EP0355356B1 - Charpente métallique antisismique - Google Patents

Charpente métallique antisismique Download PDF

Info

Publication number
EP0355356B1
EP0355356B1 EP89112515A EP89112515A EP0355356B1 EP 0355356 B1 EP0355356 B1 EP 0355356B1 EP 89112515 A EP89112515 A EP 89112515A EP 89112515 A EP89112515 A EP 89112515A EP 0355356 B1 EP0355356 B1 EP 0355356B1
Authority
EP
European Patent Office
Prior art keywords
construction according
girders
sectional area
reduction
girder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89112515A
Other languages
German (de)
English (en)
Other versions
EP0355356A1 (fr
Inventor
André Plumier
Raymond Baus
René Pepin
Jean-Baptiste Schleich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arcelor Luxembourg SA
Original Assignee
Arbed SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arbed SA filed Critical Arbed SA
Priority to AT89112515T priority Critical patent/ATE72288T1/de
Publication of EP0355356A1 publication Critical patent/EP0355356A1/fr
Application granted granted Critical
Publication of EP0355356B1 publication Critical patent/EP0355356B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0237Structural braces with damping devices
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2442Connections with built-in weakness points
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2448Connections between open section profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B2001/2496Shear bracing therefor

Definitions

  • the invention relates to an earthquake-resistant metal frame consisting of columns and profiles, possibly provided with concrete.
  • the latter objective is achieved by imposing a resistance R d of the assemblies greater than 120% of the plastic resistance R fy of the assembled bars, ie. R d > 1.2 R fy .
  • R fy represents the plastic moment M p of the bars.
  • R fy is the normal plastic force N p of the bars. This is a very restrictive condition, leading to costly assemblies, difficult if not impossible to achieve.
  • the object of the invention is to propose a metal frame having excellent behavior during an earthquake while being light, of simple and economical construction.
  • Figs. 1 and 2 there is a column 1 connected via an end plate 2 to a beam 3.
  • the connection end plate-beam is usually made by welding while the end plate is bolted to the column.
  • a Code requirement requires that the dissipative zones be located in the beams and not in the columns.
  • the section of the beam near the assembly 4 has been reduced over a length 1 equal to the height h of the beam. This length is in fact the minimum length necessary for the formation of a plastic ball joint.
  • the extent of the shrinkage 5 can be worth around 30% of the width b of the beams' wings.
  • the minimum distance from the start of the narrowing to the assembly 4 is of the order of a quarter of the width of the wings of the beam.
  • the reduction in effective cross-section of the beam can also take the form of a reduction in cross-section by drilling or by punching multiple holes 6, as shown in FIG. 3.
  • a part of a trellis structure is distinguished.
  • the stretched diagonals 42 are made with angles.
  • the upper frame 41 constituted by U-shaped profiles, is connected by means of a gusset 43 and angles 44 and 45 to the column 40.
  • the invention here takes on a particularly elegant appearance by providing a reduction in section 46 in the stretched diagonals 42 intended to constitute a dissipative zone which is reliable in traction.
  • a dissipative zone can be provided towards each end of the stretched diagonals. For reasons of economy of manufacture, they are only provided near one of the ends, in general that which is fixed to the upper chord.
  • the stretched diagonal 42 has a reduction in effective section due to a multitude of holes 47.
  • Fig. 6 shows a simpler trellis structure, in which the upper member 41 is directly fixed to the gusset 43. Similarly, the gusset 43 is directly welded to the column 40.
  • the reduction in effective section 48 here consists of an ellipsoidal cut in the edge of one of the two wings of each angle. One can also perform a less pronounced removal in the two wings of an angle.
  • the proposed solution leads on the one hand to a loss of useful cross section of the diagonals which can reach 50%, but the reduction factor on the design forces is 4 if the lattice structure can be considered dissipative.
  • the overall result therefore remains a reduction in the steel used for the diagonals by a factor of the order of 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

  • L'invention concerne une charpente métallique antisismique constituée par des colonnes et des profilés, éventuellement munis de béton.
  • De nombreux constats de dommages subis par des immeubles lors de tremblements de terre attestent que les constructions métalliques ont en général un meilleur comportement que celles en pierre ou en bois. Une raison en est la bonne ductilité de l'acier et sa capacité d'absorber l'énergie, quel que soit le mode de sollicitation (compression, traction, cisaillement). Une autre raison réside dans les propriétés d'isotropie et d'homogénéité de ce matériau. Il faut évidemment veiller à ce que les qualités intrinsèques du matériau soient conservées lorsqu'on lui donne une forme de poutre, de poteau etc. et finalement d'assemblage.
  • En principe, les constructions devant résister à des séismes sont calculées élastiquement sous l'action de forces définies dans des Codes de calcul. Ces forces sont généralement plus petites que les forces réelles susceptibles de solliciter la construction lors d'un tremblement de terre, si cette construction travaillait uniquement dans le domaine élastique; on considère en effet que la structure peut dissiper une grande partie de l'énergie transmise au moyen de déformations plastiques. Il en découle la nécessité de concevoir la structure en choisissant les matériaux, les sections des barres et les assemblages de façon telle que l'énergie dissipée soit beaucoup plus importante que l'énergie élastique emmagasinée sous les mêmes forces.
  • Les forces de calcul représentant l'action d'un tremblement de terre sur une construction sont dans une zone géographique donnée et pour une structure donnée
    • ― proportionnelle à la masse de la construction
    • ― fonction des caractéristiques vibratoires de la structure (périodes propres)
    • ― dépendante de la capacité de la structure à absorber l'énergie du tremblement de terre dans des mécanismes stables, de type rotule plastique, appelés "zones dissipatives".
  • Il n'est pas facile de modifier beaucoup dans un sens favorable l'effet des deux premiers termes: la masse est directement liée à l'utilisation de la construction; les périodes fondamentales ne sont pas aisément modifiables parce que des conditions de limitation des déformations bloquent les périodes des structures réelles dans une bande relativement étroite. La dernière influence, liée à la capacité de la structure à dissiper de l'énergie, a par contre un intervalle de variation très grand, puisqu'il amène à considérer des forces de calcul variables dans le rapport de 1 à 6, les forces de calcul les plus faibles correspondant évidemment aux structures les plus dissipatives.
  • Les Codes de calcul définissent un certain nombre de conditions à respecter pour avoir droit aux forces de calcul les plus faibles et, en conséquence, aux structures les plus légères. Ces conditions portent sur
    • ― la topologie des structures,
    • ― les élancements de parois des sections et
    • ― les dimensions des assemblages; celles-ci doivent être telles que les zones dissipatives soient situées en dehors des assemblages, parce que ces derniers sont généralement incapables de développer un mécanisme plastique stable et ductile.
  • On atteint ce dernier objectif en imposant une résistance Rd des assemblages supérieure à 120% de la résistance plastique Rfy des barres assemblées, c.à d. Rd > 1,2 Rfy.
  • Dans les portiques Rfy représente le moment plastique Mp des barres. Dans les treillis, Rfy est l'effort normal plastique Np des barres. Il s'agit d'une condition très contraignante, conduisant à des assemblages coûteux, difficiles sinon impossibles à réaliser.
  • L'invention a pour but de proposer une charpente métallique ayant un excellent comportement lors d'un tremblement de terre tout en étant légère, de réalisation simple et économique.
  • Ce but est atteint par la charpente métallique selon l'invention, telle qu'elle est caractérisée dans les revendications indépendantes. Des variantes d'exécution préférentielles sont décrites dans les revendication dépendantes.
  • L'avantage découlant de l'invention consiste en ce est que la condition
    R d > 1,2 R fy
    Figure imgb0001

    s'applique en considérant la valeur Rfy de la section réduite du profilé. Ceci ramène l'assemblage à des dimensions normales, supérieures mais comparables à celles obtenues dans un projet classique, tout en garantissant la présence d'une zone dissipative et en permettant de bénéficier pleinement de la réduction des forces de calcul correspondant à l'action sismique.
  • L'invention sera expliquée plus en détail au regard de dessins montrant plusieurs modes d'exécution possibles. Il a été représenté, en
    • Fig. 1 et 2 une vue de côté respectivement de dessus d'une structure en portique, en
    • Fig. 3 la vue de dessus d'une structure en portique et en
    • Fig. 4, 5 et 6 des vues de côté de trois variantes de structures en treillis.
  • Sur les Fig. 1 et 2 on distingue une colonne 1 reliée par l'intermédiaire d'une plaque d'about 2 à une poutrelle 3. La liaison plaque d'about-poutrelle se fait usuellement par soudage tandis que la plaque d'about est boulonnée à la colonne.
  • Dans les structures en portique métallique ou mixte acier-béton, une prescription des Codes exige que les zones dissipatives soient situées dans les poutrelles et non dans les colonnes. La section de la poutrelle à proximité de l'assemblage 4, a été diminuée sur une longueur 1 égale à la hauteur h de la poutrelle. Cette longueur est en fait la longueur minimale nécessaire à la formation d'une rotule plastique. L'importance du rétrécissement 5 peut valoir quelque 30% de la largeur b des ailes de la poutrelle. La distance minimale du début du rétrécissement à l'assemblage 4 est de l'ordre du quart de la largeur des ailes de la poutrelle.
  • Au lieu de prendre une allure trapézoïdale, la réduction de section effective de la poutrelle peut également prendre la forme d'une diminution de section par forage ou par poinçonnage de multiples trous 6, tel que représenté en Fig. 3.
  • En Fig. 4 on distingue une partie d'une structure en treillis. Les diagonales tendues 42 sont réalisées avec des cornières. La membrure supérieure 41, constituée par des profilés en U, est reliée par l'intermédiaire d'un gousset 43 et de cornières 44 et 45 à la colonne 40. Notons que dans de tels assemblages de profils en U ou de cornières sur une seule paroi, il est souvent impossible de réaliser une zone dissipative en conception classique. L'invention prend ici un aspect particulièrement élégant en prévoyant une réduction de section 46 dans les diagonales tendues 42 destinée à constituer une zone dissipative fiable en traction. En principe on peut prévoir une telle zone dissipative vers chaque extrémité des diagonales tendues. Pour des raisons d'économie de fabrication, on ne les prévoit que près d'une des extrémités, en général celle qui est fixée à la membrure supérieure.
  • Dans la variante représentée en Fig. 5, la diagonale tendue 42 possède une réduction de section effective due à une multitude de forages 47.
  • En Fig. 6 a été représentée une structure en treillis plus simple, dans laquelle la membrure supérieure 41 est directement fixée au gousset 43. Pareillement, le gousset 43 est directement soudé sur la colonne 40. La réduction de section effective 48 consiste ici en une découpe ellipsoïdale dans le bord d'une des deux ailes de chaque cornière. On peut également effectuer un enlèvement moins prononcé dans les deux ailes d'une cornière.
  • La solution proposée entraîne d'un côté une perte de section utile des diagonales qui peut atteindre 50%, mais le facteur de réduction sur les forces de calcul est de 4 si la structure en treillis peut être considérée comme dissipative. Le résultat global reste donc une réduction de l'acier mis en oeuvre pour les diagonales par un facteur de l'ordre de 2.

Claims (9)

1. Charpente métallique antisismique constituée par des colonnes et des poutres prenant appui aux colonnes, les colonnes et/ou les poutres étant éventuellement munies de béton, caractérisée en ce que les poutres présentent, au moins près de l'une de leurs extrémités, une zone dissipative localisée sous forme d'une réduction de section effective.
2. Charpente selon la revendication 1, caractérisée en ce que la réduction de section effective consiste en une découpe trapézoïdale dans les bords des ailes, la grande base correspondant au côté de l'aile et la petite base possédant une longueur au moins égale à la hauteur de la poutre.
3. Charpente selon la revendication 2, caractérisée en ce que les côtés du trapèze forment avec sa grande base au plus un angle de 60° et en ce que sa hauteur est au plus égale à 30% de la largeur de l'aile de la poutre.
4. Charpente selon la revendication 1, caractérisée en ce que la réduction de section effective consiste en une découpe sensiblement ellipsoïdale dans les bords des ailes.
5. Charpente selon la revendication 1, caractérisée en ce que la réduction de section effective consiste en au moins un évidement s'étendant sur une distance au moins égale à la hauteur de la poutre.
6. Charpente selon la revendication 5, caractérisée en ce que les évidements sont des trous arrondis, à faible section et régulièrement distribués.
7. Charpente selon la revendication 5, caractérisée en ce que le/les évidements ont une section carrée ou rectangulaire.
8. Charpente selon une des revendications 1 à 7, caractérisée en ce que les poutres ont une section en forme de H ou de I et font partie d'une structure en portique.
9. Charpente selon une des revendications 1 à 7, caractérisée en ce que les poutres ont une section en forme de U ou de L et relient la membrure supérieure à la membrure inférieure d'une structure en treillis.
EP89112515A 1988-08-24 1989-07-08 Charpente métallique antisismique Expired - Lifetime EP0355356B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89112515T ATE72288T1 (de) 1988-08-24 1989-07-08 Erdbebensichere metallgebaeudekonstruktion.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU87320 1988-08-24
LU87320A LU87320A1 (fr) 1988-08-24 1988-08-24 Charpente metallique antisismique

Publications (2)

Publication Number Publication Date
EP0355356A1 EP0355356A1 (fr) 1990-02-28
EP0355356B1 true EP0355356B1 (fr) 1992-01-29

Family

ID=19731085

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89112515A Expired - Lifetime EP0355356B1 (fr) 1988-08-24 1989-07-08 Charpente métallique antisismique

Country Status (7)

Country Link
US (1) US5148642A (fr)
EP (1) EP0355356B1 (fr)
JP (1) JPH0288833A (fr)
AT (1) ATE72288T1 (fr)
DE (1) DE68900793D1 (fr)
ES (1) ES2029099T3 (fr)
LU (1) LU87320A1 (fr)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590506A (en) * 1993-05-03 1997-01-07 Cunningham; John Earthquake-resistant architectural system
JP3126093B2 (ja) * 1994-06-17 2001-01-22 ナショナル・サイエンス・カウンシル 鉄骨構造物の柱梁接合部
US5595040A (en) * 1994-07-20 1997-01-21 National Science Council Beam-to-column connection
US6237303B1 (en) * 1995-04-11 2001-05-29 Seismic Structural Design Steel frame stress reduction connection
US7047695B2 (en) 1995-04-11 2006-05-23 Seismic Structural Design Associates, Inc. Steel frame stress reduction connection
US5680738A (en) * 1995-04-11 1997-10-28 Seismic Structural Design Associates, Inc. Steel frame stress reduction connection
US5899043A (en) * 1995-12-18 1999-05-04 Engineering Certifiers Ltd. Ductile-failure anchors for concrete elements
US6012256A (en) * 1996-09-11 2000-01-11 Programmatic Structures Inc. Moment-resistant structure, sustainer and method of resisting episodic loads
TW328553B (en) * 1996-11-21 1998-03-21 Nat Science Council Shock resistant steel beam and column connector
JPH11280150A (ja) * 1998-03-30 1999-10-12 Shimizu Corp 耐震型柱・梁接合構造
JPH11280147A (ja) * 1998-03-30 1999-10-12 Shimizu Corp 耐震型柱・梁接合構造
JP2000081085A (ja) * 1998-09-04 2000-03-21 Mitsubishi Heavy Ind Ltd 履歴型ダンパーを備えた構造部材
US6516583B1 (en) * 1999-03-26 2003-02-11 David L. Houghton Gusset plate connections for structural braced systems
US6840016B1 (en) 1999-08-03 2005-01-11 Imad H. Mualla Device for damping movements of structural elements and a bracing system
US6956144B2 (en) 1999-12-09 2005-10-18 Waikatolink Limited Honey based wound dressing
WO2002004765A1 (fr) * 2000-07-10 2002-01-17 The Regents Of The University Of Michigan Systeme d'ossature resistant a l'affaissement pour structures
US6427393B1 (en) * 2001-01-26 2002-08-06 Sinotech Engineering Consultants, Inc. Seismic-resistant beam-to-column moment connection
JP4644386B2 (ja) * 2001-06-06 2011-03-02 新日本製鐵株式会社 柱・梁接合構造
US6591573B2 (en) 2001-07-12 2003-07-15 David L. Houghton Gusset plates connection of beam to column
DE10136551A1 (de) * 2001-07-27 2003-02-13 Richter System Gmbh & Co Kg Zugstrebe für Gebäude
US7174680B2 (en) 2002-05-29 2007-02-13 Sme Steel Contractors, Inc. Bearing brace apparatus
US7305799B2 (en) * 2002-05-29 2007-12-11 Sme Steel Contractors, Inc. Bearing brace apparatus
US6604640B1 (en) 2002-05-31 2003-08-12 Stow International N.V. Storage system
TW593850B (en) * 2002-10-04 2004-06-21 Lo Mao Bending moment resistant structure with supporting member and method for the same
US7040069B2 (en) * 2003-09-14 2006-05-09 Simmons Robert J Long-span transition beam
TWI262229B (en) * 2004-02-02 2006-09-21 Chong-Shien Tsai Multi-section earthquake protection device
JP4427080B2 (ja) * 2004-04-27 2010-03-03 ロバート・ジェイ・サイモンズ 梁端部溶接用調整体
US8001734B2 (en) 2004-05-18 2011-08-23 Simpson Strong-Tie Co., Inc. Moment frame links wall
CN101031696B (zh) 2004-08-02 2010-05-05 Tac科技有限责任公司 工程结构构件及其制造方法
US8266856B2 (en) 2004-08-02 2012-09-18 Tac Technologies, Llc Reinforced structural member and frame structures
US7721496B2 (en) 2004-08-02 2010-05-25 Tac Technologies, Llc Composite decking material and methods associated with the same
US7930866B2 (en) 2004-08-02 2011-04-26 Tac Technologies, Llc Engineered structural members and methods for constructing same
US8065848B2 (en) 2007-09-18 2011-11-29 Tac Technologies, Llc Structural member
US8656685B2 (en) * 2005-03-08 2014-02-25 City University Of Hong Kong Structural members with improved ductility
US8297023B2 (en) * 2006-08-30 2012-10-30 William M Collins Stackable column assemblies and methods of construction
US8365476B2 (en) * 2007-12-28 2013-02-05 Seismic Structural Design Associates, Inc. Braced frame force distribution connection
PL2440717T3 (pl) 2009-06-12 2017-11-30 Bekaert Sa Nv Włókna stalowe o wysokiej rozciągliwości dla konwencjonalnego betonu
JP5670111B2 (ja) * 2009-09-04 2015-02-18 東京エレクトロン株式会社 X線発生用ターゲット、x線発生装置、及びx線発生用ターゲットの製造方法
CA2850065C (fr) 2012-11-30 2017-07-11 Andy Thao Tran Connexion de plaques gousset d'une poutre a une colonne
US9506239B2 (en) 2012-11-30 2016-11-29 Mitek Holdings, Inc. Gusset plate connection in bearing of beam to column
CN103821233B (zh) * 2014-02-25 2016-04-06 中国电力科学研究院 高阻尼型钢混凝土节点
CN103821224B (zh) * 2014-02-25 2016-04-06 中国电力科学研究院 高阻尼型钢混凝土框架
US9527572B2 (en) 2014-06-26 2016-12-27 The Boeing Company Elongated structures and related assemblies
US9556608B2 (en) 2014-08-12 2017-01-31 Dale Smith Roof erection system and assembly kit
WO2016036564A1 (fr) * 2014-09-02 2016-03-10 Brigham Young University Ossatures résistant au moment, kits d'assemblage de celles-ci, et procédés de réparation de celles-ci
US9464427B2 (en) * 2015-01-23 2016-10-11 Columbia Insurance Company Light gauge steel beam-to-column joint with yielding panel zone
CA2918756C (fr) 2015-01-23 2020-07-21 Zeke Carlyon Dispositif de panneau isole
KR101630235B1 (ko) * 2015-02-09 2016-06-14 주식회사 태영피씨엠 안전성이 강화된 피씨 트러스 벽체 구조물 및 이를 이용한 지하구조물 시공방법
CN104775536A (zh) * 2015-03-18 2015-07-15 成都绿迪科技有限公司 梁柱柔性连接件
CN104790677A (zh) * 2015-05-07 2015-07-22 中建钢构有限公司 钢结构超长小截面钢柱安装防失稳可调节临时连系梁
US20160356033A1 (en) 2015-06-03 2016-12-08 Mitek Holdings, Inc Gusset plate connection of braced beam to column
NZ743225A (en) 2015-12-09 2019-03-29 Core Brace Llc Beam-to-column connection systems and moment-resisting frames including the same
US10689876B2 (en) 2015-12-09 2020-06-23 Durafuse Frames, Llc Beam-to-column connection systems and moment-resisting frames including the same
US20170314254A1 (en) 2016-05-02 2017-11-02 Mitek Holdings, Inc. Moment resisting bi-axial beam-to-column joint connection
US11236502B2 (en) 2016-10-03 2022-02-01 Mitek Holdings, Inc. Gusset plate and column assembly for moment resisting bi-axial beam-to-column joint connections
US10179991B2 (en) 2016-10-03 2019-01-15 Mitek Holdings, Inc. Forming column assemblies for moment resisting bi-axial beam-to-column joint connections
CN106593059B (zh) * 2017-01-11 2022-02-01 东南大学 一种狗骨式节点梁端屈曲约束装置
JP6976653B2 (ja) * 2017-09-29 2021-12-08 株式会社横河Nsエンジニアリング 耐軸力部材
JP7213623B2 (ja) * 2018-04-26 2023-01-27 Jfeスチール株式会社 間柱ダンパー
US10907374B2 (en) * 2018-04-27 2021-02-02 Seismic Structural Design Associates Retrofit designs for steel beam-to-column connections
CN108775083A (zh) * 2018-07-09 2018-11-09 东南大学 预制梁塑性铰区外连接的装配式混凝土框架结构及施工方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US514151A (en) * 1894-02-06 Anchor-plate for beams
US225060A (en) * 1880-03-02 Job johnson
USRE22905E (en) * 1947-08-12 Flexible welded structural
US1818418A (en) * 1928-02-04 1931-08-11 Mcclintic Marshall Corp Steel frame house construction
US2616529A (en) * 1945-10-05 1952-11-04 Angus Snead Macdonald Corp Building structure
US3290949A (en) * 1963-12-18 1966-12-13 Gen Precision Inc Flexural pivot
BE645908A (fr) * 1964-03-31 1964-07-16
US3367009A (en) * 1965-09-07 1968-02-06 Smith Corp A O Method of forming an elongated channel member
US3565210A (en) * 1968-12-03 1971-02-23 Aurora Equipment Co Grating structure
US3971179A (en) * 1969-08-13 1976-07-27 Andrew Bodocsi Non-bonded framing system
US3716957A (en) * 1970-10-23 1973-02-20 J Bernardi Column flange and stiffener plate construction
US3849961A (en) * 1973-03-26 1974-11-26 J Gwynne T-clip truss and rafter system of roof construction
SU619608A1 (ru) * 1977-02-07 1978-08-15 Казахское Отделение Ордена Трудового Красного Знамени Центрального Научно-Исследовательского И Проектного Института Строительных Металлоконструкций Узел соединени элементов сейсмостойкого каркаса здани
US4206521A (en) * 1978-09-29 1980-06-10 Davidson Dekkers H Bulkhead for swimming pools
US4282692A (en) * 1978-11-22 1981-08-11 Potthast Richard H Precast concrete building construction
DE3006010A1 (de) * 1980-02-18 1981-08-20 Oskar Dipl.-Ing. Dr.rer.nat. 8000 München Bschorr Daempfung von bauwerken
US4409765A (en) * 1980-06-24 1983-10-18 Pall Avtar S Earth-quake proof building construction
US4348843A (en) * 1980-08-04 1982-09-14 Cairns Neil S Mobile home support system
US4417426A (en) * 1981-03-23 1983-11-29 Quakebrace, Inc. Support system
SU998714A1 (ru) * 1981-10-19 1983-02-23 Казахское Отделение Ордена Трудового Красного Знамени Центрального Научно-Исследовательского И Проектного Института Строительных Металло-Конструкций "Цниипроектстальконструкция" Каркас сейсмостойкого сооружени
SU1278420A1 (ru) * 1984-12-20 1986-12-23 Государственный проектный институт "Сибпроектстальконструкция" Многопролетна неразрезна ферма
SU1328465A1 (ru) * 1985-12-03 1987-08-07 Государственный проектный институт "Ленпроектстальконструкция" Металлический св зевый каркас сейсмостойкого многоэтажного здани
US4766706A (en) * 1986-03-12 1988-08-30 Caspe Marc S Earthquake protection system for structures
US4838523A (en) * 1988-07-25 1989-06-13 Syro Steel Company Energy absorbing guard rail terminal
EP0356420A3 (fr) * 1988-08-24 1990-03-21 Klaus Dipl.-Ing. Dr. Riessberger Joint pour petits mouvements pivotants dans l'espace

Also Published As

Publication number Publication date
ES2029099T3 (es) 1992-07-16
LU87320A1 (fr) 1990-03-13
US5148642A (en) 1992-09-22
DE68900793D1 (de) 1992-03-12
ATE72288T1 (de) 1992-02-15
EP0355356A1 (fr) 1990-02-28
JPH0288833A (ja) 1990-03-29

Similar Documents

Publication Publication Date Title
EP0355356B1 (fr) Charpente métallique antisismique
EP0288350B1 (fr) Pont constitué d'un tablier et de moyens pour le supporter notamment pont haubané de grande portée, et son procédé de construction
FR2663666A1 (fr) Structure couverte en elements prefabriques.
EP0521771B1 (fr) Procédé pour élargir la portée d'une travée de pont
EP0985071A1 (fr) Ossature de batiment
JP2002004422A (ja) 柱脚部制震構造
EP1135565B1 (fr) Systemes structurels triangules en bois, tels que charpentes, ponts, planchers
WO2005028763A2 (fr) Poutre intermediaire a longue portee
JPH0311331B2 (fr)
EP0717149B1 (fr) Structure mixte bois-béton destinée notamment à la réalisation de tabliers d'ouvrages d'art
EP0104180B1 (fr) Poutrelles bois a patin
JPH06272304A (ja) 鉄筋コンクリート柱と鉄骨梁との接合部構造
EP0194949B1 (fr) Bâtiment collectif notamment pour magasin
FR2703375A1 (fr) Poteau garde-corps pour barrière de sécurité de route ou d'autoroute.
KR200294215Y1 (ko) 리브와 도그본 및 부분용접을 이용한 철골용보-기둥접합장치
EP1418283A1 (fr) Structure porteuse modulaire
JP2001049740A (ja) ラーメン構造
JP2942481B2 (ja) 耐力フレームを用いた建築物架構体の構造
WO2022223658A1 (fr) Panneau préfabriqué pour constituer un mur de bâtiment
Atlaoui Structural bracing systems
BE679651A (fr)
FR2515310A1 (fr) Poutre composite creuse
AU742458B2 (en) Portable temporary fencing
BE459881A (fr)
FR2564507A1 (fr) Montant pour poutre a ame evidee, poutres et ouvrages comportant de tels montants

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19900616

17Q First examination report despatched

Effective date: 19910522

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 72288

Country of ref document: AT

Date of ref document: 19920215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68900793

Country of ref document: DE

Date of ref document: 19920312

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2029099

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930610

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930615

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930621

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930625

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930713

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930714

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930715

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19930730

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930731

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940708

Ref country code: AT

Effective date: 19940708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940709

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19940709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940731

Ref country code: CH

Effective date: 19940731

Ref country code: BE

Effective date: 19940731

BERE Be: lapsed

Owner name: S.A. ARBED

Effective date: 19940731

EUG Se: european patent has lapsed

Ref document number: 89112515.5

Effective date: 19950210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940708

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950401

EUG Se: european patent has lapsed

Ref document number: 89112515.5

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050708