EP0347444A1 - Konzentratoranordnung - Google Patents

Konzentratoranordnung

Info

Publication number
EP0347444A1
EP0347444A1 EP88909974A EP88909974A EP0347444A1 EP 0347444 A1 EP0347444 A1 EP 0347444A1 EP 88909974 A EP88909974 A EP 88909974A EP 88909974 A EP88909974 A EP 88909974A EP 0347444 A1 EP0347444 A1 EP 0347444A1
Authority
EP
European Patent Office
Prior art keywords
concentrator
stages
arrangement according
refractive index
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP88909974A
Other languages
German (de)
English (en)
French (fr)
Inventor
Adolf Goetzberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Foerderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Foerderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Foerderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Foerderung der Angewandten Forschung eV
Publication of EP0347444A1 publication Critical patent/EP0347444A1/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/40Optical elements or arrangements
    • H10F77/42Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
    • H10F77/488Reflecting light-concentrating means, e.g. parabolic mirrors or concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention relates to a concentrator arrangement with a multiplicity of solar cells and with a plate made of a transparent material with a refractive index of more than 1.45, which has a flat upper side and a lower side, with a concentrator structure made of trough-shaped non-imaging concentrator elements with parabolically curved side walls connected is.
  • the object of the invention is to create a concentrator arrangement of the type mentioned at the outset, which is distinguished by a higher concentration factor.
  • the concentrator elements have parabolic curved mirror surfaces pointing in all four directions.
  • FIG. 2 shows a concentrator arrangement according to the invention with a two-stage concentration in a perspective view
  • FIG. 6 shows a concentrator arrangement with several concentrator elements according to FIG. 5, which are connected to one another by a plate,
  • a static concentrator 1 of known type is shown, which has the shape of a trough and allows a one-dimensional concentration.
  • the static concentrator 1 has a parabolic curved left side wall 2 and a likewise parabolic curved right side wall 3.
  • the side walls 2, 3 have a distance d ⁇ at their upper edges and approach at their lower edges a distance d 2 .
  • the side walls 2, 3 are mirrored.
  • the static concentrator shown in FIG. 1 is oriented in the east-west direction, so that the end faces 4, 5 face east or west and the side walls 2, 3 face north or south.
  • the concentrator 1 is rotated about its longitudinal axis running parallel to the side walls 2, 3 in order to achieve an orientation of the concentrator to the south with an optimal inclination. This inclination corresponds to the latitude of the installation site.
  • the bottom of the static concentrator 1 shown in FIG. 1 is covered with a plurality of solar cells 6, which utilize the direct and diffuse solar light captured by the static concentrator 1 by means of photovoltaic energy conversion.
  • n the refractive index of the medium in front of the concentrator
  • n 2 the refractive index of the medium inside the concentrator
  • ⁇ - is the opening angle of the rays at the entrance aperture and ⁇ «the opening angle of the radiation at the exit aperture.
  • a static concentrator In order to receive as much direct solar radiation as possible, a static concentrator must have a large opening angle, which may be smaller in the north-south direction than in the east-west direction. In the north-south direction, the reception area must extend on the one hand to the upper culmination point of the sun, and on the other hand close to the southern horizon. In the case of staggered collectors or concentrators, the limitation can be at the lower culmination point of the sun. In the east-west direction, however, the opening angle must be 180 °.
  • d- and d- mean the above-mentioned distances between the side walls 2, 3 and the widths of the concentrator 1 at the entrance aperture and the exit aperture surface.
  • FIG. 2 shows a two-stage concentrator arrangement 1.0 according to the invention, which makes it possible to achieve a substantially higher static concentration while maintaining the aperture angle distribution.
  • a two-stage concentration is carried out in a refractive medium.
  • the two-stage concentrator arrangement 10 has a plate 11 made of transparent material with a Refractive index n that is greater than 1.45.
  • the plate 11 is flat on the top 12 facing the incident radiation and optically and mechanically connected to a structure 13 for the non-imaging concentration of light on the side opposite the top 12.
  • the structure 13 brings about a two-stage concentration of the light in linear-one-dimensional first stages 14 and two-dimensional second stages 15.
  • the first stages 14 have the shape shown in FIG. 1 of a trough formed from glass or plastic.
  • a plurality of second stages 15 are optically and mechanically coupled to the exit aperture surface of the first stages, which also have parabolic curved side walls 16 and 17 shown in FIG. 3 and parabolic front walls 18 and rear walls 19 which can be seen in FIG.
  • the lower edges of the side walls 16, 17 and the front walls 18 and the rear walls 19 each end on a floor surface 20 which is optically coupled to a solar cell 21.
  • the first steps 14 have rectangular entry apertures and rectangular exit apertures, while the touching second steps 15 have square entry and exit apertures.
  • the second stages 15 are therefore not exactly radially symmetrical, which leads to a slight loss of concentration.
  • this is expedient since on the one hand the aperture area can only be filled with square or rectangular structures, and on the other hand the solar cells 21 are square.
  • This divergence can be increased to 90 ° by a two-dimensional concentration.
  • this is achieved in that in the linear first stages 14 the north-south rays are brought to the same divergence as the east-west rays (by decomposition into vertical components) this consideration also for all obliquely incident rays).
  • A. and A 2 are the entrance and exit aperture surfaces assigned to the second stages 15.
  • the second stages 15 can consist of a transparent material with a refractive index n 2 that is greater than the refractive index n- of the transparent material of the first stages 14. This is important because little material is used and materials with a higher refractive index are usually expensive. In this case, the condition for the second stages is 15
  • the opening angle ⁇ - of the first stages 14 is selected such that when the concentrator arrangement 10 is oriented to the south with an optimal inclination, the position of the sun at the highest point of the sun still falls within the acceptance range and the other limitation of the opening angle contains at least the minimum culmination point of the sun.
  • the concentration factor C the second, two-dimensional stage 15 is selected such that C 2 - n 2 applies.
  • first stages 14 are made of a material with a refractive index n and the second stages 15 are made of another material with a
  • Refractive index n 2 are produced, which is larger than that
  • the plate 11 is rectangular and has a flat front side. On the back there are many linear structures of the first stage 14 arranged next to one another, at the outlet openings of which there are contacting elements of the second stages 15.
  • the plate 11, the first steps 14 and the second steps 15 can, in particular if they are made of a material with the same refractive index, can be made in one piece. If different materials are used, the individual stages 14, 15 are connected to one another in such a way that the best possible optical coupling is produced. A gradual change in the refractive index can also be provided in a transition region in order to avoid reflections.
  • FIG. 5 shows a single concentrator for a one-stage version, the end faces 4 and 5 of which are like that Front walls 18 and 19 of the second stages 15 are curved parabolically.
  • these structures can be connected to a continuous plate 11, which is illustrated in FIG. 6 and does not change the optical conditions.
  • Steps 15 rectangular concentrators 22 can, as in
  • Fig. 7 illustrates, can be realized with two materials 23, 24, whose refractive indices n 1 and ⁇ x ? are.
  • FIG. 8a, 8b and 8c show contact geometries for the solar cells 21 in connection with the outlet apertures of the concentrator arrangement 10. Since the metal contacts of the solar cells 21 shield the radiation, they cause losses. For this reason, the contact grid areas are kept as small as possible. Static concentrators of the type described above offer the possibility of minimizing the shielding by the discharge grid 25 of the solar cells 21 by arranging the current contacts 26 (busbars) outside the illuminated areas of the solar cells 21, as illustrated in FIG. 8.
  • 8a shows the course of the current busbar 26 outside the circumference of the lower end of a second stage 15.
  • FIG. 8b shows a plan view of the solar cell 21 before being attached to the second stage 15.
  • FIG. 8c shows a design option for one rectangular solar cell 21, which is used together with a concentrator 22.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)
EP88909974A 1987-12-08 1988-11-07 Konzentratoranordnung Ceased EP0347444A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873741477 DE3741477A1 (de) 1987-12-08 1987-12-08 Konzentratoranordnung
DE3741477 1987-12-08

Publications (1)

Publication Number Publication Date
EP0347444A1 true EP0347444A1 (de) 1989-12-27

Family

ID=6342070

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88909974A Ceased EP0347444A1 (de) 1987-12-08 1988-11-07 Konzentratoranordnung

Country Status (5)

Country Link
US (1) US4964713A (enrdf_load_stackoverflow)
EP (1) EP0347444A1 (enrdf_load_stackoverflow)
JP (1) JPH02502500A (enrdf_load_stackoverflow)
DE (1) DE3741477A1 (enrdf_load_stackoverflow)
WO (1) WO1989005463A1 (enrdf_load_stackoverflow)

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2078839A1 (en) * 1991-09-25 1993-03-26 Marc Hoffman Double refraction and total reflection solid nonimaging lens
FR2683051B1 (fr) * 1991-10-25 1993-12-24 Armines Reflecteur pour source de rayonnement a angle de rayonnement lateral maximal controle.
US5220462A (en) * 1991-11-15 1993-06-15 Feldman Jr Karl T Diode glazing with radiant energy trapping
DE4225130C2 (de) * 1992-07-30 1994-11-10 Fraunhofer Ges Forschung Zweistufige Konzentratoranordnung mit mehreren Solarzellen
US5604607A (en) * 1992-10-19 1997-02-18 Eastman Kodak Company Light concentrator system
US5327293A (en) * 1992-11-24 1994-07-05 Equestrian Co., Ltd. Reflection mirror apparatus
IL111207A0 (en) * 1994-10-09 1994-12-29 Yeda Res & Dev Photovoltaic cell system and an optical structure therefor
US6020553A (en) * 1994-10-09 2000-02-01 Yeda Research And Development Co., Ltd. Photovoltaic cell system and an optical structure therefor
DE59701245D1 (de) * 1996-05-21 2000-04-20 Fraunhofer Ges Forschung Anordnung für Lichtleitsystem
ES2115554B1 (es) * 1996-10-23 1999-01-01 Univ Madrid Politecnica Concentrador optico de alta ganancia.
DE19719083B4 (de) * 1997-04-30 2006-04-27 René Dipl.-Krist. Kokoschko Vorrichtung zur Sammlung, Konzentrierung und Leitung von direkter und diffuser Strahlung
US6057505A (en) * 1997-11-21 2000-05-02 Ortabasi; Ugur Space concentrator for advanced solar cells
US6020554A (en) * 1999-03-19 2000-02-01 Photovoltaics International, Llc Tracking solar energy conversion unit adapted for field assembly
FR2803667B1 (fr) * 2000-01-07 2002-04-05 Honeywell Dispositif optique de transmission de lumiere, et bloc a voies multiple utilisant un tel dispositif
DE10059455A1 (de) * 2000-11-30 2002-06-06 Steigerwald Niluh Kusani Statischer Konzentrator
US6541694B2 (en) * 2001-03-16 2003-04-01 Solar Enterprises International, Llc Nonimaging light concentrator with uniform irradiance
EP1261039A1 (en) * 2001-05-23 2002-11-27 Université de Liège Solar concentrator
WO2003098705A1 (en) 2002-05-17 2003-11-27 Schripsema Jason E Photovoltaic module with adjustable heat sink and method of fabrication
US7068446B2 (en) * 2003-05-05 2006-06-27 Illumitech Inc. Compact non-imaging light collector
WO2004114419A1 (en) * 2003-06-20 2004-12-29 Schripsema Jason E Linear compound photovoltaic module and reflector
GB2417094A (en) * 2004-08-12 2006-02-15 Innovium Res Ltd Light collecting element array with tapered light reflecting surfaces
GB0421236D0 (en) * 2004-09-23 2004-10-27 Innovium Res Ltd Device and method for the homogenisation of optical communications signals
EP1878060A2 (en) * 2005-05-03 2008-01-16 University Of Delaware Ultra and very-high efficiency solar cells
HRPK20050434B3 (en) * 2005-05-16 2008-06-30 Urli Natko Stationary photovoltaic module with low concentration ratio of solar radiation
DE102005033272A1 (de) * 2005-06-03 2006-12-07 Solartec Ag Konzentrator-Photovoltaik-Einrichtung, daraus gebildetes PV-Konzentratormodul sowie Herstellverfahren hierfür
US20080178922A1 (en) * 2005-07-26 2008-07-31 Solaria Corporation Method and system for manufacturing solar panels using an integrated solar cell using a plurality of photovoltaic regions
US20070056626A1 (en) * 2005-09-12 2007-03-15 Solaria Corporation Method and system for assembling a solar cell using a plurality of photovoltaic regions
DE102005047132A1 (de) * 2005-09-30 2007-04-12 Solartec Ag Konzentrator-Photovoltaik-Vorrichtung; Photovoltaik-Einrichtung zur Verwendung darin sowie Herstellverfahren hierfür
US7910822B1 (en) 2005-10-17 2011-03-22 Solaria Corporation Fabrication process for photovoltaic cell
US8227688B1 (en) 2005-10-17 2012-07-24 Solaria Corporation Method and resulting structure for assembling photovoltaic regions onto lead frame members for integration on concentrating elements for solar cells
USD555083S1 (en) 2005-11-08 2007-11-13 Solaria Corporation Solar cell package design
USD558139S1 (en) 2005-11-18 2007-12-25 Solaria Corporation Triangular solar cell design
USD555084S1 (en) 2005-11-18 2007-11-13 Solaria Corporation Circular solar cell package design
USD559174S1 (en) 2005-11-18 2008-01-08 Solaria Corporation Shaped solar cell package design
USD568238S1 (en) 2005-11-18 2008-05-06 Solaria Corporation Rectangular solar cell package design
WO2007149001A2 (en) * 2006-06-19 2007-12-27 Corneliu Antonovici Method and structure for solar energy harvesting type glass roof tile
WO2008006031A2 (en) * 2006-07-05 2008-01-10 Stellaris Corporation Apparatus and method for forming a photovoltaic device
DE102006044603A1 (de) * 2006-09-19 2008-03-27 Solar Dynamics Gmbh Solarer Mehrstufenkonzentrator
JP5337961B2 (ja) * 2007-03-01 2013-11-06 国立大学法人長岡技術科学大学 太陽追尾モジュール装置
US20090056806A1 (en) * 2007-09-05 2009-03-05 Solaria Corporation Solar cell structure including a plurality of concentrator elements with a notch design and predetermined radii and method
US7910392B2 (en) 2007-04-02 2011-03-22 Solaria Corporation Method and system for assembling a solar cell package
US20080236651A1 (en) * 2007-04-02 2008-10-02 Solaria Corporation Solar cell concentrator structure including a plurality of concentrator elements with a notch design and method having a predetermined efficiency
DE102007022164A1 (de) * 2007-05-11 2008-11-13 Vci Technoinvest Gmbh Anordnung zum Gewinnen von elektrischer und thermischer Energie
US8119902B2 (en) 2007-05-21 2012-02-21 Solaria Corporation Concentrating module and method of manufacture for photovoltaic strips
FR2916901B1 (fr) * 2007-05-31 2009-07-17 Saint Gobain Procede d'obtention d'un substrat texture pour panneau photovoltaique
ITBO20070471A1 (it) * 2007-07-11 2009-01-12 Cpower S R L Dispositivo concentratore di luce solare per un sistema di generazione fotovoltaica
USD588534S1 (en) 2007-07-26 2009-03-17 Solaria Corporation Shaped solar cell package
US8707736B2 (en) 2007-08-06 2014-04-29 Solaria Corporation Method and apparatus for manufacturing solar concentrators using glass process
US20100078063A1 (en) * 2007-08-29 2010-04-01 Barnett Allen M High efficiency hybrid solar cell
US8513095B1 (en) 2007-09-04 2013-08-20 Solaria Corporation Method and system for separating photovoltaic strips
US20110017263A1 (en) * 2007-09-05 2011-01-27 Solaria Corporation Method and device for fabricating a solar cell using an interface pattern for a packaged design
US8049098B2 (en) 2007-09-05 2011-11-01 Solaria Corporation Notch structure for concentrating module and method of manufacture using photovoltaic strips
US7910035B2 (en) 2007-12-12 2011-03-22 Solaria Corporation Method and system for manufacturing integrated molded concentrator photovoltaic device
US20090151770A1 (en) * 2007-12-12 2009-06-18 Solaria Corporation Method and material for coupling solar concentrators and photovoltaic devices
US8748727B2 (en) 2008-01-18 2014-06-10 Tenksolar, Inc. Flat-plate photovoltaic module
US20090183764A1 (en) * 2008-01-18 2009-07-23 Tenksolar, Inc Detachable Louver System
US8933320B2 (en) 2008-01-18 2015-01-13 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
US8212139B2 (en) 2008-01-18 2012-07-03 Tenksolar, Inc. Thin-film photovoltaic module
USD591229S1 (en) 2008-01-24 2009-04-28 Solaria Corporation Shaped solar cell package
US9331228B2 (en) 2008-02-11 2016-05-03 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US8759138B2 (en) 2008-02-11 2014-06-24 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
DE102008017370A1 (de) 2008-02-13 2009-08-27 Solartec Ag Photovoltaik-Vorrichtung, Herstellverfahren für Photovoltaik-Vorrichtung sowie Solaranlage
DE102008013523B4 (de) * 2008-03-07 2012-04-05 Q-Cells Ag Solarmodul mit optischer Konzentratoreinrichtung
DE102008030819A1 (de) * 2008-06-30 2009-12-31 Osram Opto Semiconductors Gmbh Optoelektronische Vorrichtung
DE102008035575B4 (de) * 2008-07-30 2016-08-11 Soitec Solar Gmbh Photovoltaik-Vorrichtung zur direkten Umwandlung von Sonnenenergie in elektrische Energie enthaltend eine zweistufige aus mehreren Elementen bestehende Konzentratoroptik
FR2938078B1 (fr) * 2008-11-03 2011-02-11 Saint Gobain Vitrage a zones concentrant la lumiere par echange ionique.
US20100154863A1 (en) * 2008-11-26 2010-06-24 E.I. Du Pont De Nemours And Company Concentrator solar cell modules with light concentrating articles comprising ionomeric materials
EP2375456A1 (en) * 2009-03-06 2011-10-12 Suinno Solar Oy Low cost solar cell
WO2010148009A2 (en) 2009-06-15 2010-12-23 Tenksolar, Inc. Illumination agnostic solar panel
US9806215B2 (en) 2009-09-03 2017-10-31 Suncore Photovoltaics, Inc. Encapsulated concentrated photovoltaic system subassembly for III-V semiconductor solar cells
US9012771B1 (en) 2009-09-03 2015-04-21 Suncore Photovoltaics, Inc. Solar cell receiver subassembly with a heat shield for use in a concentrating solar system
US8895838B1 (en) 2010-01-08 2014-11-25 Magnolia Solar, Inc. Multijunction solar cell employing extended heterojunction and step graded antireflection structures and methods for constructing the same
US9773933B2 (en) 2010-02-23 2017-09-26 Tenksolar, Inc. Space and energy efficient photovoltaic array
ES2372083B1 (es) * 2010-03-08 2013-02-18 Abengoa Solar New Technologies, S.A. Elemento de concentración solar fotovoltaica, módulo que comprende dichos elementos y dispositivo modular formado por dichos módulos.
US9299861B2 (en) 2010-06-15 2016-03-29 Tenksolar, Inc. Cell-to-grid redundandt photovoltaic system
JP2012023099A (ja) * 2010-07-12 2012-02-02 Mitaka Koki Co Ltd 太陽光発電モジュールおよび集光型太陽光発電システム
EP2603932A4 (en) 2010-08-10 2017-07-05 Tenksolar, Inc. Highly efficient solar arrays
CN102401989B (zh) * 2010-09-07 2014-04-16 聚日(苏州)科技有限公司 一种聚光装置及其制造方法
US9190546B1 (en) * 2010-09-30 2015-11-17 Sandia Corporation Solar photovoltaic reflective trough collection structure
US9893223B2 (en) 2010-11-16 2018-02-13 Suncore Photovoltaics, Inc. Solar electricity generation system
DE202011001115U1 (de) 2010-12-01 2011-05-26 Hug, Alexander, 72766 Solarmodul mit erhöhtem Wirkungsgrad
USD699176S1 (en) 2011-06-02 2014-02-11 Solaria Corporation Fastener for solar modules
US20130038132A1 (en) * 2011-08-09 2013-02-14 Southwest Solar Technologies, Inc. CPV System and Method Therefor
CN102790114A (zh) * 2012-08-25 2012-11-21 赵雪冰 一种太阳能电池用聚光透镜及免跟踪聚光太阳能电池装置
JP6351459B2 (ja) 2014-09-22 2018-07-04 株式会社東芝 太陽電池モジュール
US9787247B2 (en) * 2014-10-01 2017-10-10 Sharp Laboratories Of America, Inc. Solar concentrator with asymmetric tracking-integrated optics
US9773934B2 (en) * 2014-10-01 2017-09-26 Sharp Laboratories Of America, Inc. Hybrid Trough solar power system using photovoltaic two-stage light concentration
US10411645B1 (en) 2016-05-09 2019-09-10 Solarbos, Inc Photovoltaic module sourced control power
US10950402B2 (en) 2017-10-17 2021-03-16 Solarbos, Inc. Electrical contactor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923381A (en) * 1973-12-28 1975-12-02 Univ Chicago Radiant energy collection
US4045246A (en) * 1975-08-11 1977-08-30 Mobil Tyco Solar Energy Corporation Solar cells with concentrators
US4029519A (en) * 1976-03-19 1977-06-14 The United States Of America As Represented By The United States Energy Research And Development Administration Solar collector having a solid transmission medium
US4146408A (en) * 1977-12-23 1979-03-27 Varian Associates, Inc. Aspherical solar cell concentrator
DE2926754A1 (de) * 1979-07-03 1981-01-15 Licentia Gmbh Solarzellen-anordnung
EP0050697B1 (de) * 1980-10-27 1985-04-10 Arbeitsgruppe Technische Photosynthese Konzentrierender Reflektor für Sonnenstrahlung mit geringem aerodynamischen Widerstand und hohem aerodynamischen Auftrieb
US4546757A (en) * 1982-07-16 1985-10-15 Jakahi Douglas Y Fixed position concentrating solar collector
US4538886A (en) * 1983-04-19 1985-09-03 Stellar Energy Ststems, Inc. Circular arc solar concentrator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8905463A1 *

Also Published As

Publication number Publication date
WO1989005463A1 (fr) 1989-06-15
US4964713A (en) 1990-10-23
DE3741477C2 (enrdf_load_stackoverflow) 1991-10-02
JPH02502500A (ja) 1990-08-09
DE3741477A1 (de) 1989-06-22

Similar Documents

Publication Publication Date Title
EP0347444A1 (de) Konzentratoranordnung
EP0034211B1 (de) Solarzellenanordnung
DE19907506A1 (de) Photovoltaisches Bauelement, photovoltaisches Modul und Aufstellverfahren für ein photovoltaisches Modul
EP0644995B1 (de) Plattform zur nutzung der sonnenenergie
DE2709284A1 (de) Vorrichtung zum konzentrieren von energie
DE112009001135T5 (de) Photovoltaischer Generator mit sphärischer Abbildungslinse zur Verwendung mit einem parabolischen Solarreflektor
DE3107888A1 (de) Solarkonzentrator
DE2938942A1 (de) Leitvorrichtung fuer strahlungsenergie
WO2008034418A2 (de) Solarer mehrstufenkonzentrator und gewächshaus
DE3741485C2 (enrdf_load_stackoverflow)
WO2009071300A2 (de) Photovoltaik-vorrichtung und deren verwendung
DE2907128C2 (enrdf_load_stackoverflow)
EP2534701B1 (de) Photovoltaik-vorrichtung sowie dessen verwendung
DE102008014618B4 (de) Vorrichtung zur Konzentrierung und Umwandlung von Solarenergie
DE102004001248B3 (de) Stationärer photovoltaischer Sonnenlicht-Konzentrator
DE69529656T2 (de) Lichtkollektor mit optisch beschichtetem Acrylsubstrat
DE3205439A1 (de) Solarkonzentrator mit hohlspiegeln
DE2631412C2 (de) Vorrichtung zum Bündeln von Sonnenlicht durch Brechung oder Reflexion
DE69231616T2 (de) Verbessertes optisches design für photozelle.
DE102006028932A1 (de) Photovoltaikmodul
CH658918A5 (de) Zeitlich feststehender refraktor aus durchsichtigem material.
DE102006035965A1 (de) Solarzellenanordnung
DE4016665A1 (de) Fotozellenanordnung zur erzeugung elektrischer energie
DE112019001578B4 (de) Mehrstufiges Prismenfenster
DE2840094C2 (enrdf_load_stackoverflow)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890510

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19911011

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19921130