having an equivalent weight of at least 750
- an isocyanate-reactive chain extender for example an aromatic diamine having a molecular weight of 100 to 400 such as a diethyl toluene diamine.
- Examples 1-10 The invention is illustrated but not limited by the following Examples 1-10. Examples 11-14 have been included for comparative purposes. In the Examples, all parts and percentages are expressed on a weight basis. All elastomer properties were measured in accordance with standard methods.
- Prepolymer 1 having an isocyanate content of 26.51 % by weight, was prepared by reacting 15 parts of a 3600 Mw carboxylic acid-ended difunctional liquid nitrile rubber (HYCAR R 1300 X 8, B.F. Goodrich Co.) with 85 parts of a 20 % uretonimine/carbodiimide modified 4,4′-diphenylmethane diisocyanate having an NCO content of 29.5 %. The reaction was carried out at 100°C for 2 hours.
- Prepolymer 2 having an isocyanate content of 26 % by weight, was prepared by reacting 15 parts of a 600 Mw carboxylic acid-ended difunctional unsaturated fatty acid dimer (EMPOL R 1009, Unichema) with 85 parts of a 20 % uretonimine/ carbodiimide modified 4,4′-diphenyl methane diisocyanate. The reaction was carried out at 100°C for 2 hours.
- EMPOL R 1009 carboxylic acid-ended difunctional unsaturated fatty acid dimer
- Prepolymer 3 having an isocyanate content of 25.19 % by weight, was prepared by reacting 13 parts of a 600 Mw carboxylic acid-ended difunctional unsaturated fatty acid dimer (EMPOL R 1009, Unichema.) with 87 parts of a 20 % uretonimine/carbodiimide modified 4,4′-diphenylmethane diisocyanate. The reaction was carried out at 100°C for 2 hours.
- EMPOL R 1009 carboxylic acid-ended difunctional unsaturated fatty acid dimer
- Prepolymer 4 having an isocyanate content of 23.57 % by weight, was prepared by reacting 20 parts of a 3600 Mw carboxylic acid-ended difunctional liquid nitrile rubber (HYCAR R 1300 X 8, B.F. Goodrich Co.) with 80 parts of a 20 % uretonimine/carbodiimide modified 4,4′-diphenylmethane diisocyanate. The reaction was carried out at 100°C for 2 hours.
- Prepolymer 5 having an isocyanate content of 23.57 % by weight, was prepared by reacting 20 parts of a 2200 Mw carboxylic acid-ended polyoxypropylene glycol (maleic anhydride capped PPG 2000) with 80 parts of a 20 % uretonimine/carbodiimide modified 4,4′-diphenylmethane diisocyanate. The reaction was carried out at 100°C for 2 hours.
- the carboxy-terminated polyether used in this Example was prepared as follows :
- Polyurea elastomers were prepared using the reaction injection moulding (RIM) process by injecting two liquid streams, maintained at ca. 40°C, of polyisocyanate and polyamine, under pressure (ca. 200 bar), into a closed mould for subsequent reaction.
- the steel mould employed was of the dimensions 30 cm X 30 cm X 3 mm, and was maintained at ca. 90°C.
- the elastomers were removed from the mould 20 seconds after injection, and were post thermally treated by placing them in a vented oven maintained at ca. 160°C for ca. 30 minutes. Physical properties of the elastomers were measured within 3 days of their post thermal treatment.
- Polyurea elastomer was prepared, using the RIM process previously described, by reacting 41.52 parts of prepolymer 4 with 40.94 parts of a 5000 Mw polyoxypropylene triamine and 17.54 parts of an 80/20 isomer mixture of 2,4- and 2,6-diethyltoluene diamines (DETDA).
- DETDA 2,4- and 2,6-diethyltoluene diamines
- Polyurea elastomer 2 was prepared by reacting 43.82 parts of prepolymer 4 with 39.33 parts of the polyether triamine used in Example 6 and 16.85 parts of DETDA.
- Polyurea elastomer 3 was prepared by reacting 41.52 parts of prepolymer 5 with 40.94 parts of the polyether triamine used in Example 6 and 17.54 parts of DETDA.
- Polyurea elastomer 4 was prepared by reacting 43.82 parts of prepolymer 5 with 39.33 parts of the polyether triamine used in Example 6 and 16.85 parts of DETDA.
- PHYSICAL PROPERTIES OF POLYUREA ELASTOMERS POLYUREA ELASTOMER : 1 2 3 4 FLEXURAL MODULUS (MPa) : 435 440 600 651 DENSITY (KG/M3) : 1074 1074 1100 1120 HARDNESS (SHORE D) : 61 64 67 67 TENSILE STRENGTH (KPa) : 23707 28891 36484 33636 ELONGATION (%) : 188 186 161 125 HEAT SAG (mm) 30′ : 4.5 4.5 2.0 1.5 [150 mm O/H, 160°C] 60′ : 12.0 11.0 3.5 6.0
- CLTE (alpha.10 ⁇ 6/°C) 172 124 135 117 IMPACT (J) +20°
- Prepolymer 6 having an isocyanate content of 23.5 % by weight, was prepared by reacting 25 parts of a 2000 MW polyoxypropylene glycol with 65 parts of an 80/20 mixture of 4,4′- and 2,4′-diphenylmethane diisocyanates. 10.0 parts of a uretonimine/carbodiimide modified diphenylmethane diisocyanate having an isocyanate content of 29.5 % by weight was stirred into this prepolymer after preparation.
- Prepolymer 7 having an isocyanate content of 20.92 % by weight, was prepared by reacting 33.88 parts of a 5000 MW polyoxypropylene triol with 56.12 parts of an 80/20 mixture of 4,4′- and 2,4′-diphenylmethane diisocyanates. 10.0 parts of a uretonimine/ carbodiimide modified diphenylmethane diisocyanate having an isocyanate content of 29.5 % by weight was stirred into this prepolymer after preparation.
- Polyurea elastomer 5 was prepared according to the RIM process previously described. It was prepared by reacting 39.39 parts of prepolymer 6 with 44.24 parts of the polyether triamine used in Example 6 and 16.37 parts of DETDA.
- PHYSICAL PROPERTIES OF ELASTOMERS POLYUREA ELASTOMER : 5 6 FLEXURAL MODULUS (MPa) : 359 351 DENSITY (KG/M3) : 1088 1103 HARDNESS (SHORE D) : 58 59 TENSILE STRENGTH (KPa) : 25000 28652 ELONGATION (%) : 300 260 HEAT SAG (mm) 30′ : 5.0 10.0 [150 mm O/H, 160°C] 60′ : 16.0 28.0 CLTE (alpha.10 ⁇ 6/°C) : 132 130 IMPACT (J) +20°C : 47 100 [FALLING DART] -20°C : 38 46
- All elastomers prepared according to the present invention showed higher modulus and improved modulus/impact combinations than those of the comparative Examples. Also, elastomers prepared according to the present invention showed improved thermal stability over those of the comparative Examples.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Polyurethanes Or Polyureas (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8821186 | 1988-09-09 | ||
GB888821186A GB8821186D0 (en) | 1988-09-09 | 1988-09-09 | Compositions of matter |
GB8900855 | 1989-01-16 | ||
GB898900855A GB8900855D0 (en) | 1989-01-16 | 1989-01-16 | Polyisocyanate compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0361675A1 true EP0361675A1 (fr) | 1990-04-04 |
Family
ID=26294368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89308570A Ceased EP0361675A1 (fr) | 1988-09-09 | 1989-08-24 | Compositions de polyisocyanate |
Country Status (7)
Country | Link |
---|---|
US (1) | US5081211A (fr) |
EP (1) | EP0361675A1 (fr) |
JP (1) | JPH02107627A (fr) |
KR (1) | KR900004862A (fr) |
AU (1) | AU4082989A (fr) |
DK (1) | DK442689A (fr) |
NZ (1) | NZ230314A (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1088840A1 (fr) * | 1999-10-01 | 2001-04-04 | Basf Aktiengesellschaft | Masses à couler de polyuréthane transparente, stérilisables à la vapeur, non-cytotoxiques, leur procédé de préparation et leur utilisation, en particulier pour des articles médicaux |
EP1088839A1 (fr) * | 1999-10-01 | 2001-04-04 | Basf Aktiengesellschaft | Masses à couler de polyuréthane transparente, stérilisables à la vapeur, non-cytotoxiques, leur procédé de préparation et leur utilisation, en particulier pour des articles médicaux |
EP2998331A1 (fr) * | 2014-09-17 | 2016-03-23 | Construction Research & Technology GmbH | Polymère organique durcissable comprenant au moins une unité d'acylurée, sa préparation et son utilisation |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3643241C2 (fr) * | 1985-03-29 | 1990-07-26 | Nisshinbo Industries, Inc., Tokio/Tokyo, Jp | |
US5298593A (en) * | 1991-06-25 | 1994-03-29 | Mitsubishi Petrochemical Company, Ltd. | Method of producing thermotropic liquid crystalline polyester |
GB9125918D0 (en) * | 1991-12-05 | 1992-02-05 | Ici Plc | Reaction system for preparing polyurethane/polyurea |
US5216035A (en) * | 1992-06-22 | 1993-06-01 | Basf Corporation | Water-blown polyurethane integral skin foam |
US5284880A (en) * | 1993-04-15 | 1994-02-08 | Basf Corporation | Water-blown polyurethane integral skin foam |
DE60014435T2 (de) * | 1999-12-10 | 2006-03-02 | Dow Global Technologies, Inc., Midland | Gussblasenfreier polyharnstoff und verfahren zu seiner herstellung |
DE102004015985A1 (de) * | 2004-04-01 | 2005-10-20 | Bayer Materialscience Ag | Verfärbungsstabile Polyetherallophanate |
EP1754721A1 (fr) * | 2005-08-16 | 2007-02-21 | Sika Technology AG | Agents résistants aux chocs terminés par des groupes d'amine, leurs dérivés et leur utilisation. |
US8476330B2 (en) * | 2007-07-13 | 2013-07-02 | Momentive Performance Materials Inc. | Polyurethane foam containing synergistic surfactant combinations and process for making same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2259119A1 (fr) * | 1974-01-28 | 1975-08-22 | Basf Ag | |
US4077989A (en) * | 1974-07-30 | 1978-03-07 | Bayer Aktiengesellschaft | Process for the production of modified polyisocyanates |
US4260718A (en) * | 1979-12-18 | 1981-04-07 | The Upjohn Company | Modified carbodiimide-containing polyisocyanates and glassy polyurethanes therefrom |
EP0032011A1 (fr) * | 1980-01-02 | 1981-07-15 | Imperial Chemical Industries Plc | Mélanges d'isocyanates modifiés |
EP0099519A1 (fr) * | 1982-07-20 | 1984-02-01 | Bayer Ag | Procédé de préparation de matières plastiques à base de polyisocyanates |
EP0287947A2 (fr) * | 1987-04-24 | 1988-10-26 | Bayer Ag | Procédé pour la préparation de revêtements contenant des groupes hydantoine par réaction de composés contenant des groupes carbodiimide avec des acides carboxyliques insaturés |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2013787A1 (de) * | 1970-03-23 | 1971-10-21 | Bayer | Verfahren zur Herstellung von Polyurethanschaumstoffen |
DE2552350A1 (de) * | 1975-11-21 | 1977-05-26 | Bayer Ag | Lagerstabile, carbodiimidgruppen enthaltende polyisocyanate |
US4306052A (en) * | 1980-09-25 | 1981-12-15 | The Upjohn Company | Thermoplastic polyester polyurethanes |
DE3516730A1 (de) * | 1985-05-09 | 1986-11-13 | Bayer Ag, 5090 Leverkusen | Verfahren zur herstellung von harnstoff- und/oder biuretgruppen aufweisenden polyisocyanat-zubereitungen, die nach diesem verfahren erhaeltlichen polyisocyanat-zubereitungen und ihre verwendung als isocyanatkomponente bei der herstellung von kunststoffen nach dem isocyanat-polyadditionsverfahren |
GB8524579D0 (en) * | 1985-10-04 | 1985-11-06 | Polyvinyl Chemicals Inc | Coating compositions |
US4789791A (en) * | 1986-09-26 | 1988-12-06 | Tektronix, Inc. | Rotary drive mechanism |
GB8705801D0 (en) * | 1987-03-11 | 1987-04-15 | Ici Plc | Injection moulding compositions |
GB8819297D0 (en) * | 1988-08-12 | 1988-09-14 | Ici Plc | Composite materials |
-
1989
- 1989-08-15 NZ NZ230314A patent/NZ230314A/xx unknown
- 1989-08-24 EP EP89308570A patent/EP0361675A1/fr not_active Ceased
- 1989-08-28 AU AU40829/89A patent/AU4082989A/en not_active Abandoned
- 1989-08-30 US US07/400,639 patent/US5081211A/en not_active Expired - Fee Related
- 1989-09-07 DK DK442689A patent/DK442689A/da not_active Application Discontinuation
- 1989-09-08 KR KR1019890013019A patent/KR900004862A/ko not_active Application Discontinuation
- 1989-09-08 JP JP1234504A patent/JPH02107627A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2259119A1 (fr) * | 1974-01-28 | 1975-08-22 | Basf Ag | |
US4077989A (en) * | 1974-07-30 | 1978-03-07 | Bayer Aktiengesellschaft | Process for the production of modified polyisocyanates |
US4260718A (en) * | 1979-12-18 | 1981-04-07 | The Upjohn Company | Modified carbodiimide-containing polyisocyanates and glassy polyurethanes therefrom |
EP0032011A1 (fr) * | 1980-01-02 | 1981-07-15 | Imperial Chemical Industries Plc | Mélanges d'isocyanates modifiés |
EP0099519A1 (fr) * | 1982-07-20 | 1984-02-01 | Bayer Ag | Procédé de préparation de matières plastiques à base de polyisocyanates |
EP0287947A2 (fr) * | 1987-04-24 | 1988-10-26 | Bayer Ag | Procédé pour la préparation de revêtements contenant des groupes hydantoine par réaction de composés contenant des groupes carbodiimide avec des acides carboxyliques insaturés |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1088840A1 (fr) * | 1999-10-01 | 2001-04-04 | Basf Aktiengesellschaft | Masses à couler de polyuréthane transparente, stérilisables à la vapeur, non-cytotoxiques, leur procédé de préparation et leur utilisation, en particulier pour des articles médicaux |
EP1088839A1 (fr) * | 1999-10-01 | 2001-04-04 | Basf Aktiengesellschaft | Masses à couler de polyuréthane transparente, stérilisables à la vapeur, non-cytotoxiques, leur procédé de préparation et leur utilisation, en particulier pour des articles médicaux |
EP2998331A1 (fr) * | 2014-09-17 | 2016-03-23 | Construction Research & Technology GmbH | Polymère organique durcissable comprenant au moins une unité d'acylurée, sa préparation et son utilisation |
WO2016041666A1 (fr) * | 2014-09-17 | 2016-03-24 | Construction Research & Technology Gmbh | Polymère organique durcissable comprenant au moins un motif acylurée, sa préparation et son utilisation |
US10590227B2 (en) | 2014-09-17 | 2020-03-17 | Construction Research & Technology Gmbh | Curable organic polymer comprising at least one acylurea unit, its preparation and use |
Also Published As
Publication number | Publication date |
---|---|
US5081211A (en) | 1992-01-14 |
AU4082989A (en) | 1990-03-15 |
DK442689D0 (da) | 1989-09-07 |
JPH02107627A (ja) | 1990-04-19 |
DK442689A (da) | 1990-03-10 |
KR900004862A (ko) | 1990-04-13 |
NZ230314A (en) | 1991-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0283216B1 (fr) | Compositions de prépolymères pour le moulage réactif par injection de polyurées | |
EP0392788B1 (fr) | Composition d'isocyanate et procédé de préparation de mousses flexibles à partir de celle-ci | |
EP2287228B1 (fr) | Procédé de production en continu de résine silylée | |
ES2284992T3 (es) | Elastomeros de poliuretano que tienen propiedades fisicas mejoradas y procedimiento para su produccion. | |
CA1282927C (fr) | Methode pour la preparation de compositions rigides thermodurcissables de polyisocyanurate modifiees par du polyurethane, moulees par injection et reaction | |
EP0370392A1 (fr) | Procédé de préparation de prépolymères de polyisocyanate contenant du diisocyanate de cyclohexane et polyuréthanes résistant aux températures élevées | |
JP2001500167A (ja) | 結晶性ポリオールを低モノールポリオキシプロピレンポリオールとともに基材とする、性質の改良されたエラストマーポリウレタン | |
US5081211A (en) | Polyisocyanate compositions | |
EP0240196B1 (fr) | Utilisation de polyamines polymériques pour la préparation de polyuréthane/polyurée ou polyurée. | |
JP3227185B2 (ja) | イソシアネート末端付きプレポリマーの製造方法 | |
EP0547760B1 (fr) | Système de réaction pour la préparation de polyuréthane/polyurée | |
US5159048A (en) | Isocyanate-reactive compositions | |
EP0566247B1 (fr) | Procédé de préparation de mousses flexibles | |
US4769435A (en) | Process for the manufacture of thermoplastic polyurethanes | |
AU615255B2 (en) | Prepolymers containing imide linkages | |
US4977195A (en) | Elastomers | |
EP0594292B1 (fr) | Polyols et leur utlisation pour la fabrication de polyuréthanes. | |
JP3328288B2 (ja) | 軟質ポリマーフォームの製造方法 | |
JPH0196207A (ja) | ポリユリア及びポリユリア/ポリウレタン重合体類を製造する方法 | |
JPS60190415A (ja) | 高耐熱性硬質ポリウレタン樹脂の製造法 | |
PT91668A (pt) | Processo para a preparacao de composicoes de poliisocianato | |
JPS6086112A (ja) | 耐摩擦、耐摩耗性ポリウレタン樹脂組成物 | |
CA2198444A1 (fr) | Urethane-diols liquides de faible poids moleculaire et leur utilisation | |
JPS62253620A (ja) | 高分子ポリアミン | |
JPH04239016A (ja) | 無黄変性ポリウレタン尿素発泡体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19900828 |
|
17Q | First examination report despatched |
Effective date: 19920326 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 19940123 |