EP0349387A1 - Tube radiogène à cathode plane et à chauffage indirect - Google Patents

Tube radiogène à cathode plane et à chauffage indirect Download PDF

Info

Publication number
EP0349387A1
EP0349387A1 EP89401761A EP89401761A EP0349387A1 EP 0349387 A1 EP0349387 A1 EP 0349387A1 EP 89401761 A EP89401761 A EP 89401761A EP 89401761 A EP89401761 A EP 89401761A EP 0349387 A1 EP0349387 A1 EP 0349387A1
Authority
EP
European Patent Office
Prior art keywords
cathode
tube according
anode
plane
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89401761A
Other languages
German (de)
English (en)
Other versions
EP0349387B1 (fr
Inventor
Sixte De Fraguier
Gilles Lemestreallan
François Caire
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric CGR SA
Original Assignee
General Electric CGR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric CGR SA filed Critical General Electric CGR SA
Publication of EP0349387A1 publication Critical patent/EP0349387A1/fr
Application granted granted Critical
Publication of EP0349387B1 publication Critical patent/EP0349387B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/064Details of the emitter, e.g. material or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/066Details of electron optical components, e.g. cathode cups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • H01J35/147Spot size control

Definitions

  • the present invention relates to an X-ray tube which can be used in particular in the medical field.
  • the main characteristics of these tubes are their resistance to the drift of their emission characteristics as a function of their temperature as well as the homogeneity and the X-ray illumination produced by all the points of their focus.
  • the invention aims to improve such tubes by avoiding their possible destruction under the effect of excessive heating of their anode or their cathode.
  • X-rays are produced by electron bombardment, in a vacuum enclosure, of a target made from a material with a high atomic number.
  • the electrons necessary for the bombardment of this target are released by thermoelectronic effect, generally in a helical filament of tungsten, from a cathode placed precisely within a room of concentration.
  • the concentration piece plays a focusing role at the same time as a Wehnelt role.
  • the target constitutes an anode of the tube.
  • the initial velocities of the electrons at the level of the emitter are very dispersed. Their trajectory therefore has a disordered structure and the focusing system is responsible for correcting them.
  • the focusing system is generally not efficient enough. Consequently, instead of the impact of the bombardment electrons on the target, we obtain a rather complicated tangle of trajectories. This gives the X-ray thermal focus a rather unfavorable energy profile with a good image quality.
  • the transmitter consists of a beam.
  • this beam is hollow, and possibly of substantially rectangular section.
  • the rigidity of a beam being much greater than the rigidity of a ribbon.
  • the beam is hollow. For a given heating power this reduces the ignition time of the tube.
  • the hollow beam is even traversed right through by a heating helical filament: the beam is heated by indirect heating. This indirect heating may even be focused only on predetermined parts of the beam, in particular the face of the beam opposite the anode. This further limits the heating power.
  • the subject of the invention is therefore an X-ray tube provided with a cathode and an anode, facing the cathode, for emitting X-radiation, the cathode being a planar cathode, characterized in that this cathode comprises a beam.
  • a cathode 1 has the appearance of a beam shown in perspective in Figure 1.
  • This beam is prismatic, hollow, and has substantially the appearance of a house.
  • the base of the house constitutes an emissive face 7 of the cathode, the walls of the house such as the wall 23 have windows such as 24.
  • the advantage of manufacturing a hollow beam lies in the reduction of the quantity of metal to heat. If this quantity is lower, the thermal inertia of the cathode will be less, the starting of the tube could be faster. Furthermore, the consumption of the cathode heating supply can be reduced, which is an advantage when we know the insulation problems which must be faced with the heating circuits of such cathodes.
  • this cathode could be envisaged by passing an electric current directly through it, it is preferred to use a heating filament 25 for example of the same type as the filaments used in the prior art as a transmitter.
  • This heated filament is brought to a negative high voltage (several thousand volts) relative to the cathode.
  • the beam cathode is made of tungsten.
  • the ceiling 26 and the interior of the walls thereof are provided with a mattress 27 of insulating fibers to concentrate the heating on the emissive part of the cathode. .
  • the fibers are ceramic fibers which allow good insulation of the internal walls of the house.
  • This bombardment is limited to the front wall 33.
  • this front wall has a concave profile 33.
  • this concave profile is even so concave that the wings respectively 29 and 30 of this cathode have internal faces, respectively 31 and 32, closer to the filament 25 than is the internal face of the cathode at the place 33 from its middle. In this way the wings which are both thicker and which would be harder to heat are however more heated.
  • the base 7 of the beam is brought at all points to a substantially constant temperature, it emits with a substantially constant flow the expected electron radiation.
  • the beam according to the invention now has the advantage that its emissive face 7 no longer distorts under the effects of heating, it nevertheless undergoes expansions which should be guided without upsetting them.
  • the cathode is fixed by a lug 34 constituting in a way the chimney of the house.
  • the method of attachment is preferably obtained by blocking this tab 34 between two screws 35 and 36 which come to grip it between them respectively.
  • This mounting at a fixing point has the advantage of leaving the cathode all the desired degrees of freedom. It is in particular preferable to a method of fixing with two points which would have the drawback that the reactions between these two points would inevitably have repercussions on the flatness of the emissive surface 7.
  • the walls of this cathode are held in a focal room 8 by ceramic pieces such as 37 and 38 which come to rest on either side on it. This makes it possible to avoid any phenomenon of bending or vibration harmful to an exact positioning of the transmitter in the focusing part.
  • the pins allow the transmitter to thermally expand along its greatest length while keeping it laterally in its reference position.
  • the electrical supply of the cathode can be obtained by passing the high voltage through the screws 35 or 36.
  • FIG. 3 schematically shows an X-ray tube provided with a cathode-beam 1 according to the invention.
  • This X-ray tube comprises, in an empty enclosure, not shown, the cathode 1 located opposite an anode 2.
  • the anode receives electronic radiation 3 on its focus 4 and re-emits X-ray radiation 5 in particular in the direction of a usage window 6.
  • the usage window is part of the tube casing.
  • the cathode has the particularity of opposing a planar face 7 opposite the anode 2. It also has the particularity of being inserted into a focusing optic 8 known as on.
  • This walking focusing optic is to create a distribution of the electric field between the anode and the cathode such that the radiation 3 of the electrons is of the convergent type.
  • the focusing device 8 can also being a single step, we found here more advantageous to make it double step.
  • the focusing piece 8 has a straight prismatic shape of which FIG. 3 represents the plane of straight section.
  • the part 8 comprises the two steps, respectively 9 and 10 distributed symmetrically in 9 ′ and 10 ′ on either side of the cathode 1.
  • Each step has a step 91 or 101 and a riser 92 or 102. (respectively 91 ′ 92 ′ 101 ′ 102 ′).
  • the plane 7 of the cathode 1 is distant from the anode 2 by a distance of approximately 7.5 mm.
  • the tops 91 and 91 ′ of steps 9 and 9 ′ are spaced from the anode by about 7mm.
  • the tops 101 and 101 ′ are spaced about 6 mm from the plane of the anode 2.
  • the width of the cathode 1, measured in the plane of cross section of the focal prismatic part 8, is equal to 2 mm.
  • the width of a housing 11 where this cathode is placed inside the focal piece 8 is 2.2 mm.
  • the distance between risers 92 and 92 ′ is 4 mm while the distance between risers 101 and 102 ′ is 5 mm.
  • the device has a symmetrical appearance with respect to a plane passing through the axis 12 of the radiation, perpendicular to the plane of the figure.
  • the assembly may be circular, the axis 12 serving as an axis of revolution for the cathode as well as for the focusing part. It is possible that the anode 2 is a rotating type anode and even that it has an inclined face on the axis 12. In this case the distances indicated are rather the distances measured on this axis 12 between the plane 7 of the cathode and the trace of the axis 12 on the anode 2.
  • the thermal flux FT ( Figure 4) is then substantially constant, for a given high operating voltage, as a function of the load of the tube D.
  • the diagram of FIG. 4 presents three curves respectively 13 to 15 parameterized by high voltages respectively of 20 KV, 40 KV or 50 KV, displaying in a range of use situated between 150 Milliamperes and 500 milliamperes, a substantially flat appearance.
  • the heat flux is expressed in KW per mm2. In the example shown, it is always less than 50 KW per mm2 even for the highest operating high voltage.
  • the significance of the flat appearance of this heat flux as a function of the load simply means that the dimension 16 of the thermal focus evolves linearly with the load.
  • the increase in the dose rate causes the displacement towards the anode 2 of the point of convergence.
  • the spacing 17 18 of the lateral rays of the X-ray beam before the point of convergence conversely causes the dimension 16 of the focal point to shrink. It has been discovered that this narrowing, which could be disastrous, is in fact limited by a phenomenon of saturation of the emission of the electrons torn from the upper face 7 of the cathode 1.

Landscapes

  • X-Ray Techniques (AREA)

Abstract

On résout les problèmes de tenue en température des cathodes en réalisant des cathodes planes en forme de poutre creuse. Ceci leur assure une rigidité inhérente à la forme en poutre, sans leur conférer par ailleurs les inconvénients d'une trop grande inertie thermique.

Description

  • La présente invention a pour objet un tube à rayons X notamment utilisable dans le domaine médical. Les principales caractéristiques de ces tubes sont leur résistance à la dérive de leurs caractéristiques d'émission en fonction de leur température ainsi que l'homogénéité et l'illumination X produite par tous les points de leur foyer. L'invention vise à perfectionner de tels tubes en évitant leur éventuelle destruction sous l'effet d'un échauffement trop important de leur anode ou de leur cathode.
  • D'une façon générale des rayons X sont produits par le bombardement électronique, dans une enceinte à vide, d'une cible élaborée dans un matériau à haut numéro atomique. Les électrons nécessaires au bombardement de cette cible sont libérés par effet thermo-électronique, généralement dans un filament hélicoïdal de tungstène, d'une cathode placée avec précision au sein d'une pièce de concentration. La pièce de concentration joue un rôle focalisateur en même temps qu'un rôle de Wehnelt. La cible constitue une anode du tube. Dans ce type de configuration très classique, les vitesses initiales des électrons au niveau de l'émetteur sont très dispersées. Leur trajectoire présente donc une structure désordonnée et le système de focalisation est chargé de les rectifier. Le système de focalisation n'est généralement pas suffisamment performant. En conséquence au lieu de l'impact des électrons de bombardement sur la cible, on obtient un enchevêtrement assez compliqué des trajectoires. Ceci confère au foyer thermique des rayons X un profil énergétique assez peu favorable avec une bonne qualité d'image.
  • Dans des développements récents, par exemple dans ceux décrits dans la demande de brevet européen n° 85 106753.8 déposée le 31 mai 1985, on fait référence à une cathode qui n'est plus constituée par un filament mais qui est maintenant constituée par une portion d'un ruban présentant à l'émission des électrons une surface plane en face de l'anode. L'intérêt d'utiliser un émetteur d'électrons plan a déjà été présenté antérieurement à cette demande. Il consiste à maintenir une certaine cohésion des charges électroniques au cours de leur trajectoire vers la cible. En effet, l'expérience a montré qu'on obtient dans ce cas une répartition de potentiel électrostatique favorable à une meilleure focalisation des charges électriques. Le foyer X ainsi obtenu présente alors un profil énergétique pratiquement homogène, ce qui est bénéfique à la qualité de l'image. La littérature scientifique relate certaines expérimentations basées sur ce principe général. On y fait toujours usage d'émetteur élaboré sous la forme de ruban de tungstène, lesquels présentent cependant systématiquement des problèmes de tenue thermomécanique. C'est d'ailleurs pour résoudre de tels problèmes que la demande de brevet européen ci-dessus évoquée a été déposée. En particulier, malgré tous les soins portés au laminage des rubans, des phénomènes de contraintes différentielles se produisent dans ceux-ci et ils prennent du fait des échauffements et des refroidissements successifs dans le tube une allure dite en tôle ondulée. Les avantages de disposer d'un émetteur plan sont alors perdus.
  • La présente invention a pour objet de remédier à cet inconvénient en proposant un dispositif émetteur plan offrant une rigidité mécanique permettant de s'affranchir des problèmes de tôle ondulée évoqués ci-dessus. En simplifiant, l'émetteur est constitué par une poutre. De préférence cette poutre est creuse, et éventuellement de section sensiblement rectangulaire. On bénéficie alors de tous les avantages conférés par la rigidité d'une poutre, cette rigidité étant bien supérieure à la rigidité d'un ruban. En outre, pour éviter d'avoir à chauffer une trop grosse masse de matériau, la poutre est creuse. Pour une puissance de chauffage donnée ceci réduit le temps d'allumage du tube. Dans un perfectionnement la poutre creuse est même traversée de part en part par un filament hélicoïdal chauffant : la poutre est chauffée par chauffage indirect. Ce chauffage indirect peut même n'être focalisé que sur des parties prédéterminées de la poutre, notamment la face de la poutre en regard de l'anode. Ceci permet encore de limiter la puissance de chauffage.
  • L'invention a donc pour objet un tube radiogène muni d'une cathode et d'une anode, en regard de la cathode, pour émettre un rayonnement X, la cathode étant une cathode plane, caractérisé en ce que cette cathode comporte une poutre.
  • L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Celles-ci ne sont données qu'à titre indicatif et nullement limitatif de l'invention. Les figures montrent :
    • - figure 1 : une vue en perspective d'une cathode en poutre selon l'invention,
    • - figure 2 : une vue en coupe de la cathode de la figure 1
    • - figure 3 : une coupe schématique d'un tube radiogène muni d'une poutre selon l'invention;
    • - figures 4 et 5 : des diagrammes énergétiques pour le tube de la figure 3 ;
  • Dans l'invention une cathode 1 a l'allure d'une poutre représentée en perspective sur la figure 1. Cette poutre est prismatique , creuse, et a sensiblement l'allure d'une maison. La base de la maison constitue une face 7 émissive de la cathode, les murs de la maison tels que le mur 23 possèdent des fenêtres telles que 24. L'intérêt de fabriquer une poutre creuse se situe dans la réduction de la quantité de métal à chauffer. Si cette quantité est plus faible, l'inertie thermique de la cathode sera moins grande, le démarrage du tube pourra être plus rapide. Par ailleurs la consommation de l'alimentation de chauffage de la cathode pourra être réduite ce qui est un avantage quand on sait les problèmes d'isolement auxquels doivent être confrontés les circuits de chauffage de telles cathodes.
  • Bien qu'on pourrait envisager un chauffage direct de cette cathode en faisant passer un courant électrique directement au travers de celle-ci, on préfère utiliser un filament de chauffage 25 par exemple du même type que les filaments utilisés dans l'état de la technique comme émetteur. Ce filament chauffé est porté à une haute tension négative (de plusieurs milliers de volts) par rapport à la cathode. Dans un exemple préféré la cathode en poutre est réalisée en tungstène. Afin de limiter également la quantité d'énergie thermique à fournir pour chauffer la cathode on munit le plafond 26 et l'intérieur des murs de celle-ci d'un matelas 27 de fibres isolantes pour concentrer le chauffage sur la partie émissive de la cathode. Dans un exemple les fibres sont des fibres de céramique qui permettent un bon isolement des parois internes de la maison. Les électrons émis par le filament chauffant bombardent alors l'arrière de la cathode selon un dessin représenté par les courbes de champ électrique 28. Ce bombardement est limité à la paroi avant 33. Par ailleurs cette paroi avant présente un profil 33 concave. Dans un exemple préféré ce profil concave est même tellement concave que des ailes respectivement 29 et 30 de cette cathode présentent des faces intérieures, respectivement 31 et 32, plus proches du filament 25 que ne l'est la face intérieure de la cathode à l 'endroit 33 de son milieu. De cette manière les ailes qui sont à la fois plus épaisses et qui seraient plus dures à chauffer sont cependant plus chauffées. De cette manière la base 7 de la poutre est porté en tous points à une température sensiblement constante, il émet avec un débit sensiblement constant le rayonnement d'électrons attendu.
  • Bien que la poutre selon l'invention présente maintenant l'intérêt que sa face émissive 7 ne se distorde plus sous les effets des échauffements, elle subit cependant des dilatations qu'il convient de guider sans les contrarier. Dans ce but la cathode est fixée par une patte 34 constituant en quelque sorte la cheminée de la maison. Le mode de fixation est de préférence obtenu par blocage de cette patte 34 entre deux vis 35 et 36 qui viennent l'enserrer entre elles respectivement. Ce montage à un point de fixation présente l'avantage de laisser à la cathode tous les degrés de liberté voulus. Il est en particulier préférable à un mode de fixation avec deux points qui présenterait l'inconvénient que les réactions entre ces deux points se répercuteraient immanquablement sur la planéïté de la surface émissive 7. Pour guider les déplacements de la cathode avec la température, les murs de cette cathode sont maintenus dans une pièce focale 8 par des pions de céramique tels que 37 et 38 qui viennent s'appuyer de part et d'autre sur elle. Ceci permet d'éviter tout phénomène de flexion ou de vibration néfaste à un exact positionnement de l'émetteur dans la pièce de focalisation. Les pions permettent à l'émetteur de se dilater thermiquement suivant sa plus grande longueur tout en le maintenant latéralement dans sa position de référence. En pratique, l'alimentation électrique de la cathode peut être obtenu en faisant passer la haute tension par les vis 35 ou 36.
  • La figure 3 montre schématiquement un tube radiogène muni d'une cathode-poutre 1 selon l'invention. Ce tube radiogène comporte, dans une enceinte vide non représentée, la cathode 1 située en vis à vis d'une anode 2. L'anode reçoit un rayonnement électronique 3 sur son foyer 4 et réémet un rayonnement X 5 notamment en direction d'une fenêtre d'utilisation 6. La fenêtre d'utilisation fait partie de l'enveloppe du tube. Selon l'invention la cathode présente la particularité d'opposer une face plane 7 en vis à vis de l'anode 2. Elle présente en outre la particularité d'être insérée dans une optique de focalisation 8 dite à marche. Cette optique de focalisation à marche a pour objet de créer une répartition du champ électrique entre l'anode et la cathode telle que le rayonnement 3 des électrons soit du type convergent. On distingue deux types de rayonnement convergent. Dans un premier type, représenté sur la figure 3, le point de convergence des électrons est situé derrière le plan de l'anode : il est virtuel. Dans ce cas, le rayonnement est dit direct. Dans un deuxième type de rayonnement, dit croisé, le point de convergence des électrons se situe en position intermédiaire entre la cathode 7 et l'anode 2 : il est réel.
  • Bien que le dispositif de focalisation 8 puisse être également à simple marche, on a trouvé ici plus avantageux de le réaliser à double marche. La pièce de focalisation 8 a une forme prismatique droite dont la figure 3 représente le plan de section droit. La pièce 8 comporte les deux marches, respectivement 9 et 10 réparties symétriquement en 9′ et 10′ de part et d'autre de la cathode 1. Chaque marche comporte un dessus de marche 91 ou 101 et une contremarche 92 ou 102. (respectivement 91′ 92′ 101′ 102′). Dans un exemple préféré de réalisation le plan 7 de la cathode 1 est distant de l'anode 2 d'une distance d'environ 7.5 mm. Les dessus 91 et 91′ des marches 9 et 9′ sont distants de l'anode d'environ 7mm. Les dessus, 101 et 101′ sont distants eux d'environ 6 mm du plan de l'anode 2. La largeur de la cathode 1, mesurée dans le plan de section droite de la pièce prismatique focale 8, vaut 2 mm. La largeur d'un logement 11 où est placée cette cathode à l'intérieur de la pièce focale 8 vaut 2.2 mm. La distance qui sépare les contremarches 92 et 92′ est de 4 mm tandis que la distance qui sépare les contremarches 101 et 102′ est de 5 mm. De préférence le dispositif a une allure symétrique par rapport à un plan passant par l'axe 12 du rayonnement, perpendiculairement au plan de la figure. En variante cependant, plutôt que d'être prismatique, l'ensemble peut être circulaire l'axe 12 servant d'axe de révolution à la cathode ainsi qu'à la pièce de focalisation. Il est possible que l'anode 2 soit une anode de type tournant et même qu'elle présente une face inclinée sur l'axe 12. Dans ce cas les distances indiquées sont plutôt les distances mesurées sur cet axe 12 entre le plan 7 de la cathode et la trace de l'axe 12 sur l'anode 2.
  • Les dimensions données ci-dessus présentent l'avantage que le flux thermiques FT (figure 4) est alors sensiblement constant, pour une haute tension d'utilisation donnée, en fonction de la charge du tube D. En effet, le diagramme de la figure 4 présente trois courbes respectivement 13 à 15 paramétrées par des hautes tensions respectivement de 20 KV, 40 KV ou 50 KV, affichant dans une plage d'utilisation située entre 150 Milliampères et 500 milliampères, une allure sensiblement plate. Le flux thermique est exprimé en KW par mm². Dans l'exemple indiqué il est toujours inférieur à 50 KW par mm² même pour la haute tension d'utilisation la plus forte. La signification de l'aspect plat de ce flux thermique en fonction de la charge signifie tout simplement que la dimension 16 du foyer thermique évolue linéairement avec la charge. En effet, si la charge augmente, par exemple double, la dimension 16 augmente, et la puissance de rayon X émise augmente également, double, sans provoquer localement de contraintes thermiques anormales sur l'anode. Cette augmentation de la charge se traduit par l'écartement, selon les flèches 17 et 18, des directions latérales du rayonnement d'électrons 3. Celui-ci devient de plus en plus direct.
  • L'avantage de la présente solution, bien que la dimension du foyer change quand la charge change, est lié au fait que l'on peut ainsi d'une manière simple disposer d'un foyer de dimension choisie. En effet, les courbes 13 à 15 sont des courbes régulières, et sans ondulation. En conséquence, en particulier en métrologie lorsque le problème du débit de dose n'est pas un point crucial, ou même en médecine lorsque les limites d'irradiation ne sont pas franchies, on peut choisir en fonction d'une netteté d'image à produire une dimension voulue du foyer. On vient ainsi de présenter un moyen simple de régler à une valeur convenable la dimension de ce foyer.
  • Dans un autre exemple, où le rayonnement 3 est convergent et converge en un point de convergence placé devant l'anode, l'augmentation du débit de dose provoque le déplacement en direction de l'anode 2 du point de convergence. Dans ce rayonnement de type croisé l'écartement 17 18 des rayons latéraux du faisceau de rayonnement X avant le point de convergence provoque d'une manière inverse le rétrécissement de la dimension 16 du foyer. On a découvert que ce rétrécissement, qui pourrait être désastreux, est en fait limité par un phénomène de saturation de l'émission des électrons arrachés de la face supérieure 7 de la cathode 1. En effet, du fait de la concentration, la charge d'espace, qui a naturellement tendance à augmenter avec la charge du tube (il y a plus d'électrons) augmente à un point tel qu'elle constitue, dans certaines conditions, un écran pour l'émission des électrons suivants. En quelque sorte cette charge d'espace agit comme une grille. On a découvert que ce phénomène pouvait être utilisé comme une auto-régulation, à condition de choisir une optique de focalisation particulière. Cette optique de focalisation est du même type que celle décrite ci dessus. Elle comporte des marches. Comme précédemment ce phénomène présente l'avantage de se produire quelle que soit la haute tension d'utilisation du tube. D'une manière compréhensible, ce phénomène de saturation provoque un flux thermique à saturation sur le foyer dont la valeur dépend de cette haute tension. En effet, si la haute tension est faible, les électrons sont relativement moins accélérés. La charge d'espace de saturation se fait plus rapidement sentir : l'embouteillage de saturation se provoque d'autant plus que les électrons vont moins vite. Il est par ailleurs intéressant de remarquer que des courbes 20 à 22 (figure 5), montrant les différents effets sur le flux thermique de ce phénomène de saturation, sont bornées à l'approche de la saturation. Ceci signifie, qu'au moment de la saturation le débit ne peut plus augmenter, mais surtout le flux thermique ne peut plus augmenter. En choisissant correctement les matériaux d'anode et de cathode ou les conditions d'utilisation des tubes de telle façon que le point de saturation ne soit pas situé hors des tolérances de fonctionnement on obtient le résultat recherché.

Claims (10)

1 - Tube radiogène muni d'une cathode (1) et d'une anode (2), en regard de la cathode, pour émettre un rayonnement X (3), la cathode étant une cathode plane (7) conformée comme une poutre, caractérisé en ce que la poutre est creuse (24).
2 - Tube selon la revendication 1 caractérisé en ce que la cathode est chauffée par un dispositif (25) de chauffage indirect.
3 - Tube selon la revendication 2 caractérisé en ce que le dispositif de chauffage comporte un matelas (27) de fibres pour concentrer le chauffage sur la partie émissive de la cathode.
4 - Tube selon la revendication 2 ou la revendication 3 caractérisé en ce qu'une face interne de la cathode, opposée à la face plane, a une forme concave avec des ailes (29,30) plus proches du dispositif de chauffage qu'une partie centrale interne (33) de cette forme concave.
5 - Tube selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'au moins une des parois (23) de la poutre comporte un évidement (24).
6 - Tube selon l'une quelconque des revendications 1 à 5 caractérisé en ce que cette poutre est fixée au tube par un seul point (34) de fixation
7 - Tube selon l'une quelconque des revendications 1 à 6 caractérisé en ce que la poutre est guidée par des pions (37,38) de céramique fixés de part et d'autre d'elle sur un dispositif (8) de focalisation.
8 - Tube selon l'une quelconque des revendications 1 à 7 caractérisé en ce que
- la cathode est une cathode plane
- placée à la base d'un dispositif de focalisation à marche.
9 - Tube selon la revendication 8 caractérisé en ce que le dispositif de focalisation est à double marche.
10 - Tube selon la revendication 9 caractérisé en ce que
- le plan (7) de la cathode est éloigné d'environ 7,5 mm de l'anode 2,
- le dispositif de focalisation comporte un plan profond commun avec le plan de la cathode, limité par un cylindre (92,92′) d'environ 4 mm de largeur,
- un plan intermédiaire (91,91′) situé à environ 7 mm de la cible et limité par un cylindre (102,102′) d'environ 5 mm de largeur, et
- un plan supérieur (101,101′) situé à environ 6 mm de la cible.
EP89401761A 1988-07-01 1989-06-22 Tube radiogène à cathode plane et à chauffage indirect Expired - Lifetime EP0349387B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8808962A FR2633775B1 (fr) 1988-07-01 1988-07-01 Tube radiogene a cathode plane et a chauffage indirect
FR8808962 1988-07-01

Publications (2)

Publication Number Publication Date
EP0349387A1 true EP0349387A1 (fr) 1990-01-03
EP0349387B1 EP0349387B1 (fr) 1991-11-27

Family

ID=9368000

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89401761A Expired - Lifetime EP0349387B1 (fr) 1988-07-01 1989-06-22 Tube radiogène à cathode plane et à chauffage indirect

Country Status (6)

Country Link
US (1) US5044005A (fr)
EP (1) EP0349387B1 (fr)
JP (1) JP2840616B2 (fr)
DE (1) DE68900473D1 (fr)
ES (1) ES2027457T3 (fr)
FR (1) FR2633775B1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7280636B2 (en) * 2003-10-03 2007-10-09 Illinois Institute Of Technology Device and method for producing a spatially uniformly intense source of x-rays
WO2008047269A2 (fr) * 2006-10-17 2008-04-24 Philips Intellectual Property & Standards Gmbh Émetteur pour tubes à rayons x et procédé de chauffage dudit émetteur
US20100002842A1 (en) * 2008-07-01 2010-01-07 Bruker Axs, Inc. Cathode assembly for rapid electron source replacement in a rotating anode x-ray generator
JP5543483B2 (ja) * 2008-12-08 2014-07-09 コーニンクレッカ フィリップス エヌ ヴェ 電子源及びその陰極カップ
US8477908B2 (en) * 2009-11-13 2013-07-02 General Electric Company System and method for beam focusing and control in an indirectly heated cathode
US9711320B2 (en) 2014-04-29 2017-07-18 General Electric Company Emitter devices for use in X-ray tubes
EP3518266A1 (fr) 2018-01-30 2019-07-31 Siemens Healthcare GmbH Dispositif d'émission thermionique

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE416533C (de) * 1921-06-14 1925-07-17 Siemens & Halske Akt Ges Gluehkathode fuer Hochvakuumentladungsroehren mit einem innerhalb eines allseitig geschlossenen, gehaeuseartigen Teiles angeordneten, durch elektrischen Strom erwaermten Heizkoerper
US3916202A (en) * 1974-05-03 1975-10-28 Gen Electric Lens-grid system for electron tubes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5178696A (en) * 1974-12-28 1976-07-08 Tokyo Shibaura Electric Co x senkan
US4126805A (en) * 1975-10-18 1978-11-21 Emi Limited X-ray tubes
JPS5330292A (en) * 1976-09-01 1978-03-22 Toshiba Corp X-ray tube
FR2411487A1 (fr) * 1977-12-09 1979-07-06 Radiologie Cie Gle Cathode pour tube radiogene a foyer fin et grande perveance, et tube radiogene comportant une telle cathode
JPS5568056A (en) * 1978-11-17 1980-05-22 Hitachi Ltd X-ray tube
JPS55108158A (en) * 1979-02-13 1980-08-19 Hitachi Ltd Cathode for x-ray tube
JPS60254538A (ja) * 1984-05-31 1985-12-16 Toshiba Corp X線管装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE416533C (de) * 1921-06-14 1925-07-17 Siemens & Halske Akt Ges Gluehkathode fuer Hochvakuumentladungsroehren mit einem innerhalb eines allseitig geschlossenen, gehaeuseartigen Teiles angeordneten, durch elektrischen Strom erwaermten Heizkoerper
US3916202A (en) * 1974-05-03 1975-10-28 Gen Electric Lens-grid system for electron tubes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, vol. 2, no. 64 (E-78)[2148], 17 mai 1978, page 2148 E 78; & JP-A-53 30 292 (TOKYO SHIBAURA DENKI K.K.) 22-03-1978 *
PATENT ABSTRACTS OF JAPAN, vol. 4, no. 157 (E-32)[639], 4 novembre 1980, page 131 E 32; & JP-A-55 108 158 (HITACHI SEISAKUSHO K.K.) 19-08-1980 *

Also Published As

Publication number Publication date
JP2840616B2 (ja) 1998-12-24
FR2633775B1 (fr) 1995-11-17
JPH0254849A (ja) 1990-02-23
FR2633775A1 (fr) 1990-01-05
US5044005A (en) 1991-08-27
EP0349387B1 (fr) 1991-11-27
DE68900473D1 (de) 1992-01-09
ES2027457T3 (es) 1992-06-01

Similar Documents

Publication Publication Date Title
EP0110734B1 (fr) Tube à rayons X produisant un faisceau à haut rendement, notamment en forme de pinceau
JP4169219B2 (ja) X線発生装置
EP0349386B1 (fr) Tube à rayons X à foyer variable auto-adapté à la charge
JP2011222456A (ja) X線源及びx線撮影装置
FR2926668A1 (fr) Source d'electrons a base d'emetteurs de champs pour radiographie multipoint.
US6653547B2 (en) Solar energy converter
US5703924A (en) X-ray tube with a low-temperature emitter
US20070274453A1 (en) X-ray radiator with a photocathode irradiated with a deflected laser beam
US20040028183A1 (en) Method and apparatus for controlling electron beam current
JP4942431B2 (ja) X線放射器
EP0988645A1 (fr) Tube a rayons x comportant une source d'electrons a micropointes et des moyens de guidage magnetique
US8837678B2 (en) Long-lasting pulseable compact X-ray tube with optically illuminated photocathode
WO2007041498A2 (fr) Cathode de tube a rayons x a emission de champ electrique involontaire reduite
EP0349387B1 (fr) Tube radiogène à cathode plane et à chauffage indirect
FR2548447A1 (fr) Tube a rayons x a foyer de forte intensite
JP2011505668A (ja) レーザ加熱放電プラズマeuv光源
JPH05283021A (ja) X線管
CN101523545A (zh) X射线管、x射线系统和用于生成x射线的方法
EP0349388B1 (fr) Tube radiogène à auto-limitation du flux électronique par saturation
EP0559550B1 (fr) Tube intensificateur d'image, notamment radiologique, du type à galette de microcanaux
CN106783485B (zh) Ct系统及其冷阴极x射线管
JP2929506B2 (ja) 冷却可変の高強度x線源
US6359968B1 (en) X-ray tube capable of generating and focusing beam on a target
FR2844916A1 (fr) Source de rayonnement x a foyer virtuel ou fictif
FR2574592A1 (fr) Tube a rayons x de type a reflexion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT NL

17P Request for examination filed

Effective date: 19900131

17Q First examination report despatched

Effective date: 19900518

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT NL

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 68900473

Country of ref document: DE

Date of ref document: 19920109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920526

Year of fee payment: 4

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2027457

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930520

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19930615

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930625

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930630

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940623

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940622

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050622