EP0334742A1 - Procédé d'hydrogénation catalytique sélective en phase liquide d'une charge normalement gazeuse contenant de l'éthylène, de l'acétyléne et de l'essence - Google Patents

Procédé d'hydrogénation catalytique sélective en phase liquide d'une charge normalement gazeuse contenant de l'éthylène, de l'acétyléne et de l'essence Download PDF

Info

Publication number
EP0334742A1
EP0334742A1 EP89400781A EP89400781A EP0334742A1 EP 0334742 A1 EP0334742 A1 EP 0334742A1 EP 89400781 A EP89400781 A EP 89400781A EP 89400781 A EP89400781 A EP 89400781A EP 0334742 A1 EP0334742 A1 EP 0334742A1
Authority
EP
European Patent Office
Prior art keywords
weight
liquid phase
hydrocarbons
acetylene
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89400781A
Other languages
German (de)
English (en)
Other versions
EP0334742B1 (fr
Inventor
Jean Cosyns
Jean-Paul Boitiaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Priority to AT89400781T priority Critical patent/ATE81666T1/de
Publication of EP0334742A1 publication Critical patent/EP0334742A1/fr
Application granted granted Critical
Publication of EP0334742B1 publication Critical patent/EP0334742B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used

Definitions

  • Thermal conversion processes such as steam cracking, for example, produce olefinic compounds of interest for petrochemicals, but their recovery requires a selective hydrogenation of the acetylene and diolefinic impurities co-produced by these processes.
  • hydrogenations are generally carried out on partial cuts such as, for example, the C2 cut containing ethylene and acetylene, the C3 cut containing propylene, propyne and propadiene, the C4 cut containing butenes and butadiene and gasoline cutter containing aromatics, other olefins and other diolefins.
  • the catalysts used in this hydrogenation are quickly fouled by these polymerization products and the cycle times are therefore disadvantageously very short.
  • the object of the present invention is the development of a new process for selective catalytic hydrogenation in the liquid phase of a normally gaseous hydrocarbon charge (that is to say in vapor form at normal temperature and pressure ) containing in particular acetylene, ethylene, petrol (hydrocarbons C5 to C9), the liquid phase (or liquid diluent), in the presence of which (which) is operated, comprising at least part of the condensable fraction of said charge, that is to say at least part of the gasoline cut (C5 - C9) hydrogenated, condensed and recycled of said charge.
  • Table 3 Detailed weight composition of the petrol cut contained in an ethane steam cracker effluent.
  • the charge (in vapor form) to be hydrogenated can contain: * 0 to 6%, preferably 1 to 2.5% by weight of hydrogen; * 0 to 40%, preferably 15 to 30% by weight of methane; * 25 to 80%, preferably 30 to 45% by weight of C2 hydrocarbons and, in particular, 0.1 to 5%, preferably 0.2 to 2% by weight of acetylene and 15 to 75%, preferably 20 to 35% by weight of ethylene (and for example 0 to 25% by weight of ethane); * 0 to 40%, preferably 15 to 35% by weight of C3 hydrocarbons; * 0 to 10%, preferably 1 to 6% by weight of C4 hydrocarbons, and * 1 to 20%, preferably 1 to 7% by weight of gasoline, that is to say of hydrocarbons of 5 to 9 carbon atoms (C5+) and, in particular, 0.4 to 11% , preferably 0.8 to 6% by weight of aromatic hydrocarbons (less than 9 carbon atoms).
  • This hydrogenated cut can also contain a small amount of carbon monoxide, for example between 0.01 and 1% by weight, preferably between 0.02 and 0.2% by weight.
  • the charge to be hydrogenated can, for example, consist of the effluent from an ethane steam cracker.
  • the presence of hydrogen in the feed to be hydrogenated can advantageously avoid working with an external source of hydrogen.
  • the method according to the invention allows more satisfactory operation of the installation, the cycle times being increased in significant proportions and, surprisingly, the quality of the liquid which is recycled to the hydrogenation reactor is improved.
  • the hydrogenated cuts produced in the process meet the most stringent specifications: indeed, the C2 cut (after hydrogenation and separation) can easily contain less than 5 ppm by weight of acetylene, and the gasoline cut (after hydrogenation and separation) has a "Maleic Anhydride Value" (MAV), which is a measure of the content of conjugated diolefins, determined according to UOP standard No. 356, preferably less than 3.
  • MAV Meleic Anhydride Value
  • the hydrogenation catalyst consists of at least supported palladium.
  • Palladium is generally deposited in an amount of 0.01 to 1% by weight on a suitable support such as, for example, alumina or silica or a mixture of these two constituents.
  • Palladium can be associated with at least one additional metal chosen, for example, from the group formed by silver and gold, with contents which may generally be between 0.01 and 1% of the weight of catalyst.
  • the Au / Pd or Ag / Pd or (Au + Ag) / Pd weight ratio is less than 1.
  • the hydrogenation can be carried out in at least one reactor in which the catalyst is preferably placed in a fixed bed.
  • Figure 1 shows a non-limiting example of application of the invention.
  • the cup (normally gaseous) to be hydrogenated (1) for example the effluent from an ethane steam cracker
  • the liquid diluent (8) and possibly hydrogen (13) in the case where the cup to be hydrogenated does not contain or contains only a very small amount
  • the effluent from said reactor (4) is sent, via line (11), to a distillation column (5) making it possible to separate a gas fraction at the top (7) (which contains excess hydrogen and hydrocarbons with less than five carbon atoms, for example methane, the incondensable gas containing excess hydrogen, hydrogenated C2, C3 and C4 cuts (i.e.
  • This hydrogenated and sampled petrol cut can be used directly as fuel, therefore without transformation, because it contains an extremely small amount of diolefins and therefore of undesirable gums, diolefins which are in fact mainly hydrogenated during the process according to the invention .
  • the entire catalyst is permanently sprayed with the liquid phase (or liquid diluent) constituting the flow (8) and entering the reactor (4) towards its top.
  • the fresh charge to be hydrogenated can be injected towards the top of the reactor (4), via the pipe (2) and / or halfway up the catalyst by a pipe (3).
  • the recycled liquid (or diluent) phase generally contains at least 25%, preferably 50 to 85% and, even more preferably, 60 to 75% by weight of aromatic hydrocarbons (styrene is not counted in the aromatic hydrocarbons).
  • the operating conditions for hydrogenation according to the invention, according to usefully chosen as follows: - total pressure: 10 to 50 bars; - temperature: 10 to 150 ° C; - space speed expressed in gas flow volume flow rate to be hydrogenated, at normal temperature and pressure (TPN), by volume of catalyst and per hour (VVH gas): 500 to 20,000, preferably 1,000 to 10,000; - volume flow of recycled liquid at normal temperature and pressure (TPN), by volume of catalyst and per hour (VVH liquid): 1 to 15, preferably between 4 and 12.
  • the ratio, at the inlet of the reactor (4), between the weight flow rate of recycled liquid and the weight flow rate of gaseous feedstock to be hydrogenated is usually between 0.5 and 20, preferably between 1.0 and 10 and, even more preferably, between 1.5 and 5.
  • the catalyst contains 500 ppm by weight of palladium deposited on an alumina support with a specific surface area equal to 9 m2 / g and a pore volume equal to 0.5 cm3 / g.
  • the catalyst is placed in a fixed bed in a tubular reactor.
  • the section to be hydrogenated is passed through this reactor under the following operating conditions: - VVH gas: 2500 (TPN); - Pressure: 20 bars; - Temperature: 40 ° C.
  • the weight composition of the effluent leaving the reactor after 2 days and 15 days of operation is shown in Table 6 for the C2 cut and Table 7 for the gasoline produced (C5 - C9).
  • Table 6 Weight composition of cut C coupe in the effluent leaving the reactor. after 2 days after 15 days Acetylene 4.5 ppm 0.2% Ethylene 73.6% 73.5% Ethane 26.4% 26.3% Weight composition and properties of the gasoline fraction contained in the effluent leaving the reactor.
  • the catalyst is rapidly deactivated by fouling and that the hydrogenation reaction is insufficient: in fact, on the one hand, the conversion of acetylene is only 80% after 15 days of operation (acetylene content in the C2 cut: 1.0% by weight at the inlet, 0.2% by weight at the outlet) and, on the other hand, the conversion of the diolefins (and of styrene) has clearly decreased after 15 days of operation (content of diolefins (and styrene) in the petrol cut: 0.3% by weight after 2 days of operation, 6.0% by weight after 15 days of operation).
  • This catalyst is placed in a fixed bed in a tubular reactor; the unit also includes a distillation column containing 10 trays, the operation of this column is such that the gasoline cut (C5 - C9) and therefore all the benzene in the feed are found in the bottom racking and at least the major part of the C4 ⁇ (hydrocarbons with four carbon atoms at most) is found at the top.
  • the bottom liquid is taken up by a pump and constitutes the liquid inlet of the reactor, the cut to be hydrogenated being mixed with this liquid at the inlet of the reactor.
  • the loop is filled with toluene and a small continuous purge on the liquid drawn off at the bottom of the column is carried out during operation, in order to have a constant liquid level in the column.
  • the operating conditions are as follows: - VVH gas: 2500 (TPN); - Pressure: 20 bars; - Temperature: 40 ° C; - VVH liquid: 10 (TPN).
  • the weight flow rate of recycled liquid is equal to approximately 2.8 times the weight flow rate of gaseous feed to be hydrogenated.
  • Samples to analyze the purged liquid were taken and give the results presented in FIG. 2 (content (% weight) of toluene (continuous curve) and benzene (discontinuous curve) in the withdrawal liquid as a function of time (hour) ). It can be seen that after 200 hours the liquid phase has a constant composition which corresponds to the condensable part of the cup to be hydrogenated.
  • the weight composition of the gaseous and liquid effluents respectively at the head and at the bottom of the column after 10 days and after 2 months of operation is indicated respectively in Tables 8 and 9. Table 8. Weight composition of section C2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Procédé d'hydrogènation sélective en phase liquide d'un effluent provenant d'un vapocraqueur d'éthane, dans lequel ledit effluent est mis au contact d'un catalyseur constitué par au moins du palladium supporté, caractérisé en ce que l'on opère en présence d'une phase liquide contenant au moins une partie de la coupe essence hydrogénée, condensée et recyclée dudit effluent.
Ledit effluent (1), ladite phase liquide (8) et éventuellement de l'hydrogène (13) traversent le réacteur (4) d'hydrogénation. Le produit obtenu est fractionné (5) en une coupe gazeuse en tête (7) contenant de l'éthylène et une coupe essence liquide en fond que l'on recycle partiellement (8).
Le procédé peut être utilisé pour la production d'éthylène et pour la production d'essence.

Description

  • Les procédés thermiques de conversion tels que le vapocraquage, par exemple, produisent des composés oléfiniques intéressants pour la pétrochimie, mais leur valorisation exige une hydrogénation sélective des impuretés acétyléniques et dioléfiniques coproduites par ces procédés.
  • Ces hydrogénations sont généralement effectuées sur des coupes partielles comme, par exemple, la coupe C₂ contenant l'éthylène et l'acétylène, la coupe C₃ contenant le propylène, le propyne et le propadiène, la coupe C₄ contenant les butènes et le butadiène et la coupe essence contenant des aromatiques, d'autres oléfines et d'autres dioléfines.
  • De tels traitements séparés ne sont possibles que si les quantités relatives de ces coupes sont voisines, ce qui est le cas lorsque la charge du vapocraqueur est du naphta ou du gazole. Lorsque la charge est constituée par de l'éthane, l'effluent du vapocraqueur comprend essentiellement des hydrocarbures en C₂ (hydrocarbures à 2 atomes de carbone), les coupes les plus lourdes (C₄ et essence) étant nettement minoritaires. Il est d'une pratique courante de séparer alors grossièrement les liquides condensables et d'envoyer l'ensemble de l'effluent gazeux sur un catalyseur d'hydrogénation pour valoriser l'éthylène produit. La composition pondérale de cet effluent de vapocraqueur d'éthane est donnée dans le tableau 1. Tableau 1.
    Composition pondérale globale d'un effluent de vapocraqueur d'éthane.
    Hydrogène 1,44 %
    Monoxyde de carbone 0,06 %
    Méthane 24,79 %
    C₂ 38,65 %
    C₃ 26,70 %
    C₄ 3,41 %
    Essence (C₅ - C₉) 4,95 %
  • A 15°C, sous 20 bars (2000 KPa) de pression, un tel effluent est entièrement gazeux : l'hydrogénation doit donc être effectuée en phase gazeuse. Or, les parties les plus lourdes de cette coupe (C₄ et essence) contiennent des composés hautement polymérisables tels que le butadiène, l'isoprène et le styrène comme l'indiquent les tableaux 2 et 3 dans lesquels on donne les compositions types de coupes C₄ et essence. Tableau 2.
    Composition pondérale détaillée de la coupe C₄ contenue dans un effluent de vapocraqueur d'éthane.
    Teneur dans les C₄ Teneur dans la totalité
    Butadiène 43 % 1,48 %
    Butènes 43 % 1,47 %
    Butane 14 % 0,46 %
  • Les catalyseurs utilisés dans cette hydrogénation sont rapidement encrassés par ces produits de polymérisation et les durées de cycle sont, alors, désavantageusement très courtes.
  • L'objet de la présente invention est la mise au point d'un nouveau procédé d'hydrogénation catalytique sélective en phase liquide d'une charge d'hydrocarbures normalement gazeuse (c'est-à-dire sous forme vapeur à température et pression normales) contenant notamment de l'acétylène, de l'éthylène, de l'essence (hydrocarbures C₅ à C₉), la phase liquide (ou diluant liquide), en présence de laquelle (duquel) on opère, comprenant au moins une partie de la fraction condensable de ladite charge, c'est-à-dire au moins une partie de la coupe essence (C₅ - C₉) hydrogénée, condensée et recyclée de ladite charge. Tableau 3.
    Composition pondérale détaillé de la coupe essence contenue dans un effluent de vapocraqueur d'éthane.
    Teneur dans l'essence Teneur dans la totalité
    Pentanes + Pentènes 5,5 % 0,27 %
    Isoprène 0,4 % 0,02 %
    Hexane + Hexènes 5,5 % 0,27 %
    Benzène 51,9 % 2,57 %
    Heptane + Heptènes 1,6 % 0,08 %
    Toluène 13,5 % 0,67 %
    Octanes + octènes 0,8 % 0,04 %
    Ethylbenzène 2,6 % 0,13 %
    Xylènes 2,2 % 0,11 %
    Nonanes + Nonènes 7,9 % 0,39 %
    Styrène 8,1 % 0,40 %
  • En général, la charge (sous forme vapeur) à hydrogéner peut renfermer :
    * 0 à 6 %, de préférence 1 à 2,5 % en poids d'hydrogène ;
    * 0 à 40 %, de préférence 15 à 30 % en poids de méthane ;
    * 25 à 80 %, de préférence 30 à 45 % en poids d'hydrocarbures en C₂ et, en particulier, 0,1 à 5 %, de préférence 0,2 à 2 % en poids d'acétylène et 15 à 75 %, de préférence 20 à 35 % en poids d'éthylène (et par exemple 0 à 25% en poids d'éthane) ;
    * 0 à 40 %, de préférence 15 à 35 % en poids d'hydrocarbures en C₃ ;
    * 0 à 10 %, de préférence 1 à 6 % en poids d'hydrocarbures en C₄, et
    * 1 à 20 %, de préférence 1 à 7 % en poids d'essence, c'est-à-dire d'hydrocarbures de 5 à 9 atomes de carbone (C₅⁺) et, en particulier, 0,4 à 11 %, de préférence 0,8 à 6 % en poids d'hydrocarbures aromatiques (à moins de 9 atomes de carbone).
  • Cette coupe à hydrogéner peut également contenir une faible quantité de monoxyde de carbone, par exemple comprise entre 0,01 et 1 % en poids, de préférence entre 0,02 et 0,2 % en poids.
  • La charge à hydrogéner peut, par exemple, être constituée par l'effluent d'un vapocraqueur d'éthane.
  • La présence d'hydrogène dans la charge à hydrogéner peut éviter avantageusement de travailler avec une source extérieure d'hydrogène.
  • Le procédé selon l'invention permet un fonctionnement plus satisfaisant de l'installation, les durées de cycle étant augmentées dans des proportions importantes et, de façon surprenante, la qualité du liquide que l'on recycle au réacteur d'hydrogénation est améliorée. Les coupes hydrogénées produites dans le procédé répondent aux spécifications les plus sévères : en effet, la coupe C₂ (après hydrogénation et séparation) peut aisément renfermer moins de 5 ppm en poids d'acétylène, et la coupe essence (après hydrogénation et séparation) a une "Maleic Anhydride Value" (MAV), qui est une mesure de la teneur en dioléfines conjuguées, déterminée selon la norme UOP n° 356, de préférence inférieure à 3.
  • Le catalyseur d'hydrogénation est constitué par au moins du palladium supporté. Le palladium est en général déposé à raison de 0,01 à 1 % en poids sur un support approprié tel que, par exemple, l'alumine ou la silice ou un mélange de ces deux constituants.
  • Au palladium peut être associé au moins un métal additionnel choisi, par exemple, dans le groupe formé par l'argent et l'or, à des teneurs qui pourront être comprises en général entre 0,01 et 1 % du poids de catalyseur. De préférence, le rapport pondéral Au/Pd ou Ag/Pd ou (Au + Ag)/Pd est inférieur à 1.
  • L'hydrogénation peut être réalisée dans au moins un réacteur dans lequel le catalyseur est de préférence disposé en lit fixe. La figure 1 présente un exemple non limitatif d'application de l'invention.
  • La coupe (normalement gazeuse) à hydrogéner (1) (par exemple l'effluent d'un vapocraqueur d'éthane), le diluant liquide (8) et éventuellement de l'hydrogène (13) (dans le cas où la coupe à hydrogéner n'en contient pas ou n'en contient qu'une très faible quantité) sont introduits dans le réacteur d'hydrogénation (4). Après refroidissement dans l'échangeur (10), l'effluent dudit réacteur (4) est envoyé, par la conduite (11), dans une colonne à distiller (5) permettant de séparer une coupe gazeuse en tête (7) (qui renferme l'hydrogène en excès et les hydrocarbures à moins de cinq atomes de carbone, par exemple le méthane, la gaz incondensable contenant l'hydrogène en excès, les coupes C₂, C₃ et C₄ hydrogénées (c'est-à-dire la coupe C₄⁻ hydrogénée)) d'une coupe essence (C₅ - C₉) en fond (éventuellement accompagnée d'une faible quantité des C₄ les moins volatils), coupe essence qui va constituer au moins en partie le diluant liquide. Ce diluant liquide est en partie recyclé, c'est-à-dire renvoyé vers le réacteur (4) par la canalisation (8) à travers une pompe (12). L'autre partie de ce solvant est de préférence prélevée (donc purgée) avant son passage par la pompe (12), afin que la quantité totale d'essence contenue dans le système (réacteur (4) + conduites + colonne à distiller (5)) soit sensiblement constante, ce prélèvement constituant la coupe essence hydrogénée du procédé.
  • Cette coupe essence hydrogénée et prélevée est utilisable directement comme carburant, donc sans transformation, du fait qu'elle contient une quantité extrêmement faible de dioléfines et donc de gommes indésirables, dioléfines qui sont en effet en majeure partie hydrogénées lors du procédé selon l'invention.
  • On peut de plus facilement, par des méthodes de distillation connues de l'homme de l'art, séparer la coupe C₂, puis l'éthylène (qui est un mélange d'éthylène contenu dans la charge de départ et d'éthylène produit par l'hydrogénation de l'acétylène) contenu dans la coupe gazeuse déchargée en tête de la colonne (5) : le procédé selon l'invention permet donc de produire également de l'éthylène.
  • L'ensemble du catalyseur est en permanence arrosé par la phase liquide (ou diluant liquide) constituant le flux (8) et pénètrant dans le réacteur (4) vers son sommet. La charge fraîche à hydrogéner peut être injectée vers le sommet du réacteur (4), par la canalisation (2) et/ou à mi-hauteur du catalyseur par une canalisation (3). Cette disposition permet de faire varier, en cours de fonctionnement, la quantité de catalyseur qui travaille, ce qui rend possible l'ajustement de la réactivité de la masse totale de catalyseur.
  • L'implantation éventuelle sur l'entrée liquide du réacteur (4) d'un échangeur à vapeur (9) peut permettre d'ajuster les températures d'entrée dudit réacteur.
  • La phase liquide (ou diluant liquide) recyclée contient généralement au moins 25 %, de préférence 50 à 85 % et, de manière encore plus préférée, 60 à 75 % en poids d'hydrocarbures aromatiques (le styrène n'étant pas comptabilisé dans la catégorie des hydrocarbures aromatiques).
  • Les conditions opératoires de l'hydrogénation, selon l'invention, selon utilement choisies comme suit :
    - pression totale : 10 à 50 bars ;
    - température : 10 à 150 °C ;
    - vitesse spatiale exprimée en débit volumique de coupe gazeuse à hydrogéner, à température et pression normales (TPN), par volume de catalyseur et par heure (VVH gaz) : 500 à 20000, de préférence 1000 à 10000 ;
    - débit volumique de liquide recyclé à température et pression normales (TPN), par volume de catalyseur et par heure (VVH liquide) : 1 à 15, de préférence entre 4 et 12.
  • Dans ces conditions de VVH gaz et de VVH liquide, le rapport, à l'entrée du réacteur (4), entre le débit pondéral de liquide recyclé et le débit pondéral de charge gazeuse à hydrogéner est habituellement compris entre 0,5 et 20, de préférence entre 1,0 et 10 et, de manière encore plus préférée, entre 1,5 et 5.
  • Les exemples suivants illustrent de manière non limitative la présente invention.
  • Exemple 1.
  • Dans cet exemple qui illustre une technique de l'art antérieur, on traite une coupe normalement gazeuse dont la composition en poids est donnée dans le tableau 4. On n'utilise pas de diluant liquide. Tableau 4.
    Composition pondérale de la coupe gazeuse à hydrogéner.
    Hydrogène 1,44 % Isoprène 0,02 %
    Monoxyde de carbone 0,06 % Hexanes + Hexènes 0,27 %
    Méthane 24,79 %
    Benzène 2,57%
    Acétylène 0,37 %
    Ethylène 28,25 % Heptane + Heptènes 0,08 %
    Ethane 10,03 % Toluène 0,67 %
    Propadiène 0,12 % Octane + Octènes 0,04 %
    Propyne 0,28 %
    Ethylbenzène 0,13 %
    Propylène 15,22 %
    Xylènes 0,11 %
    Propane 11,08 %
    Butadiène 1,48 % Nonane + Nonènes 0,39 %
    Butènes 1,47 % Styrène 0,40 %
    Butane 0,46 %
    Pentane + Pentènes 0,27 %
    Tableau 5.
    Composition pondérale détaillée de la coupe C₂ contenue dans la coupe à hydrogéner.
    Teneur dans les C₂ Teneur dans la totalité
    Acétylène 1,0 % 0,37 %
    Ethylène 73,1 % 28,25 %
    Ethane 25,9 % 10,03 %
  • Le catalyseur contient 500 ppm en poids de palladium déposé sur un support d'alumine de surface spécifique égale à 9 m²/g et de volume poreux égal à 0,5 cm³/g. Le catalyseur est disposé en lit fixe dans un réacteur tubulaire.
  • On fait passer la coupe à hydrogéner dans ce réacteur dans les conditions opératoires suivantes :
    - VVH gaz : 2500 (TPN) ;
    - Pression : 20 bars ;
    - Température : 40°C.
  • La composition pondérale de l'effluent sortant du réacteur après 2 jours et 15 jours de fonctionnement est indiquée dans le tableau 6 pour la coupe C₂ et le tableau 7 pour l'essence produite (C₅ - C₉). Tableau 6.
    Composition pondérale de la coupe C₂ dans l'effluent sortant du réacteur.
    après 2 jours après 15 jours
    Acétylène 4,5 ppm 0,2 %
    Ethylène 73,6 % 73,5 %
    Ethane 26,4 % 26,3 %
    Tableau 7.
    Composition pondérale et propriétés de la coupe essence contenue dans l'effluent sortant du réacteur.
    Composition (en poids) Après 2 jours Après 15 jours
    Paraffines 22,4 % 22,2 %
    Dioléfines + Styrène 0,3 % 6,0 %
    Oléfines 10,3 % 4,8 %
    Aromatiques 67,0 % 67,0 %
    MAV 3 60
    Indice d'octane 98 non mesurée*
    * car les dioléfines conjuguées et donc des gommes sont présentes en quantités non négligeables.
  • On constate ainsi que, dans ces conditions, le catalyseur est rapidement désactivé par encrassement et que la réaction d'hydrogénation est insuffisante : en effet, d'une part la conversion de l'acétylène n'est plus que de 80 % au bout de 15 jours de fonctionnement (teneur en acétylène dans la coupe C₂ : 1,0 % en poids à l'entrée, 0,2 % en poids à la sortie) et, d'autre part, la conversion des dioléfines (et du styrène) a nettement diminué après 15 jours de fonctionnement (teneur en dioléfines (et styrène) dans la coupe essence : 0,3 % en poids après 2 jours de fonctionnement, 6,0 % en poids après 15 jours de fonctionnement).
  • La seule possibilité d'augmenter la conversion serait d'élever la température de fonctionnement, ce qui nuirait inévitablement au rendement en oléfines et accélèrerait encore l'encrassement du catalyseur.
  • Exemple 2 (selon l'invention).
  • On traite la même charge que dans l'exemple 1, le catalyseur utilisé étant également le même.
  • Ce catalyseur est disposé en lit fixe dans un réacteur tubulaire ; l'unité comporte également une colonne à distiller contenant 10 plateaux, le fonctionnement de cette colonne est tel que la coupe essence (C₅ - C₉) et donc tout le benzène de l'alimentation se retrouvent dans le soutirage de fond et au moins la majeure partie des C₄⁻ (hydrocarbures à quatre atomes de carbone au plus) se retrouve en tête. Le liquide de fond est repris par une pompe et constitue l'entrée liquide du réacteur, la coupe à hydrogéner étant mélangée à ce liquide à l'entrée du réacteur.
  • Au démarrage de l'unité, la boucle est remplie de toluène et une petite purge en continu sur le liquide soutiré en fond de colonne est effectuée en cours d'opération, afin d'avoir un niveau liquide constant dans la colonne.
  • Les conditions opératoires sont les suivantes : - VVH gaz : 2500 (TPN) ;
    - Pression : 20 bars ;
    - Température : 40 °C ;
    - VVH liquide : 10 (TPN).
  • Avec ces conditions de VVH gaz et liquide, le débit pondéral de liquide recyclé est égal à environ 2,8 fois le débit pondéral de charge gazeuse à hydrogéner. Des prélèvements pour analyser le liquide purgé ont été effectués et donnent les résultats présentés sur la figure 2 (teneur (% poids) de toluène (courbe continue) et de benzène (courbe discontinue) dans le liquide de soutirage en fonction du temps (heure)). On constate qu'au bout de 200 heures la phase liquide a une composition constante qui correspond à la partie condensable de la coupe à hydrogéner. La composition pondérale des effluents gazeux et liquide respectivement en tête et en fond de colonne après 10 jours et après 2 mois de fonctionnement est indiquée respectivement dans les tableaux 8 et 9. Tableau 8.
    Composition pondérale de la coupe C₂.
    après 10 jours après 2 mois
    Acétylène 3,2 ppm 4 ppm
    Ethylène 73,9 % 73,7 %
    Ethane 26,1 % 26,3 %
    Tableau 9.
    Composition pondérale et propriétés de la coupe essence.
    Composition (en poids) Après 10 jours Après 2 mois
    Paraffines 22,33 % 22,21 %
    Dioléfines + Styrène 0,27 % 0,29 %
    Oléfines 10 % 10,1 %
    Aromatiques 67,4 % 67,4 %
    MAV 2,5 2,7
    Indice d'octane 98 98
  • On constate que contrairement à l'exemple 1, les performances de l'hydrogènation sont stables. En effet, au bout de 2 mois, les résultats sont voisins des résultats initiaux (voir tableau 10). Tableau 10.
    Conversions et rendements pondéraux.
    après 10 jours après 2 mois
    Conversions :
    Acétylène 99,97 % 99,96 %
    Propyne + Propadiène 94,2 % 93,2 %
    Butadiène 93,8 % 93,1 %
    Isoprène + Styrène 96,6 % 95,4 %
    Rendements :
    Ethylène 101 % 100,8 %
    Propylène 101,9 % 101,7 %
    Butènes 193 % 190 %

Claims (10)

1. Procédé d'hydrogénation sélective en phase liquide d'une charge d'hydrocarbures normalement gazeuse contenant au moins de l'éthylène, de l'acétylène et une coupe essence, dans lequel ladite charge sous forme vapeur est mise au contact d'un catalyseur constitué par au moins du palladium supporté, le procédé étant caractérisé en ce que l'on opère en présence d'une phase liquide, ladite phase liquide renfermant au moins une partie de la coupe essence hydrogénée, condensée et recyclée de ladite charge.
2. Procédé selon la revendication 1 dans lequel ladite charge d'hydrocarbures contient 0 à 6 % en poids d'hydrogène, 0 à 40 % en poids de méthane, 25 à 80 % en poids d'hydrocarbures en C₂, en particulier 0,1 à 5 % en poids d'acétylène et 15 à 75 % en poids d'éthylène, 0 à 40 % en poids d'hydrocarbures en C₃, 0 à 10 % en poids d'hydrocarbures en C₄, et 1 à 20 % en poids d'essence.
3. Procédé selon la revendication 1 dans lequel ladite charge d'hydrocarbures contient 1 à 2,5 % en poids d'hydrogène, 15 à 30 % en poids de méthane, 30 à 45 % en poids d'hydrocarbures en C₂, en particulier 0,2 à 2 % en poids d'acétylène et 20 à 35 % en poids d'éthylène, 15 à 35 % en poids d'hydrocarbures en C₃, 1 à 6 % en poids d'hydrocarbures en C₄ et 1 à 7 % en poids d'essence.
4. Procédé selon l'une des revendications 1 à 3 dans lequel ladite charge d'hydrocarbures est un effluent provenant d'un vapocraqueur d'éthane.
5. Procédé selon l'une des revendications 1 à 4 caractérisé en ce que ladite phase liquide renferme au moins 25 % en poids d'hydrocarbures aromatiques.
6. Procédé selon la revendication 5 caractérisé en ce que ladite phase liquide contient 50 à 85 % en poids d'hydrocarbures aromatiques.
7. Procédé selon l'une des revendications 1 à 6 dans lequel ledit catalyseur est constitué par du palladium et au moins un métal additionnel choisi dans le groupe formé par l'or et l'argent, le mélange du palladium et d'au moins un métal additionnel étant déposé sur au moins un support choisi dans le groupe formé par l'alumine et la silice.
8. Procédé selon l'une des revendications 1 à 7 caractérisé en ce que le rapport entre le débit pondéral de ladite phase liquide et le débit pondéral de ladite charge à hydrogéner est compris entre 0,5 et 20.
9. Procédé selon la revendication 8 caractérisé en ce que ledit rapport est compris entre 1 et 10.
10. Utilisation du procédé selon l'une des revendications 1 à 9 pour la production d'éthylène et pour la production d'essence.
EP89400781A 1988-03-23 1989-03-20 Procédé d'hydrogénation catalytique sélective en phase liquide d'une charge normalement gazeuse contenant de l'éthylène, de l'acétyléne et de l'essence Expired - Lifetime EP0334742B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89400781T ATE81666T1 (de) 1988-03-23 1989-03-20 Verfahren zur selektiven hydrierung eines normal gasfoermigen einsatzes, der ethylen, acetylen und benzin enthaelt.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8803909 1988-03-23
FR8803909A FR2629094B1 (fr) 1988-03-23 1988-03-23 Procede d'hydrogenation catalytique selective en phase liquide d'une charge normalement gazeuse contenant de l'ethylene, de l'acetylene et de l'essence

Publications (2)

Publication Number Publication Date
EP0334742A1 true EP0334742A1 (fr) 1989-09-27
EP0334742B1 EP0334742B1 (fr) 1992-10-21

Family

ID=9364629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89400781A Expired - Lifetime EP0334742B1 (fr) 1988-03-23 1989-03-20 Procédé d'hydrogénation catalytique sélective en phase liquide d'une charge normalement gazeuse contenant de l'éthylène, de l'acétyléne et de l'essence

Country Status (7)

Country Link
US (1) US5059732A (fr)
EP (1) EP0334742B1 (fr)
JP (1) JP2736799B2 (fr)
AT (1) ATE81666T1 (fr)
CA (1) CA1316947C (fr)
DE (1) DE68903239T2 (fr)
FR (1) FR2629094B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023499A1 (fr) * 1992-05-12 1993-11-25 Exxon Chemical Patents Inc. Moderateurs de convertisseur d'acetylene
CN1047190C (zh) * 1992-05-01 1999-12-08 菲利浦石油公司 催化剂组合物
CN1081487C (zh) * 1995-09-23 2002-03-27 巴斯福股份公司 用于对烃流中乙炔选择催化加氢的载体钯催化剂
CN103819298A (zh) * 2014-03-07 2014-05-28 中石化上海工程有限公司 碳二馏分选择性加氢反应方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414170A (en) * 1993-05-12 1995-05-09 Stone & Webster Engineering Corporation Mixed phase front end C2 acetylene hydrogenation
FR2743079B1 (fr) * 1995-12-27 1998-02-06 Inst Francais Du Petrole Procede et dispositif d'hydrogenation selective par distillation catalytique comportant une zone reactionnelle a co-courant ascendant liquide-gaz
US5688993A (en) * 1995-12-22 1997-11-18 E. I. Du Pont De Nemours And Company Method for modifying catalyst performance during the gas phase synthesis of vinyl acetate
US5859304A (en) * 1996-12-13 1999-01-12 Stone & Webster Engineering Corp. Chemical absorption process for recovering olefins from cracked gases
FR2795022A1 (fr) * 1999-06-21 2000-12-22 Michelin Soc Tech Ensemble d'un pneumatique, d'une jante et d'un adaptateur
FR2797641B1 (fr) * 1999-08-17 2001-09-21 Inst Francais Du Petrole Procede et dispositif de separation d'ethane et d'ethylene par absorption par solvant et hydrogenation de la phase solvant et regeneration du solvant
FR2797640B1 (fr) * 1999-08-17 2001-09-21 Inst Francais Du Petrole Procede et dispositif de separation d'ethane et d'ethylene a partir d'un effluent de vapocraquage par absorption par solvant et hydrogenation de la phase solvant
US6297414B1 (en) 1999-10-08 2001-10-02 Stone & Webster Process Technology, Inc. Deep selective hydrogenation process
US6339182B1 (en) 2000-06-20 2002-01-15 Chevron U.S.A. Inc. Separation of olefins from paraffins using ionic liquid solutions
US6849774B2 (en) * 2001-12-31 2005-02-01 Chevron U.S.A. Inc. Separation of dienes from olefins using ionic liquids
MY137042A (en) * 2002-06-14 2008-12-31 Chevron Phillips Chemical Co Hydrogenation palladium-silver catalyst and methods
US7919431B2 (en) * 2003-09-03 2011-04-05 Synfuels International, Inc. Catalyst formulation for hydrogenation
US7045670B2 (en) * 2003-09-03 2006-05-16 Synfuels International, Inc. Process for liquid phase hydrogenation
US7521393B2 (en) * 2004-07-27 2009-04-21 Süd-Chemie Inc Selective hydrogenation catalyst designed for raw gas feed streams
US8013197B2 (en) 2005-02-18 2011-09-06 Synfuels International, Inc. Absorption and conversion of acetylenic compounds
EP1741691A1 (fr) * 2005-07-06 2007-01-10 Saudi Basic Industries Corporation Procédé pour la production d'éthylène
MX2008001232A (es) 2005-07-27 2008-03-18 Chevron Phillips Chemical Co Un catalizador para hidrogenacion selectiva y los metodos para elaborar y utilizar el mismo.
KR101519663B1 (ko) * 2006-01-23 2015-05-12 사우디 베이식 인더스트리즈 코포레이션 열 집적과 함께 천연가스로부터 에틸렌을 생산하는 방법
US20120209042A1 (en) 2011-02-10 2012-08-16 Saudi Basic Industries Corporation Liquid Phase Hydrogenation of Alkynes
US9676685B2 (en) 2013-06-25 2017-06-13 Dow Technology Investments Llc Selective hydrogenation process
CN105585665B (zh) * 2014-10-22 2019-06-11 中国石油化工股份有限公司 石油树脂连续加氢制备氢化石油树脂的方法
US20240034699A1 (en) 2022-07-28 2024-02-01 Chevron Phillips Chemical Company, Lp Flexible Benzene Production Via Selective-Higher-Olefin Oligomerization of Ethylene

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3537981A (en) * 1969-05-07 1970-11-03 Universal Oil Prod Co Method for stabilizing pyrolysis gasoline
GB2052556A (en) * 1979-06-08 1981-01-28 Inst Francais Du Petrole Selective hydrogenation c2-3 hydrocarbon fractions
FR2482953A1 (fr) * 1980-05-22 1981-11-27 Inst Francais Du Petrole Procede d'hydrogenation selective d'une di-olefine dans un melange d'hydrocarbures renfermant au moins 4 atomes de carbone et contenant une olefine -a
EP0135442A1 (fr) * 1983-09-19 1985-03-27 Institut Français du Pétrole Procédé d'hydrogénation sélective de l'acétylène contenu dansun mélange d'acétylène et d'étylène.

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2909578A (en) * 1957-04-26 1959-10-20 Engelhard Ind Inc Hydrogenation of acetylene
US3098882A (en) * 1961-11-24 1963-07-23 Chemetron Corp Selective hydrogenation procedure and catalyst therefor
US3309307A (en) * 1964-02-13 1967-03-14 Mobil Oil Corp Selective hydrogenation of hydrocarbons
US3305597A (en) * 1964-04-17 1967-02-21 Engelhard Ind Inc Process for the removal of oxygen and acetylenic contaminants from normally gaseous olefins
US3310485A (en) * 1964-05-04 1967-03-21 Gulf Research Development Co Hydrogenation of olefinic gasoline
NL6606236A (fr) * 1965-05-08 1966-11-10
US3413214A (en) * 1965-12-20 1968-11-26 Cities Service Res & Dev Co Hydrogenation process
US3451922A (en) * 1967-04-28 1969-06-24 Universal Oil Prod Co Method for hydrogenation
US3639227A (en) * 1969-11-17 1972-02-01 Chevron Res Chloride addition during hydrogenation
US3751515A (en) * 1972-03-28 1973-08-07 Goodyear Tire & Rubber Hydrogenation process
US3842137A (en) * 1973-01-02 1974-10-15 Monsanto Co Selective hydrogenation of c4 acetylenic hydrocarbons
US3839483A (en) * 1973-01-29 1974-10-01 Gulf Research Development Co Method of controlling the hydrogenation of acetylene
US4484015A (en) * 1981-05-06 1984-11-20 Phillips Petroleum Company Selective hydrogenation
DE3143647A1 (de) * 1981-11-04 1983-05-11 Chemische Werke Hüls AG, 4370 Marl Verfahren zur selektiven hydrierung von mehrfach ungesaettigten kohlenwasserstoffen in kohlenwasserstoff-gemischen
FR2523149A1 (fr) * 1982-03-15 1983-09-16 Catalyse Soc Prod Francais Nouveau catalyseur supporte palladium-or, sa preparation et son utilisation dans les reactions d'hydrogenation selective d'hydrocarbures diolefiniques et/ou acetyleniques
FR2536410B1 (fr) * 1982-11-24 1985-10-11 Pro Catalyse Procede d'hydrogenation selective des hydrocarbures acetyleniques d'une coupe d'hydrocarbures c4 renfermant du butadiene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3537981A (en) * 1969-05-07 1970-11-03 Universal Oil Prod Co Method for stabilizing pyrolysis gasoline
GB2052556A (en) * 1979-06-08 1981-01-28 Inst Francais Du Petrole Selective hydrogenation c2-3 hydrocarbon fractions
FR2482953A1 (fr) * 1980-05-22 1981-11-27 Inst Francais Du Petrole Procede d'hydrogenation selective d'une di-olefine dans un melange d'hydrocarbures renfermant au moins 4 atomes de carbone et contenant une olefine -a
EP0135442A1 (fr) * 1983-09-19 1985-03-27 Institut Français du Pétrole Procédé d'hydrogénation sélective de l'acétylène contenu dansun mélange d'acétylène et d'étylène.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047190C (zh) * 1992-05-01 1999-12-08 菲利浦石油公司 催化剂组合物
WO1993023499A1 (fr) * 1992-05-12 1993-11-25 Exxon Chemical Patents Inc. Moderateurs de convertisseur d'acetylene
CN1081487C (zh) * 1995-09-23 2002-03-27 巴斯福股份公司 用于对烃流中乙炔选择催化加氢的载体钯催化剂
CN103819298A (zh) * 2014-03-07 2014-05-28 中石化上海工程有限公司 碳二馏分选择性加氢反应方法
CN103819298B (zh) * 2014-03-07 2015-09-02 中石化上海工程有限公司 碳二馏分选择性加氢反应方法

Also Published As

Publication number Publication date
DE68903239D1 (de) 1992-11-26
CA1316947C (fr) 1993-04-27
DE68903239T2 (de) 1993-04-15
JP2736799B2 (ja) 1998-04-02
JPH01284586A (ja) 1989-11-15
FR2629094A1 (fr) 1989-09-29
US5059732A (en) 1991-10-22
FR2629094B1 (fr) 1991-01-04
ATE81666T1 (de) 1992-11-15
EP0334742B1 (fr) 1992-10-21

Similar Documents

Publication Publication Date Title
EP0334742B1 (fr) Procédé d'hydrogénation catalytique sélective en phase liquide d'une charge normalement gazeuse contenant de l'éthylène, de l'acétyléne et de l'essence
EP0742234B1 (fr) Procédé et installation pour la conversion de coupes C4 oléfiniques en polyisobutène et en propylène
EP0838449B1 (fr) Nouveau procédé de production d'isobutène et de propylène à partir de coupes d'hydrocarbures à quatre atomes de carbone
EP0742195B1 (fr) Procédé et installation pour la conversion de coupes C4 et C5 oléfiniques en éther et en propylène
EP0089252B1 (fr) Nouveau catalyseur supporté palladium-or, sa préparation et son utilisation dans les réactions d'hydrogénation sélective d'hydrocarbures dioléfiniques et/ou acétyléniques
EP0781829B1 (fr) Procédé et dispositif d'hydrogénation sélective par distillation catalytique
JP4606521B2 (ja) 炭化水素流れ中のアセチレンと1,2―ブタジエンを同時的に選択的水素化する方法
WO2006067305A1 (fr) Procede de conversion directe d’une charge comprenant des olefines a quatre et/ou cinq atomes de carbone, pour la production de propylene avec une co-production d’essence
EP1167491B1 (fr) Procédé pour l'hydrogénation de coupes contenant des hydrocarbures
JPH09511261A (ja) 炭化水素の流れの中の高度不飽和化合物の選択水素化
EP2321385A1 (fr) Procédé de conversion d'une charge lourde en essence et en propylène présentant une structure de rendement modulable
RU2120931C1 (ru) Способ селективного гидрирования диолефинов (варианты)
FR2536410A1 (fr) Procede d'hydrogenation selective des hydrocarbures acetyleniques d'une coupe d'hydrocarbures c4 renfermant du butadiene
EP0700984A2 (fr) Hydrogénation sélective de coupes hydrocarbonées renfermant des hydrocarbures monoinsaturés et polyinsaturés
EP0068981B1 (fr) Procédé d'obtention conjointe de butène-1 de haute pureté et de supercarburant à partir d'une coupe C4 oléfinique
FR2942796A1 (fr) Procede de conversion directe d'une charge comprenant des olefines a quatre et/ou cinq atomes de carbone pour la production de propylene
EP0922018A1 (fr) Procede de production d'isobutene de haute purete a partir d'une coupe c4 contenant de l'isobutene et du butene-1
FR2797640A1 (fr) Procede et dispositif de separation d'ethane et d'ethylene a partir d'un effluent de vapocraquage par absorption par solvant et hydrogenation de la phase solvant
BE1009871A3 (fr) Hydrogenation selective de composes fortement insatures dans des charges hydrocarbonees.
EP1110933B1 (fr) Procédé de production sélective de propylène à partir de coupes d'hydrocarbures à quatre atomes de carbone
FR2764881A1 (fr) Procede de synthese et de purification d'olefines comprenant la deshydrogenation d'une paraffine
WO2023117594A1 (fr) Unité de production et de séparation des aromatiques avec valorisation d'un extrait et/ou d'un raffinat provenant d'un procédé d'extraction liquide-liquide
JPH05238962A (ja) 3級アミルアルキルエーテルに富みオレフィン類を含まない溜分とn−ペンタンに富むパラフィン溜分の製造法
FR2517668A1 (fr) Procede d'obtention conjointe de butene-1 de haute purete, de supercarburant et de combustible pour carbureacteur
FR2621322A1 (fr) Procede de vaporisation d'une charge liquide dans un procede de craquage catalytique en lit fluide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE GB IT LU NL

17P Request for examination filed

Effective date: 19891013

17Q First examination report despatched

Effective date: 19900925

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE GB IT LU NL

REF Corresponds to:

Ref document number: 81666

Country of ref document: AT

Date of ref document: 19921115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68903239

Country of ref document: DE

Date of ref document: 19921126

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EPTA Lu: last paid annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020322

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20020329

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030320

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040226

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040323

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040331

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040413

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050320

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU *PETROLE

Effective date: 20050331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050320

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20051001

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU *PETROLE

Effective date: 20050331