EP0351690A1 - Rotierender Spirallader für kompressible Medien - Google Patents

Rotierender Spirallader für kompressible Medien Download PDF

Info

Publication number
EP0351690A1
EP0351690A1 EP89112618A EP89112618A EP0351690A1 EP 0351690 A1 EP0351690 A1 EP 0351690A1 EP 89112618 A EP89112618 A EP 89112618A EP 89112618 A EP89112618 A EP 89112618A EP 0351690 A1 EP0351690 A1 EP 0351690A1
Authority
EP
European Patent Office
Prior art keywords
displacement
disc
disks
housing
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89112618A
Other languages
English (en)
French (fr)
Other versions
EP0351690B1 (de
Inventor
Frank Güttinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aginfor AG
Original Assignee
Aginfor AG fuer industrielle Forschung
Aginfor AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aginfor AG fuer industrielle Forschung, Aginfor AG filed Critical Aginfor AG fuer industrielle Forschung
Publication of EP0351690A1 publication Critical patent/EP0351690A1/de
Application granted granted Critical
Publication of EP0351690B1 publication Critical patent/EP0351690B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • F04C28/265Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels being obtained by displacing a lateral sealing face
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/023Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where both members are moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid

Definitions

  • the invention relates to a rotating spiral loader for compressible media, consisting essentially of a housing in which two symmetrically constructed displacement disks are rotatably arranged by means of drive elements. - for which purpose the displacement disks are loosely mounted on stub axles arranged in the housing, the longitudinal axes of which are offset from one another, in which loader the two displacement disks are each provided on one side with spirally extending ribs which interlock to form a conveying space and which seal with their free end faces against the opposite displacement disk, - And in order to maintain the sealing effect, a pressure chamber is provided which communicates with the outlet of the charger and via which an axially displaceable annular disc can be acted upon, which is in operative connection with an likewise axially displaceable displacement disc.
  • a spiral loader with rotating displacement disks is known from DE-C-2603462, Fig.5. It is characterized by an almost pulsation-free delivery of the gaseous working medium, which consists, for example, of air or an air-fuel mixture, and can therefore be used with advantage for charging purposes of internal combustion engines.
  • the gaseous working medium which consists, for example, of air or an air-fuel mixture
  • several, approximately sickle-shaped work spaces are enclosed along the conveying space between the spirally shaped ribs. These move from an inlet to an outlet, their volume constantly decreasing and the pressure of the working fluid being increased accordingly.
  • the delivery rate for a given delivery rate and the maximum boost pressure are determined by the drive ratio, especially since the internal pressure ratio is fixed by the selected spiral geometry.
  • the charger also conveys in those operating states in which charging is not necessary, for example at partial load or even at idle. This would result in a loss of performance and possibly unfavorable temperature increases if the conveyed equipment was relaxed and returned to the inlet of the loader.
  • a loader of the type mentioned is known from CH-A-501 838. It is the ge in Figs. 8 and 9 showed a variant around a two-speed, single-stage machine, in which the two movable displacement disks are loosely arranged on fixed eccentric axes. One of the axes is hollow in order to lead the work equipment to be conveyed out of the machine.
  • the displacement disks are provided with toothed rings on their circumference, in which a common gearwheel arranged on a drive shaft engages.
  • FIGS. 5 and 6 of this same document A further variant of this working principle is shown in FIGS. 5 and 6 of this same document.
  • one of the two discs is also connected to a central drive shaft. When this one disk is rotated, the second disk is taken along in the same direction of rotation by means of power transmission via the spiral ribs.
  • an axially movable annular disk which is firmly attached to the back of one of the disks is provided.
  • Via a pressure compensation chamber which is connected to the machine outlet and a disc spring, the ring disc presses the two displacement discs together.
  • the disadvantage of this arrangement is that the ring disk must be sealed against the housing, which can only be done on the outer circumference with a large diameter and thus high sliding speeds.
  • the invention has for its object to make a spiral charger of the type mentioned switchable, i.e. to at least largely prevent the promotion of the work equipment.
  • the object is achieved in that the pressure chamber can be connected to the atmosphere via a valve.
  • a drive shaft with an exchangeable toothed belt gear is arranged outside the displacement disks for rotating both displacement disks, belt pulleys being connected in a rotationally fixed manner to the hubs of the displacement disks. Due to this non-centric drive type, the interior of the displacement disks remains free and the pumped medium can flow freely through a hollow stub axle.
  • the two-speed, single-stage machine is shown in approximately natural size.
  • the direction of flow of the working fluid is indicated by arrows.
  • 1 denotes the housing composed of two halves.
  • the two halves are connected to one another via fastening eyes, not shown, for receiving screw connections.
  • Axle stub 2 or 2 are in the housing halves on both sides. 3 arranged, which protrude into the interior of the housing.
  • the longitudinal axes 4 respectively. 5 of the 2 stub axles are offset from each other by the eccentricity e.
  • the rotatable displacement disks 6 and 7 are placed loosely on this axle stub.
  • the hub 9 of the right displacement disk 7 is mounted on the axle stub 3 by means of two ball bearings 11 and is axially secured.
  • the left displacement disk 6 is designed to be axially displaceable.
  • the displacement discs 6 and 7 are constructed symmetrically. They consist essentially of a flat plate 13, which run parallel to each other in the assembled state and from Ribs 14 which are held vertically on the respective plate 13. These ribs 14 run in a spiral (FIG. 2), ie they can either be classic spirals or can be composed of a plurality of circular arcs adjoining one another
  • the ribs 14 have an arc length of one and a half turns, which the machine enters the name "one stage".
  • Each plate 13 is equipped with two such ribs 14, the ribs being offset from one another by 180 °. This leads to the designation "two-course”.
  • four parallel working spaces 15 are formed, which represent the actual conveying space. On the occasion of the operation, these working spaces open at a 1/4 turn against the outlet 16. At the outer diameter, the spirals open toward the inlet 17, from which they draw in fresh air.
  • the system is driven by a drive shaft 18 which is mounted outside the displacement disks in the housing 1 by means of ball bearings 19. On this shaft sit pulleys 20 which drive the pulleys 22 and 23 via toothed belts 21, which in turn with the hubs 8 and. 9 of the displacement disks are connected in a rotationally fixed manner.
  • a pressure chamber 26 is therefore formed between the axially displaceable displacement disk 6 and the housing wall, which is acted upon by the pressure of the working medium in the outlet 16.
  • the hollow stub shaft 2 is connected to the pressure chamber 26 via a removal tube 27.
  • the pressure in the chamber acts on an annular disk 28 which is attached to the housing 1 by means of bellows 29 in an airtight manner using suitable means.
  • the annular disk 28 slides with its hub 30 on the stub axle 2. In doing so, it displaces the inner cage of the axial bearing 12 the plates opposite each other.
  • the seal 31 is advantageously installed in a rotating manner, so that its lip seals against the standing ring disk hub on the smallest possible diameter.
  • a valve 32 is screwed into the housing wall to vent the pressure chamber 26. This can either be operated manually or it opens automatically via a motor-specific or loader-specific parameter. If the valve 32 opens, atmospheric pressure enters the pressure chamber 26 and pressure is equal on both sides of the annular disk 28. The internal pressure in the outlet 16 moves the displacement disk 6 with hub 8 / axial bearing 12 / annular disk 28 functional unit to the left. Since the sealing strips 25 are as a rule firmly inserted in the grooves of the end faces 24 (and are not spring-supported), the axial sealing effect is canceled at the slightest displacement, which interrupts the pressure build-up within the spirals and the conveying process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Supercharger (AREA)

Abstract

Ein rotierender Spirallader für kompressible Medien besteht im wesentlichen aus einem Gehäuse (1), in dem zwei symmetrisch aufgebaute Verdrängerscheiben (6,7) mittels Antriebselementen (18-23) drehbar angeordnet sind. Die beiden Verdrängerscheiben sind jeweils an einer Seite mit spiralförmig verlaufenden Rippen (14) versehen. Zwecks Bildung eines Förderraumes (15) greifen die Rippen ineinander ein und dichten mit ihren freien Stirnseiten (24) gegen die gegenüberliegende Verdrängerscheibe. Zur Aufrechterhaltung der Dichtwirkung ist eine Druckkammer (26) vorgesehen, die mit dem Auslass (16) des Laders kommuniziert und über die eine axial verschiebbare Ringscheibe (28) beaufschlagbar ist, welche in Wirkverbindung mit einer axial verschiebbar ausgebildeten Verdrängerscheibe (6) steht. Die Druckkammer (26) ist über ein Ventil (32) mit der Atmosphäre verbindbar.

Description

    Gebiet der Erfindung
  • Die Erfindung betrifft einen rotierenden Spirallader für kom­pressible Medien, im wesentlichen bestehend aus einem Gehäuse, in dem zwei symmetrisch aufgebaute Verdrängerscheiben mittels Antriebselementen drehbar angeordnet sind,
    - wozu die Verdrängerscheiben lose auf im Gehäuse angeordneten Achsstummeln aufgezogen sind, deren Längsachsen gegeneinander versetzt sind,
    - bei welchem Lader die beiden Verdrängerscheiben jeweils an einer Seite mit spiralförmig verlaufenden Rippen versehen sind, welche zwecks Bildung eines Förderraumes ineinandergreifen und mit ihren freien Stirnseiten gegen die gegenüberliegende Ver­drängerscheibe dichten,
    - und bei dem zwecks Aufrechterhaltung der Dichtwirkung eine Druckkammer vorgesehen ist, die mit dem Auslass des Laders kom­muniziert und über die eine axial verschiebbare Ringscheibe be­aufschlagbar ist, welche in Wirkverbindung mit einer ebenfalls axial verschiebbaren Verdrängerscheibe steht.
  • Stand der Technik
  • Ein Spirallader mit rotierenden Verdrängerscheiben ist aus der DE-C-2603462, Fig.5 bekannt. Er zeichnet sich durch eine nahezu pulsationsfreie Förderung des beispielsweise aus Luft oder einem Luft-Kraftstoff-Gemisch bestehenden gasförmigen Arbeits­mittels aus und kann daher mit Vorteil für Aufladezwecke von Brennkraftmaschinen verwendet werden. Während des Betriebes eines solchen Verdichters werden entlang des Förderrraumes zwischen den spiralförmig ausgebildeten Rippen mehrere, etwa sichelförmige Arbeitsräume eingeschlossen. Diese bewegen sich von einem Einlass hindurch zu einem Auslass, wobei sich ihr Volumen ständig verringert und der Druck des Arbeitsmittels dementsprechend erhöht wird. Bei diesen Spiralladern ist die Fördermenge bei gegebenem Liefergrad sowie der maximale Lade­druck durch die Antriebsübersetzung festgelegt, zumal das in­nere Druckverhältnis durch die gewählte Spiralgeometrie fest vorgegeben ist. Wenn eine starre Antriebsverbindung zwischen dem Spiralverdichter und der antreibenden Brennkraftmaschine vorgesehen ist, fördert also der Lader auch noch in solchen Be­triebszuständen, in denen eine Aufladung nicht erforderlich ist, beispielsweise bei Teillast oder sogar im Leerlauf. Es würden somit Leistungsverluste entstehen und möglicherweise ungünstige Temperaturerhöhungen, wenn das geförderte Arbeits­mittel entspannt und wieder in den Einlass des Laders zurück­geführt würde.
  • Im Gegensatz zum eingangs erwähnten Lader ist bei dieser be­kannten Maschine nur eine Verdrängerscheibe auf einem Achs­stummel gelagert. Die zweite Scheibe ist drehfest mit einer Antriebswelle verbunden. Anlässlich der Drehung der ersten Scheibe wird die zweite Scheibe im gleichen Drehsinn und mit der gleichen Drehgeschwindigkeit mitgenommen. Beide Scheiben führen dabei eine Relativbewegung in Form einer Kreisverschie­bung aus.
  • Ein Lader der eingangs genannten Art ist bekannt aus der CH-A-­501 838. Es handelt sich dort bei der in den Fig.8 und 9 ge­ zeigten Variante um eine zweigängige, einstufige Maschine, bei der die beiden beweglichen Verdrängerscheiben lose auf fest­stehenden exzentrischen Achsen angeordnet sind. Eine der Achsen ist hohl ausgebildet zwecks Herausführung des zu fördernden Arbeitsmittels aus der Maschine. An ihrem Umfang sind die Ver­drängerscheiben mit Zahnkränzen versehen, in welche ein ge­meinsames, auf einer Antriebswelle angeordnetes Zahnrad ein­greift.
  • Diese mehrgängigen Maschinen weisen den Vorteil auf, dass zum einen jede Verdrängerscheibe für sich vollkommen ausgewuchtet ist und zum andern, dass ein gleichmässigeres, nahezu pulsati­onsfreies Fördern möglich ist. Ausserdem ist die radiale Ver­schiebung der beiden Scheiben und damit die Exzentrizität zwi­schen den beiden Drehachsen kleiner als bei eingängigen Ma­schinen, was zu kleineren Gleitgeschwindigkeiten zwischen den spiralförmigen Rippen führt. Im Prinzip können deshalb mit dieser Art von Ladern höhere Drehzahlen gefahren werden.
  • Eine weitere Variante dieses Arbeitsprinzips ist in den Fig.5 und 6 dieser gleichen Druckschrift gezeigt. Bei dieser Maschine ist ebenfalls eine der beiden Scheiben mit einer zentralen Antriebswelle verbunden. Bei Drehung dieser einen Scheibe wird mittels Kraftübertragung über die spiralförmige Rippen die zweite Scheibe im gleichen Drehsinn mitgenommen. Um den axialen Druck in den zwischen den Scheiben gebildeten Arbeitsräumen auszugleichen, ist eine an der Rückseite einer der Scheiben fest anliegende, axial bewegliche Ringscheibe vorgesehen. Ueber eine Druckausgleichkammer, welche mit dem Maschinenauslass verbunden ist und eine Scheibenfeder drückt die Ringscheibe die beiden Verdrängerscheiben zusammen. Von Nachteil ist bei dieser Anordnung, dass die Ringscheibe gegen das Gehäuse abgedichtet werden muss, was nur am äussern Umfang bei grossem Durchmesser und somit hohen Gleitgeschwindigkeiten vorgenommen werden kann. Zudem ist nicht vorgesehen, diese Druckausgleichkammer, die sich zwischen Ringscheibe und Gehäuse befindet, zu entlasten. Diese Massnahme wäre überdies zwecklos, da über die Scheibenfe­der eine stetige Anpresskraft ausgeübt wird.
  • Darstellung der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, einen Spirallader der eingangs genannten Art abschaltbar zu gestalten, d.h die Förde­rung des Arbeitsmittels zumindest weitgehend zu unterbinden.
  • Erfindungsgemäss wird die Aufgabe dadurch gelöst, dass die Druckkammer über ein Ventil mit der Atmosphäre verbindbar ist.
  • Damit ist ein einfaches Mittel geschaffen, über eine Betriebs­grösse oder über eine Prozessgrösse die Druckkammer zu entla­sten, wodurch der Axialdruck die Dichtwirkung innerhalb des Förderraumes aufhebt und der Fördervorgang zum Erliegen kommt.
  • Es ist besonders zweckmässig, wenn im Innenraum des Gehäuses die Ringscheibe an ihrem Aussendurchmesser mit einem Balg gegen das Gehäuse dichtet und wenn der Einlass vom Auslass durch eine Lippendichtung getrennt ist, die von der feststehenden Nabe der Ringscheibe gegen die rotierende Nabe der axial beweglichen Verdrängerscheibe wirkt. Hierbei ist von Vorteil, dass grosse Gleitgeschwindigkeiten an der radialen Dichtlippe erreichbar sind, da letztere sich auf dem kleinstmöglichen Durchmesser befindet.
  • Zum Drehen beider Verdrängerscheiben ist eine Antriebswelle mit auswechselbarem Zahnriemengetriebe ausserhalb der Verdrän­gerscheiben angeordnet, wobei Riemenscheiben mit den Naben der Verdrängerscheiben drehfest verbunden sind. Durch diese nicht­zentrische Antriebsart bleibt der Innenraum der Verdränger­scheiben frei und das geförderte Medium kann ungehindert über einen hohlen Achsstummel ausströmen.
  • Kurze Beschreibung der Zeichnung
  • In der Zeichnung ist ein Ausführungsbeispiel der Erfindung schematisch dargestellt.
    Es zeigen:
    • Fig.1 einen Längsschnitt durch einen Spirallader;
    • Fig.2 einen Querschnitt gemäss Linie A-A in Fig. 1.
  • Die zweigängige, einstufige Maschine ist in etwa natürlicher Grösse dargestellt. Die Strömungsrichtung des Arbeitsmittels ist mit Pfeilen bezeichnet.
  • Weg zur Ausführung der Erfindung
  • Zwecks Erläuterung der Funktionsweise des Verdichters, welche nicht Gegenstand der Erfindung ist, wird auf die bereits ge­nannte CH-A-501 838 verwiesen. Nachstehend wird nur der für das Verständnis der Erfindung notwendige Maschinenaufbau und Prozessablauf kurz beschrieben.
  • In den Figuren ist mit 1 das aus zwei Hälften zusammengesetzte Gehäuse bezeichnet. Die zwei Hälften sind über nicht darge­stellte Befestigungsaugen zur Aufnahme von Verschraubungen miteinander verbunden. Beidseitig sind in den Gehäusehälften Achsstummel 2 resp. 3 angeordnet, die in das Gehäuseinnere hineinragen. Die Längsachsen 4 resp. 5 der 2 Achsstummel sind um die Exzentrizität e gegeneinander versetzt. Lose aufgesetzt auf diese Achsstummel sind die drehbaren Verdrängerscheiben 6 und 7. Die Nabe 9 der rechten Verdrängerscheibe 7 ist mittels zwei Kugellagern 11 auf dem Achsstummel 3 gelagert und axial gesichert. Die linke Verdrängerscheibe 6 ist axial verschiebbar ausgebildet. Hierzu ist ihre Nabe 8 über zwei als Traglager wirkende Nadellager 10 auf dem Achsstummel 2 lose aufgezogen. Im Bereich dieser Nadellager ist der Achsstummel 2 geschliffen, da er Lauffläche für die Nadeln bildet. Diese Konfiguration bedarf eines zusätzlichen Axiallagers 12, über das Kräfte auf die Nabe 8 übertragen werden können.
  • Die Verdrängerscheiben 6 und 7 sind symmetrisch aufgebaut. Sie bestehen im wesentlichen aus je einer ebenen Platte 13, die im montierten Zustand parallel zueinander verlaufen sowie aus Rippen 14, die senkrecht auf der jeweiligen Platte 13 gehalten sind. Diese Rippen 14 verlaufen spiralförmig (Fig.2), d.h. sie können entweder klassische Spiralen sein oder aber aus mehreren aneinander anschliessenden Kreisbögen zusammengesetzt sein
  • Im gezeigten Fall weisen die Rippen 14 eine Bogenlänge von anderthalb Windungen auf, was der Maschine die Bezeichnung "einstufig" einträgt. Jede Platte 13 ist mit zwei solcher Rip­pen 14 bestückt, wobei die Rippen um 180° zueinander versetzt sind. Dies führt zur Bezeichnung "zweigängig". Bei solchen zweigängigen Maschinen sind vier parallele Arbeitsräume 15 ge­bildet, die den eigentlichen Förderraum darstellen. Anlässlich des Betriebes öffnen sich diese Arbeitsräume im Abstand von 1/4-Umdrehung gegen den Auslass 16. Am äusseren Durchmesser öffnen die Spiralen gegen den Einlass 17, aus dem sie Frisch­luft ansaugen.
  • Der Antrieb des Systems erfolgt über eine Antriebswelle 18, die mittels Kugellagern 19 im Gehäuse 1 ausserhalb der Verdränger­scheiben gelagert ist. Auf dieser Welle sitzen Riemenscheiben 20, die über Zahnriemen 21 jeweils die Riemenscheiben 22 und 23 antreiben, welche ihrerseits mit den Naben 8 resp. 9 der Ver­drängerscheiben drehfest verbunden sind.
  • Anlässlich der Drehbewegung öffnen die Spiralen gegen den Einlass 17, aus dem sie Frischluft ansaugen. Infolge der mehr­fachen, abwechselnden, gegenseitigen Annäherung der Rippen 14 ergeben sich die sichelförmigen Arbeitsräume 15, die durch die Spiralen hindurch vom Einlass 17 in Richtung Auslass 16 ver­schoben werden. Das derart geförderte Arbeitsmittel wird an­schliessend durch den hohl ausgebildeten Achsstummel 2 aus dem Lader herausgeführt.
  • Es versteht sich, dass für eine ordentliche Funktionsweise nicht nur die radiale Dichtung zwischen den Rippen 14 - d.h. das Abschliessen der Arbeitsräume 15 in Umfangsrichtung - wich­tig ist. Auch die axiale Dichtigkeit der Förderräume 15 ist von Bedeutung. Hierzu müssen die Rippen 14 mit ihren Stirnseiten 24 an der Platte 13 der gegenüberliegenden Verdrängerscheibe an­liegen. Dies geschieht in der Regel durch Dichtstreifen 25, welche in entsprechenden Nuten in den Stirnseiten 24 der Rippen einliegen. Da der gegen das Spiraleninnere zunehmende Druck die Tendenz hat, die beiden Verdrängerscheiben aus­einanderzudrücken, müssen Gegenmassnahmen getroffen werden.
  • Zwischen der axial verschiebbaren Verdrängerscheibe 6 und der Gehäusewandung wird deshalb eine Druckkammer 26 gebildet, die vom Druck des Arbeitsmittels im Auslass 16 beaufschlagt ist. Hierzu ist der hohle Achsstummel 2 über ein Entnahmerohr 27 mit der Druckkammer 26 verbunden. Der Druck in der Kammer wirkt auf eine Ringscheibe 28, die mittels Balg 29 am Gehäuse 1 mit ge­eigneten Mitteln luftdicht befestigt ist.
  • Anlässlich einer druckbedingten axialen Verschiebung gleitet die Ringscheibe 28 mit ihrer Nabe 30 auf dem Achsstummel 2. Dabei verschiebt sie den anliegenden inneren Käfig des Axial­lagers 12. Ueber die Kugeln dieses Lagers 12 wird die ver­schiebbare Nabe 8 der Verdrängerscheibe 6 bis zum Anschlag der Rippen 14 an den jeweils gegenüberliegenden Platten mitgenom­men.
  • Auf die den Verdrängerscheiben zugekehrte Rückseite der Ring­scheibe 28 wirkt jener Druck, der im Einlass 17 herrscht, d.h. der Atmosphärendruck. Es ist somit zu erkennen, dass man über die blosse Dimensionierung der aktiven Ringscheibenfläche ein einfaches Mittel in der Hand hat, um die Anpresskraft der Rip­pen gegen die Platten zu bestimmen. Allerdings muss hierzu der Einlass vom Auslass druckmässig getrennt werden, da beide über die Lager 10 und 12 kommunizieren. Dies wird über eine Lippen­dichtung 31 bewerkstelligt, die zwischen der feststehenden Nabe 30 der Ringscheibe 28 und der rotierenden Nabe 6 der Verdrän­gerscheibe 6 wirkt. Mit Vorteil ist die Dichtung 31 rotierend eingebaut, so dass ihre Lippe auf dem kleinstmöglichen Durch­messer gegen die stehende Ringscheibennabe dichtet.
  • Zur Entlüftung der Druckkammer 26 ist in die Gehäusewandung ein Ventil 32 eingeschraubt. Dieses kann entweder manuell betätigt werden, oder aber es öffnet uns schliesst selbsttätig über eine motorspezifische oder laderspezifische Kenngrösse. Oeffnet das Ventil 32, so gelangt Atmosphärendruck in die Druckkammer 26 und auf beiden Seiten der Ringscheibe 28 herrscht Druckgleich­heit. Der Innendruck im Auslass 16 verschiebt die Funktionsein­heit Verdrängerscheibe 6 mit Nabe 8 / Axiallager 12 / Ring­scheibe 28 nach links. Da die Dichtstreifen 25 in der Regel fest in den Nuten der Stirnseiten 24 eingelegt sind (und nicht federunterstützt sind), wird bei der geringsten Verschiebung die axiale Dichtwirkung aufgehoben, was den Druckaufbau inner­halb der Spiralen und den Fördervorgang unterbricht.
  • Bezugszeichenliste
    • 1 Gehäuse
    • 2, 3 Achsstummel
    • 4, 5 Längsachsen
    • 6, 7 Verdrängerscheibe
    • 8, 9 Nabe
    • 10 Nadellager
    • 11 Kugellager
    • 12 Axiallager
    • 13 Platte der Verdrängerscheibe
    • 14 Rippe der Verdrängerscheibe
    • 15 Arbeitsraum, Förderraum
    • 16 Auslass
    • 17 Einlass
    • 18 Antriebswelle
    • 19 Kugellager für 18
    • 20 Riemenscheibe
    • 21 Zahnriemen
    • 22, 23 Riemenscheibe auf 8, 9
    • 24 Stirnseite von 14
    • 25 Dichtstreifen in 24
    • 26 Druckkammer
    • 27 Entnahmerohr
    • 28 Ringscheibe
    • 29 Balg
    • 30 Nabe von 28
    • 31 Lippendichtung
    • 32 Ventil

Claims (3)

1. Rotierender Spirallader für kompressible Medien, im wesentlichen bestehend aus einem Gehäuse (I), in dem zwei symmetrisch aufgebaute Verdrängerscheiben (6,7) mittels An­triebselementen (18-23) drehbar angeordnet sind,
- wozu die Verdrängerscheiben (6,7) lose auf im Gehäuse angeordneten Achsstummeln (2,3) aufgezogen sind, deren Längs­achsen (4,5) gegeneinander versetzt sind,
- bei welchem Lader die beiden Verdrängerscheiben jeweils an einer Seite mit spiralförmig verlaufenden Rippen (14) versehen sind, welche zwecks Bildung eines Förderraumes (15) ineinander­greifen und mit ihren freien Stirnseiten (24) gegen die gegen­überliegende Verdrängerscheibe dichten,
- und bei dem zwecks Aufrechterhaltung der Dichtwirkung eine Druckkammer (26) vorgesehen ist, die mit dem Auslass (16) des Laders kommuniziert und über die eine axial verschiebbare Ring­scheibe (28) beaufschlagbar ist, welche in Wirkverbindung mit einer ebenfalls axial verschiebbaren Verdrängerscheibe (6) steht,
dadurch gekennzeichnet, dass die Druckkammer (26) über ein Ventil (32) mit der Atmosphäre verbindbar ist.
2. Spirallader nach Anspruch 1, dadurch gekennzeichnet, dass im Innenraum des Gehäuses die Ringscheibe (28) an ihrem Aussendurchmesser mit einem Balg (29) gegen das Gehäuse (1) dichtet und dass der Einlass (17) vom Auslass (16) durch eine Lippendichtung (31) getrennt ist, die von der feststehenden Nabe (30) der Ringscheibe (28) gegen die rotierende Nabe (8) der axial beweglichen Verdrängerscheibe (6) wirkt.
3. Spirallader nach Anspruch 1, dadurch gekennzeichnet, dass zum Drehen beider Verdrängerscheiben eine Antriebswelle (18) mit auswechselbarem Zahnriemengetriebe (20-23) ausserhalb der Verdrängerscheiben angeordnet ist, wobei Riemenscheiben (22,23) mit den Naben (8,9) der Verdrängerscheiben drehfest verbunden sind.
EP89112618A 1988-07-20 1989-07-11 Rotierender Spirallader für kompressible Medien Expired - Lifetime EP0351690B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2786/88 1988-07-20
CH2786/88A CH675896A5 (de) 1988-07-20 1988-07-20

Publications (2)

Publication Number Publication Date
EP0351690A1 true EP0351690A1 (de) 1990-01-24
EP0351690B1 EP0351690B1 (de) 1991-09-25

Family

ID=4241564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89112618A Expired - Lifetime EP0351690B1 (de) 1988-07-20 1989-07-11 Rotierender Spirallader für kompressible Medien

Country Status (5)

Country Link
US (1) US4990072A (de)
EP (1) EP0351690B1 (de)
JP (1) JP2740274B2 (de)
CH (1) CH675896A5 (de)
DE (1) DE58900320D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747597A3 (de) * 1995-06-07 1999-01-20 Copeland Corporation Verdrängungsregelbare Spiralmaschine

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342186A (en) * 1993-06-02 1994-08-30 General Motors Corporation Axial actuator for unloading an orbital scroll type fluid material handling machine
US5616015A (en) * 1995-06-07 1997-04-01 Varian Associates, Inc. High displacement rate, scroll-type, fluid handling apparatus
US6106247A (en) * 1998-03-18 2000-08-22 Haldex Brake Corporation Scroll-type fluid displacement apparatus including an eccentric crank mechanism having an elongated shaft
GB2401398A (en) * 2003-05-08 2004-11-10 Automotive Motion Tech Ltd Pump with output through central bore in journal bearing
US10865793B2 (en) 2016-12-06 2020-12-15 Air Squared, Inc. Scroll type device having liquid cooling through idler shafts
JP2018119522A (ja) * 2017-01-27 2018-08-02 三菱重工オートモーティブサーマルシステムズ株式会社 スクロール型圧縮機
WO2019212598A1 (en) 2018-05-04 2019-11-07 Air Squared, Inc. Liquid cooling of fixed and orbiting scroll compressor, expander or vacuum pump
US20200025199A1 (en) 2018-07-17 2020-01-23 Air Squared, Inc. Dual drive co-rotating spinning scroll compressor or expander
US11530703B2 (en) 2018-07-18 2022-12-20 Air Squared, Inc. Orbiting scroll device lubrication
US11473572B2 (en) 2019-06-25 2022-10-18 Air Squared, Inc. Aftercooler for cooling compressed working fluid
US11898557B2 (en) 2020-11-30 2024-02-13 Air Squared, Inc. Liquid cooling of a scroll type compressor with liquid supply through the crankshaft
US11885328B2 (en) 2021-07-19 2024-01-30 Air Squared, Inc. Scroll device with an integrated cooling loop

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1031667A (en) * 1962-04-05 1966-06-02 Cessna Aircraft Co Hydraulic motor system with delayed pressure loading
CH501838A (de) * 1968-07-22 1971-01-15 Leybold Heraeus Verwaltung Verdrängerpumpe
US4178143A (en) * 1978-03-30 1979-12-11 The United States Of America As Represented By The Secretary Of The Navy Relative orbiting motion by synchronoously rotating scroll impellers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2475247A (en) * 1944-05-22 1949-07-05 Mikulasek John Planetary piston fluid displacement mechanism
JPS60247082A (ja) * 1984-05-19 1985-12-06 Tokico Ltd スクロ−ル式圧縮機
JPS618488A (ja) * 1984-06-20 1986-01-16 Tokico Ltd スクロ−ル式流体機械
US4610610A (en) * 1984-08-16 1986-09-09 Sundstrand Corporation Unloading of scroll compressors
JPS63173870A (ja) * 1987-01-09 1988-07-18 Kashiyama Kogyo Kk 全系回転スクロ−ル流体機械

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1031667A (en) * 1962-04-05 1966-06-02 Cessna Aircraft Co Hydraulic motor system with delayed pressure loading
CH501838A (de) * 1968-07-22 1971-01-15 Leybold Heraeus Verwaltung Verdrängerpumpe
US4178143A (en) * 1978-03-30 1979-12-11 The United States Of America As Represented By The Secretary Of The Navy Relative orbiting motion by synchronoously rotating scroll impellers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747597A3 (de) * 1995-06-07 1999-01-20 Copeland Corporation Verdrängungsregelbare Spiralmaschine
USRE40400E1 (en) 1995-06-07 2008-06-24 Emerson Climate Technologies, Inc. Capacity modulated scroll machine
USRE40554E1 (en) 1995-06-07 2008-10-28 Emerson Climate Technologies, Inc. Capacity modulated scroll machine having one or more pin members movably disposed for restricting the radius of the orbiting scroll member

Also Published As

Publication number Publication date
CH675896A5 (de) 1990-11-15
US4990072A (en) 1991-02-05
JPH0267487A (ja) 1990-03-07
DE58900320D1 (de) 1991-10-31
JP2740274B2 (ja) 1998-04-15
EP0351690B1 (de) 1991-09-25

Similar Documents

Publication Publication Date Title
EP0351690B1 (de) Rotierender Spirallader für kompressible Medien
DE2801206A1 (de) Spiralartige einrichtung mit einem festen gekroepften kurbelantriebsmechanismus
EP0354342A1 (de) Verdrängermaschine nach dem Spiralprinzip
EP0392975A1 (de) Rotierender Spirallader für kompressible Medien
EP0579888A1 (de) Rotierende Spiralpumpe
DE19509913A1 (de) Umlaufkolbenmaschine
EP0063240B1 (de) Rotationskolbenmaschine
EP0394651A1 (de) Druckluftlamellenmotor
EP1088153B1 (de) Verdrängermaschine nach dem spiralprinzip
EP1527256A1 (de) Drehkolbenmaschinen mit verschiebbarem innengeh use
EP0547470B1 (de) Verdrängermaschine nach dem Spiralprinzip
DE1653921C3 (de) Rotationskolbenpumpe
EP0899424B1 (de) Spiralverdrängermaschine für kompressible Medien
EP0557598A1 (de) Verdrängermaschine nach dem Spiralprinzip
DE2622145A1 (de) Als pumpe oder motor arbeitende maschine
DE3727281C2 (de)
DE2555595C2 (de) Flügelzellenpumpe
DE2830349C2 (de) Schrägachsige Rotationskolbenmaschine
DE102008047516B4 (de) Pumpe
DE2913608A1 (de) Verdraengermaschine
DE890116C (de) Umlauftrommel-Verdichtermaschine
DE3117412A1 (de) Druckluftbetriebener antriebsmotor fuer druckluftwerkzeuge, z.b. schleifer
DE657213C (de) Zweistufiger Exzenterdrehkolbenverdichter
DE2102694B2 (de) Rotationskolbenmaschine
EP0545191A1 (de) Verdrängermaschine nach dem Spiralprinzip

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19900521

17Q First examination report despatched

Effective date: 19910121

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

ET Fr: translation filed
REF Corresponds to:

Ref document number: 58900320

Country of ref document: DE

Date of ref document: 19911031

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89112618.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000614

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000616

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000626

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000629

Year of fee payment: 12

Ref country code: DE

Payment date: 20000629

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

EUG Se: european patent has lapsed

Ref document number: 89112618.7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010711

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050711