EP0331992A2 - Kapazitiver Schallwandler - Google Patents

Kapazitiver Schallwandler Download PDF

Info

Publication number
EP0331992A2
EP0331992A2 EP89103276A EP89103276A EP0331992A2 EP 0331992 A2 EP0331992 A2 EP 0331992A2 EP 89103276 A EP89103276 A EP 89103276A EP 89103276 A EP89103276 A EP 89103276A EP 0331992 A2 EP0331992 A2 EP 0331992A2
Authority
EP
European Patent Office
Prior art keywords
membrane
electrode structure
capacitive
membrane unit
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89103276A
Other languages
English (en)
French (fr)
Other versions
EP0331992B1 (de
EP0331992A3 (de
Inventor
Wolfgang Dipl.-Ing. Kühnel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sennheiser Electronic GmbH and Co KG
Original Assignee
Sennheiser Electronic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sennheiser Electronic GmbH and Co KG filed Critical Sennheiser Electronic GmbH and Co KG
Publication of EP0331992A2 publication Critical patent/EP0331992A2/de
Publication of EP0331992A3 publication Critical patent/EP0331992A3/de
Application granted granted Critical
Publication of EP0331992B1 publication Critical patent/EP0331992B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making
    • Y10T29/435Solid dielectric type

Definitions

  • the invention relates to a capacitive sound transducer, which consists of a membrane unit and at least one fixed counter-electrode structure made of semiconducting material.
  • the converter serves as a microphone for converting sound pressure changes into electrical signals.
  • Capacitive microphones based on the previous electrostatic principle consist of a membrane and at least one fixed counter electrode.
  • the membrane has a certain tensile stress with which the acoustic properties of the microphone capsule can be influenced.
  • the counter electrode is provided with channels and holes, on the one hand so that the air can flow out of the air gap delimited by the membrane and counter electrode into a back volume of the transducer and on the other hand to reduce the attenuation losses in the air gap, which reduce the sensitivity of the microphone and the frequency response influence.
  • the signal conversion is done by evaluating the relative change in capacitance of the converter.
  • the newer methods of semiconductor technology allow the production of miniature transducers in a micromechanical way, for example based on silicon.
  • the structure of a silicon microphone is described in the literature reference KAPAZITITVE SILICON SENSORS FOR HEARING SOUND APPLICATIONS, published in 1986 by VDI-Verlag, ISBN 3-18-14161o-9.
  • This transducer which is manufactured in a micromechanical way, has the dimensions of approx. 1.6 x 2 xo, 6 mm3.
  • the active membrane area exists from a silicon nitride layer coated with a metal layer, which, separated by an air gap, is opposed by a counterelectrode also made of silicon.
  • Miniature microphones manufactured using semiconductor technology have particular disadvantages which are caused by attenuation losses in the very narrow air gap. If the membrane is excited to oscillate by a periodic alternating pressure, a flow forms in the air gap. However, the narrower the air gap, the higher the flow resistance, since the losses are primarily caused by friction on the walls. The flow resistance is also frequency dependent; it increases with increasing frequencies, so that the sensitivity to higher frequencies drops sharply. Since the attenuation losses do not increase linearly with a gap narrowing but progressively, the negative influence on microphones of the type described is particularly high. The possibility of perforating the counter electrode is currently not available due to its small size and lack of technology. With the microphone specified in the literature reference, the sensitivity therefore drops to values below -6o dB due to air gap losses, based on 1 V / Pa, and the frequency response is limited to a few kilohertz.
  • Air gap damping that occurs between the membrane and counter electrode could be reduced by reducing the lateral dimensions of the counter electrode. Lateral dimensions are the dimensions perpendicular to the direction of air flow. Such reductions also reduce the converter's resting capacity. The lower limit thereof is approximately 1 pF with respect to the level of the signal obtained in a low-frequency circuit. A reduction in the counter-electrode dimensions, which could lead to a reduction in the flow resistance, is therefore no longer an option with this low resting capacity.
  • the invention has set itself the task of creating a miniature microphone produced using the means of semiconductor technology, in which the active surface of the membrane is good Efficiency as in previously known microphones is retained, but the attenuation losses occurring in the air gap are reduced by a suitable design of the counterelectrode in such a way that the disadvantages of previously known microphones are avoided.
  • This object is achieved with the features specified in the characterizing part of patent claim 1.
  • a counterelectrode which is significantly smaller in its lateral dimensions and inevitably also leads to lower attenuation losses, can be used if it is assumed that the output signal of the converter is obtained by the relative change in its quiescent capacitance. According to the invention, therefore, smaller resting capacities can be used if the input capacitance of an active element is controlled by the movements of the membrane.
  • Field effect transistors have gate-channel capacitances in the range of 1o ⁇ 15F, that is 1 / 1ooo of the above-mentioned membrane counterelectrode capacitance of 1 pF. If the drain-channel-source structure of a field effect transistor is arranged opposite a membrane, the flow losses are largely eliminated due to the very small dimensions of the counterelectrode structure required. This effect already occurs when the width of the counter electrode structure is approximately one tenth of the dimensions of the active membrane area.
  • FIG. 1 The basic structure of a capacitive sound transducer according to the invention, hereinafter called the FET microphone, is shown in FIG. 1.
  • a membrane metallized with aluminum, for example, is located, separated by an air gap d L, above a drain-channel-source structure, which is called the counter-electrode structure in the following.
  • the channel zone of this structure is covered with an oxide protective layer.
  • a weakly p-doped silicon substrate forms the channel zone L, the heavily n-doped electrodes form the drain and source of the FET. For example, this is an N-channel enhancement type.
  • the voltage U GS applied between the membrane and the source connection determines the operating point of the field effect transistor.
  • the FET microphone is advantageously operated in a source circuit. This is shown in FIG. 3, as is the associated small-signal equivalent circuit.
  • the operating voltage U B is supplied to the microphone via the drain resistor R d , which can be integrated directly on the chip forming the counter electrode.
  • the microphone output voltage U a is tapped at the drain connection; the membrane is biased against the source with the voltage U GS .
  • the current source with the mechanical-electrical slope S me is controlled by the membrane deflection X.
  • the impressed current produces a voltage drop in the drain resistor R d which corresponds to the output voltage U a .
  • the mechanical equivalent circuit shown in Fig. 2 is used to calculate the frequency response and sensitivity of the FET microphone.
  • R S (w) and M S (w) represent the radiation impedance Z mS of the membrane, M M the mass and C M the compliance of the membrane, which vibrates with the rapid v m .
  • the rear air volume is represented by the compliance C V.
  • the volume results from the wafer thickness, which represents the back volume height. It is 28o um.
  • C V 2.866 x 1o ⁇ 3 sec2 / kg.
  • the mass, compliance and frictional losses of the air in the air gap can be neglected, since the width of the air gap and the width of the drain-channel-source structure are considerably smaller than the lateral dimensions of the membrane and the openings in the back volume.
  • the microphone sensitivity increases proportionally with the mechanical-electrical slope S me and the drain resistance R D.
  • these cannot be increased arbitrarily, since the available level of the operating voltage U B and the maximum adjustable electrical membrane bias U GS (breakdown field strength in the channel) represent upper limits.
  • a large total resilience C ges requires a "soft" membrane (high resilience C M) and a large back volume (C V).
  • C M high resilience
  • C V back volume
  • the small membrane area A of subminiature transducers is an inherent problem.
  • Fig. 4 shows a graphical representation of the dependence of the sensitivity M e on the frequency for different mechanical membrane tensions and back volumes.
  • the FET microphone consists of two chips, the upper one carrying the membrane 2 as the membrane unit 1 and the lower one carrying the drain-channel-source structure 8 of the FET as the counter electrode structure 3.
  • the membrane 2 consists of a 150 nm thick layer 4 made of silicon nitride, the mechanical stress properties of which can be influenced by ion implantations during the manufacturing process.
  • the membrane 2 is held by a support frame 2.1, which surrounds the membrane in the form of a wall and consists of the semiconducting base material, preferably silicon. It is vapor-coated on its underside with a 100 nm aluminum layer 5. This vaporization represents the gate of the FET.
  • two trough-shaped pits 6 and 7 are introduced by plasma etching, which form the back volume of the microphone. Between the pits there is an 8 ⁇ m-wide web 8 which carries the drain-channel-source structure 9, 10 and 11 of the FET. The distance between the channel 10 and the aluminum layer of the membrane 5 is 2 ⁇ m.
  • a compensation hole for the static air pressure is located in the silicon oxide edge 12 of the counterelectrode chip, provided that the microphone capsule is to work as a pressure transducer with an acoustically closed volume.
  • the converter described in FIG. 5 can also be expanded to a push-pull converter by using a second counter-electrode structure with a suitably shaped web similar to the web 8 in the depression of the membrane unit 1 predetermined by the wall. In this case, the membrane 2 must then be metallized on both sides. If the transducer is to function as a push-pull transducer in the manner described or if a pressure gradient characteristic is to be obtained in accordance with another expedient embodiment, the volumes in front of or behind the diaphragm are to be connected to the external sound field via openings. 5, such openings are shown with the reference numerals 14 and 15, for example.
  • the N or P-channel enrichment principle was first used in the counter-electrode structure for the channel zone.
  • the depletion principle can also advantageously be used for the channel zone. Since an operating point is already specified here in the FET circuit, the separate bias for the gate can be omitted here, since it can itself be generated in a known manner via a resistor used in the source circuit.
  • a great advantage of a capacitive transducer according to the invention is that a relatively large active membrane area, which is required for good acoustic efficiency of the transducer, is only a small part of the membrane area opposite a counter-electrode structure, and thus the flow losses are negligibly small. This results in a large linear transmission range with very good sensitivity, as can be seen from FIG. 4. Furthermore, the noise behavior of the converter is extremely favorable, since the noise component caused by damping in the air gap is very low due to the principle. Capacitive converters are mostly operated in the so-called low-frequency circuit and therefore require a series resistor, the thermal noise of which also increases with increasing resistance. Decreasing converter quiescent capacitances in miniature microphones require increasing series resistances at the same lower cut-off frequency, which was an unsolvable problem in the previous versions. Since the FET microphone does not require a series resistor, the noise component has also been significantly reduced.
  • the noise behavior can also be improved by operating a plurality of FET microphones which have arisen jointly on the wafer in parallel as a microphone unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Pressure Sensors (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Measuring Fluid Pressure (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

Kapazitive Schallwandler sehr kleiner Bauart, insbesondere Mikrofone, bestehen aus mindestens zwei zusammengefügten Halbleiterchips, welche eine Membraneinheit und eine feststehende Gegenelektrodenstruktur verkörpern und mittels bekannter Methoden der Halbleitertechnologie hergestellt werden. Durch die sehr kleine Bauart entstehen hohe Strömungsverluste, welche zu einem hohen Rauschen und einer geringen Empfindlichkeit und einem schlechten Frequenzgang führen. Der Wandler nach der Erfindung weist besonders geringe Strömungsverluste auf, wodurch die genannten Nachteile stark vermindert werden. Er ist dadurch gekennzeichnet, daß der akustisch aktive Teil der Membraneinheit (1) mit mindestens einer Gegenelektrodenstruktur (3), welche von der Membraneinheit durch einen Luftspalt getrennt ist, ein einem Feldeffekttransistor vergleichbares System bildet. Die aus halbleitendem Grundmaterial gebildete Membraneinheit umfaßt eine akustisch aktive Membranfläche (2), deren der Gegenelektrodenstruktur zugewandte Seite (5) elektrisch leitend ist. Die Gegenelektrodenstruktur (3) besteht aus einer aus halbleitendem Grundmaterial herausgearbeiteten durch eine Source-Drain-Anordnung begrenzte Kanalstrecke (8), deren geometrische Breitenabmessung in der Größenordnung von einem Zehntel der lateralen Abmessung der aktiven Membranfläche liegt.

Description

  • Die Erfindung bezieht sich auf einen kapazitiven Schallwandler, welcher aus einer Membraneinheit und mindestens einer feststehenden Gegen­elektrodenstruktur aus halbleitenden Material besteht. Der Wandler dient als Mikrofon der Umsetzung von Schalldruckänderungen in elektri­sche Signale. Kapazitive Mikrofone nach dem bisherigen elektrostati­schen Prinzip bestehen aus einer Membran und zumindest einer festste­henden Gegenelektrode. Die Membran besitzt eine bestimmte Zugspannung, mit der die akustischen Eigenschaften der Mikrofonkapsel beeinflußt werden können. Die Gegenelektrode ist mit Kanälen und Bohrungen verse­hen, einerseits, damit die Luft aus dem vom Membran und Gegenelektrode begrenzten Luftspalt in ein Rückvolumen des Wandlers abströmen kann und andererseits, um die Dämpfungsverluste im Luftspalt zu reduzieren, die die Empfindlichkeit des Mikrofons herabsetzen und den Frequenzgang un­günstig beeinflussen. Die Signalwandlung geschieht durch Auswertung der relativen Kapazitätsänderung des Wandlers.
  • Die neueren Verfahren der Halbleitertechnologie erlauben die Herstel­lung von Miniaturwandlern auf mikromechanischem Wege, beispielsweise auf der Basis von Silizium. In der Literaturstelle KAPAZITITVE SILI­ZIUMSENSOREN FÜR HÖRSCHALLANWENDUNGEN, erschienen 1986 im VDI-Verlag, ISBN 3-18-14161o-9, wird der Aufbau eines Silizium-Mikrofones beschrie­ben. Dieser auf mikromechanischem Wege hergestellte Wandler besitzt die Abmessungen von ca. 1,6 x 2 x o,6 mm³. Die aktive Membranfläche besteht aus einer mit einer Metallschicht überzogenen Siliziumnitrid-Schicht, der, durch einen Luftspalt getrennt, eine ebenfalls aus Silizium herge­stellte Gegenelektrode gegenübersteht.
  • Bei halbleitertechnologisch hergestellten Miniaturmikrofonen ergeben sich besondere Nachteile, die durch Dämpfungsverluste im sehr engen Luftspalt bedingt sind. Wird die Membran von einem periodischen Wech­seldruck zu Schwingungen angeregt, so bildet sich im Luftspalt eine Strömung. Der Strömungswiderstand ist jedoch umso höher, je schmaler der Luftspalt ist, da die Verluste in erster Linie durch Reibung an den Wänden zustande kommen. Der Strömungswiderstand ist außerdem frequenz­abhängig; er nimmt mit steigenden Frequenzen zu, so daß die Empfind­lichkeit zu höheren Frequenzen hin stark absinkt. Da die Dämpfungsver­luste nicht linear mit einer Spaltverengung zunehmen sondern progres­siv, so ist der negative Einfluß bei Mikrofonen der beschriebenen Art besonders hoch. Die Möglichkeit, die Gegenelektrode zu durchlöchern ist wegen ihrer geringen Größe und wegen fehlender Technologie zur Zeit nicht gegeben. Bei dem in der Literaturstelle angegebenen Mikrofon sinkt daher die Empfindlichkeit aufgrund von Luftspaltverlusten auf Werte unter -6o dB, bezogen auf 1V/Pa und der Frequenzgang ist auf ei­nige Kilohertz begrenzt.
  • Luftspaltdämpfungen, die zwischen Membran und Gegenelektrode auftreten, ließen sich durch Verringerung der lateralen Abmessungen der Gegenelek­trode verringern. Laterale Abmessungen sind hier die Abmessungen senk­recht zur Strömungsrichtung der Luft. Durch solche Verkleinerungen sinkt jedoch auch die Ruhekapazität des Wandlers. Die untere Grenze derselben liegt im Hinblick auf die Höhe des in einer Niederfrequenz-­Schaltung gewonnenen Signals bei etwa 1 pF. Eine Verkleinerung der Ge­genelektrodenmaße, die zu einer Verringerung des Strömungswiderstandes führen könnte, kommt daher bei dieser geringen Ruhekapazität nicht mehr in Betracht.
  • Die Erfindung hat sich die Aufgabe gestellt, ein mit den Mitteln der Halbleitertechnologie hergestelltes Miniaturmikrofon zu schaffen, bei welchem die aktive Fläche der Membran hinsichtlich eines guten Wirkungsgrades wie bei bisher bekannten Mikrofonen erhalten bleibt, die im Luftspalt auftretenden Dämpfungsverluste jedoch durch eine geeignete Gestaltung der Gegenelektrode so verringert werden, daß die Nachteile bisher bekannter Mikrofone vermieden werden. Diese Aufgabe wird mit den im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmalen ge­löst.
  • Eine in ihren lateralen Abmessungen wesentlich verkleinerte Gegenelek­trode, die zwangsläufig auch zu geringeren Dämpfungsverlusten führt, kann verwendet werden, wenn man davon abgeht, das Ausgangssignal des Wandlers durch die relative Änderung seiner Ruhekapazität zu gewinnen. Erfindungsgemäß lassen sich daher kleinere Ruhekapazitäten verwenden, wenn man durch die Bewegungen der Membran die Eingangskapazität eines aktiven Elementes steuert.
  • Feldeffekttransistoren besitzen Gate-Kanal-Kapazitäten im Bereich von 1o⁻¹⁵F, also von 1/1ooo der oben beispielsweise genannten Membran-­Gegenelektrodenkapazität von 1 pF. Wird also die Drain-Kanal-Source-­Struktur eines Feldeffekttransistors einer Membran gegenüber angeord­net, so werden die Strömungsverluste aufgrund der benötigten sehr ge­ringen Abmessungen der Gegenelektrodenstruktur weitgehend eleminiert. Dieser Effekt tritt bereits auf, wenn die Breite der Gegenelektroden­struktur ungefähr ein Zehntel der Abmessungen der aktiven Membranfläche beträgt.
  • Ein kapazitiver Schallwandler nach der Erfindung wird anhand einer Zeichnung nachfolgend und beispielsweise beschrieben. Es zeigen
    • die Fig. 1 den prinzipiellen Aufbau eines nach der Erfindung arbeitenden Schallwandlers,
    • die Fig. 2 ein Kleinsignal-Ersatzschaltbild
    • die Fig. 3 ein mechanisches Ersatzschaltbild
    • die Fig. 4 eine Frequenzgangdarstellung
    • die Fig. 5 eine schematische Darstellung eines Schallwandlers nach der Erfindung
    • die Fig. 6 eine beispielweise Anordnung mehrerer Schallwandler auf einem Wafer.
  • Der prinzipielle Aufbau eines kapazitiven Schallwandlers nach der Er­findung, im folgenden FET-Mikrofon genannt, ist in der Fig. 1 darge­stellt. Eine beispielsweise mit Aluminium metallisierte Membran befin­det sich, getrennt durch einen Luftspalt dL über einer Drain-Kanal-­Source-Struktur, die im folgenden Gegenelektrodenstruktur genannt wird. Die Kanalzone dieser Struktur ist mit einer Oxid-Schutzschicht überzo­gen. Ein schwach p-dotiertes Siliziumsubstrat bildet die Kanalzone L, die stark n-dotierten Elektroden bilden Drain und Source des FETs. Es handelt sich hier beispielsweise um einen N-Kanal-Anreicherungstyp. Die Spannung UGS, angelegt zwischen der Membran und dem Source-Anschluß be­stimmt den Arbeitspunkt des Feldeffekttransistors.
  • Das FET-Mikrofon wird zweckmäßigerweise in einer Source-Schaltung be­trieben. Diese ist in der Figur 3 ebenso dargestellt, wie das dazugehö­rigende Kleinsignal-Ersatzschaltbild. Die Betriebsspannung UB wird dem Mikrofon über den Drain-Widerstand Rd zugeführt, der auf dem die Gegen­elektrode bildenden Chip gleich integriert werden kann. Am Drain-­Anschluß wird die Mikrofonausgangsspannung Ua abgegriffen; die Membran ist gegenüber Source mit der Spannung UGS vorgespannt. In der darge­stellten Kleinsignalersatzschaltung der Fig. 3 wird die Stromquelle mit der mechanisch-elektrischen Steilheit Sme durch die Membranauslenkung X gesteuert. Der eingeprägte Strom erzeugt im Drain-Widerstand Rd einen Spannungsabfall, der der Ausgangsspannung Ua entspricht.
  • Zur Berechnung von Frequenzgang und Empfindlichkeit des FET-Mikrofons wird das in Abb. 2 gezeigte mechanische Ersatzschaltbild zugrunde ge­legt. RS(w) und MS(w) stellen die Strahlungsimpedanz ZmS der Membran dar, MM die Masse und CM die Nachgiebigkeit der Membran, die mit der Schnelle vm schwingt. Das rückwärtige Luftvolumen wird durch die Nach­giebigkeit CV repräsentiert. Die Eingangskraft K = p x A setzt sich aus der Membranfläche A und dem vor der Membran herrschenden Wechseldruck p zusammen.
  • Aufgrund der Frequenzabhängigkeit der Strahlungsimpedanz müssen für das Ersatzschaltbild zwei Gültigkeitsbereiche unterschieden werden. Unter­halb von etwa 155 kHz gilt für die Strahlungsimpedanz ZmS:
    ZmS= RS+jwMS,
    mit RS = 2,245 x 1o⁻¹⁶kg sec x w² und MS = 3,163 x 1o⁻¹⁰kg.
  • Oberhalb 155 kHz ergibt sich für die Strahlungsimpedanz:
    ZmS = RS+jwMS,
    mit RS = 2,84o x 1o⁻⁴kg/sec und MS = (24o,5 kg/sec²) / w².
  • Die Membranelemente dynamische Masse MM und Nachgiebigkeit CM haben die Werte:
    MM = 7,384 x 1o⁻¹⁰ kg und
    CM = 1/3oT (Zugspannung T in N/m im Bereich 2o...2oo N/m).
  • Für die Nachgiebigkeit des rückwärtigen Luftvolumens V gilt:
    CV = V/ρOC²Aeff²·
  • Als effektive Querschnittsfläche Aeff wird die Membranfläche angesetzt, Aeff = a². Das Volumen ergibt sich durch die Waferdicke, die die Rück­volumenhöhe darstellt. Sie beträgt 28o um. Somit folgt für CV:
    CV = 2,866 x 1o⁻³ sec²/kg.
  • Masse, Nachgiebigkeit und Reibungsverluste der Luft im Luftspalt können vernachlässigt werden, da die Breite des Luftspaltes, der Breite der Drain-Kanal-Source-Struktur entsprechend wesentlich kleiner ist als die lateralen Abmessungen der Membran und der Öffnungen des Rückvolumens.
  • Die Rückwirkung des elektrischen Teils des FET-Mikrofons auf seine me­chanischen Eigenschaften entfällt, da die Membran das elektrische Feld im Luftspalt durch die Vorspannung UGS niederohmig treibt. Bei herkömm­lichen Kondensatormikrofonen in Niederfrequenzschaltung kann jedoch die Wirkung der angeschlossenen Schaltung auf das mechanische Verhalten des Wandlers nicht vernachlässigt werden. Eingangswiderstand und -kapazität des Vorverstärkers erzeugen eine Dämpfung und eine transformierte "elektrische" Nachgiebigkeit, die in das Schwingungsverhalten der Mem­bran und damit in das Verhalten des gesamten Wandlers eingehen.
  • Für die mechanische Impedanz Zm folgt:
    Zm= K/vm= ZmS+jwMM+1/jwCges,
    wobei Cges= (1/CM+1/CV)⁻¹.
  • Mit vm= jwx und Membranfläche A folgt:
    Ua=-SmexRD=-SmeRDVm/jw = -SmeRDpA/jwZm.
  • Für die Mikrofonemepfindlichkeit Me und ihren Freuquenzgang folgt daraus:
    Me = Ua/p = -SmeRDA/jwZm
    = -SmeRDACgesx 1/(1-w²MMCges+jwZmSCges)
  • Man erkennt, daß die Mikrofonempfindlichkeit proportional mit der me­chanisch-elektrischen Steilheit Sme und dem Drainwiderstand RD an­steigt. Diese lassen sich jedoch nicht beliebig vergrößern, da die ver­fügbare Höhe der Betriebsspannung UB und die maximal einstellbare elektrische Membranvorspannung UGS (Durchschlagfeldstärke im Kanal) Obergrenzen darstellen. Eine große Gesamtnachgiebigkeit Cges bedingt eine "weiche" Membran (hohe Nachgiebigkeit CM) und ein großes Rückvolu­men (CV). Auch hier sind gewisse Grenzen gesetzt. Die kleine Membran­fläche A von Subminiaturwandlern stellt ein inhärentes Problem dar.
  • Eine grafische Darstellung der Abhängigkeit der Empfindlichkeit Me von der Frequenz zeigt die Abb. 4 für verschiedene mechanische Membranspan­nungen und Rückvolumina.
  • Eine zweckmäßige Ausführungsform eines kapazitiven Schallwandlers nach der Erfindung wird anhand der Fig. 5 beschrieben. Das FET-Mikrofon be­steht aus zwei Chips, von denen der obere als Membraneinheit 1 die Mem­bran 2 trägt und der untere als Gegenelektrodenstruktur 3 die Drain-Ka­nal-Source-Struktur 8 des FETs trägt. Die Membran 2 besteht aus einer 15o nm starken Schicht 4 aus Siliziumnitrid, deren mechanische Span­nungseigenschaften durch Ionenimplantationen während des Herstellungs­prozesses beeinflußt werden können. Die Membran 2 wird von einem Stütz­rahmen 2.1 gehalten, welcher die Membran wallförmig umgibt und aus dem halbleitenden Grundmaterial, vorzugsweise Silizium besteht. Sie ist auf ihrer Unterseite mit einer 1oo nm-starken Aluminiumschicht 5 bedampft. Diese Bedampfung stellt das Gate des FETs dar. In dem unteren Chip wer­den durch Plasmaätzen zwei wannenförmige Gruben 6 und 7 eingebracht, die das Rückvolumen des Mikrofons bilden. Zwischen den Gruben befindet sich ein 8oµm-breiter Steg 8, der die Drain-Kanal-Source-Struktur 9, 1o und 11 des FETs trägt. Der Abstand des Kanals 1o zur Aluminium­schicht der Membran 5 beträgt 2 µm. Auf der Gegenelektrodenstruktur 3 sind ferner drei nicht weiter im einzelnen dargestellte Anschlußpads 11 für Drainkontakt, Sourcekontakt und die Aluminiumschicht der Membran, welche den Gate-Kontakt darstellt, angebracht. Eine Ausgleichsbohrung für den statischen Luftdruck befindet sich im Siliziumoxid-Rand 12 des Gegenelektrodenchips, sofern die Mikrofonkapsel als Druckwandler mit akustisch abgeschlossenen Volumen arbeiten soll.
  • Die Prozeßschritte zur Herstellung sowohl des Chips für die Membranein­heit als auch des Chips für die Gegenelektrodenstruktur sind dem in der Halbleitertechnologie bewanderten Fachmann bekannt und brauchen hier somit nicht weiter beschrieben zu werden. Um das Zusammenfügen der bei­den Halbleiterchips zu ermöglichen, wird noch auf die Siliziumoxid­schicht 12 eine Aluminiumschicht 13 aufgebracht. Die beiden Chips wer­den nun durch Erwärmung miteinander verbunden, wobei sich die gegen­überliegenden Aluminiumflächen der Membraneinheit 5 und der Gegenelek­trodenstruktur 13 miteinander verschmelzen.
  • Der in Fig. 5 beschriebene Wandler kann auch zu einem Gegentaktwandler erweitert werden, indem eine zweite Gegenelektrodenstruktur mit einem geeignet geformten Steg ähnlich dem Steg 8 in der durch den Wall vorge­gebenen Vertiefung der Membraneinheit 1 eingesetzt wird. In diesem Fall muß dann die Membran 2 auf beiden Seiten eine Metallisierung erhalten. Soll der Wandler in der beschriebenen Weise als Gegentaktwandler arbei­ten oder gemäß einer anderen zweckmäßigen Ausbildungsform eine Druck­gradientencharakteristik erhalten, so sind die vor beziehungsweise hin­ter der Membran liegenden Volumina über Öffnungen mit dem äußeren Schallfeld zu verbinden. In der Fig. 5 sind solche Öffnungen mit den Bezugsziffern 14 und 15 beispielsweise eingezeichnet.
  • Bei der beschriebenen Wandlerausführung ist zunächst in der Gegenelek­trodenstruktur für die Kanalzone das N- oder P-Kanal-Anreicherungsprin­zip verwendet worden. In vorteilhafter Weise kann jedoch auch für die Kanalzone das Verarmungsprinzip eingesetzt werden. Da hier bereits ein Arbeitspunkt in der FET-Schaltung vorgeben ist, kann hier die gesonder­te Vorspannung für das Gate entfallen, da sie in bekannterweise über einen im Source-Stromkreis eingesetzten Widerstand selbst erzeugt wer­den kann.
  • Wie aus den Herstellungsverfahren für integrierte Schaltungen bekannt geworden ist, werden sehr viele einander gleiche Baueinheiten auf ei­nem sogenannten Wafer gleichzeitig hergestellt und nach abgeschlossenem Herstellungsverfahren auseinandergetrennt. Bei der Herstellung von ka­pazitiven Schallwandlern nach der Erfindung ist es nun ebenfalls mög­lich, sehr viele Kleinstmikrofone auf einem Wafer herzustellen, sie aber nicht zu vereinzeln, sondern in besonders geformten Gruppen her­auszutrennen. Durch die Reihenanordnung mehrerer nebeneinanderliegender Mikrofonsysteme und deren elektrische Zusammenschaltung ist es möglich, beispielsweise ein Interferenz-Richtmikrofon zu erhalten.
  • Ein großer Vorteil bei einem kapazitiven Wandler nach der Erfindung liegt darin, daß einer relativ großen aktiven Membranfläche, die für einen guten akustischen Wirkungsgrad des Wandlers gefordert wird, nur ein kleiner Teil der Membranfläche einer Gegenelektrodenstruktur gegen­über liegt und somit die Strömungsverluste vernachlässigbar klein wer­den. Daraus ergibt sich ein großer linearer Übertragungsbereich bei sehr guter Empfindlichkeit, wie aus der Fig. 4 zu erkennen ist. Weiter­hin ist auch das Rauschverhalten des Wandlers außerordentlich günstig, da der durch Dämpfungen im Luftspalt hervorgerufene Rauschanteil prin­zipbedingt sehr niedrig ausfällt. Kapazitive Wandler werden zumeist in der sogenannten Niederfrequenzschaltung betrieben und benötigen daher einen Vorwiderstand, dessen thermisches Rauschen ebenfalls mit wachsen­dem Widerstandswert zunimmt. Sinkende Wandlerruhekapazitäten bei Mi­niaturmikrofonen bedingen bei gleicher unterere Grenzfrequenz jedoch größer werdende Vorwiderstände, worin bei den bisherigen Ausführungen ein unlösbares Problem bestand. Da das FET-Mikrofon keinen Vorwider­stand benötigt, ist damit ebenfalls der Rauschanteil wesentlich ver­ringert worden.
  • Das Rauschverhalten kann auch dadurch verbessert werden, daß mehrere auf dem Wafer gemeinsam entstandene FET-Mikrofone parallel geschaltet als eine Mikrofoneinheit betrieben werden.

Claims (10)

1. Kapazitiver Schallwandler, bestehend aus mindestens zwei zusammen­gefügten Halbleiterchips, welche eine Membraneinheit und eine feststehende Gegenelektrodenstruktur verkörpern und mittels be­kannter Methoden der Halbleitertechnologie hergestellt werden,
dadurch gekennzeichnet,
daß der akustisch aktive Teil der Membraneinheit mit mindestens einer Gegenelektrodenstruktur, welche von der Membraneinheit durch einen Luftspalt getrennt ist, ein einem Feldeffekttransistor ver­gleichbares System bildet derart, daß einerseits die aus halbleitendem Grundmaterial gebildete Mem­braneinheit eine akustisch aktive Membranfläche umfaßt, deren der Gegenelektrodenstruktur zugewandte Seite elektrisch leitend ist, und andererseits die Gegenelektrodenstruktur aus einer aus halb­leitenden Grundmaterial herausgearbeiteten, durch eine Source-­Drain-Anordnung begrenzten Kanalstrecke besteht, deren geometri­sche Breitenabmessung in der Größenordnung von einem Zehntel der lateralen Abmessung der aktiven Membranfläche liegt.
2. Kapazitiver Schallwandler nach Anspruch 1,
dadurch gekennzeichnet,
daß als Grundmaterial für die Membraneinheit und die Gegenelektro­denstruktur Silizium eingesetzt wird, und die aktive Fläche der Membraneinheit aus einer Siliziumnitrid-Schicht besteht, welche mit Aluminium bedampft und deren mechanische Spannung durch Ionen­implantation bestimmt ist.
3. Kapazitiver Schallwandler nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß nach Art eines Gegentaktwandlers beide Seiten der aktiven Fläche der Membran metallisiert sind und jeder Seite eine Gegen­elektrodenstruktur zugeordnet ist.
4. Kapazitiver Wandler nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß in der Gegenelektrodenstruktur für die Kanalzone das N- oder P-Kanal-Anreicherungsprinzip verwendet wird.
5. Kapazitiver Wandler nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß in der Gegenelektrodenstruktur für die Kanalzone das N- oder P-Kanal-Verarmungsprinzip verwendet wird.
6. Kapazitiver Wandler nach einem der vorhergehenden Ansprüche,
gekennzeichnet
durch eine durch ein abgeschlossenes Volumen der Gegenelektroden­struktur bedingte Druckwandlercharakteristik.
7. Kapazitiver Wandler nach einem der vorhergehenden Ansprüche,
gekennzeichnet
durch eine durch in der Gegenelektrodenstruktur außerhalb des Kanalbereichs angeordnete Öffnungen bedingte Druckgradienten­charakteristik.
8. Mehrfachwandler unter Verwendung von kapazitiven Schallwandlern nach einem der vorhergehenden Ansprüche,
gekennzeichnet
durch die elektrische Zusammenschaltung mehrerer auf einem Wafer in Reihe angeordneter und gleichzeitig hergestellter Wandler zu einem Interferenz-Richtmikrofon.
9. Mehrfachwandler unter Verwendung von kapazitiven Wandlern nach einem der vorhergehenden Ansprüche,
gekennzeichnet
durch die elektrische Parallelschaltung mehrerer auf einem Wafer gemeinsam herausgetrennter Wandlersysteme.
10. Kapazitiver Wandler nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß auf der Gegenelektrodenstruktur weitere, Verstärkerschaltungen bildende Bauelemente integriert sind.
EP89103276A 1988-03-05 1989-02-24 Kapazitiver Schallwandler Expired - Lifetime EP0331992B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3807251 1988-03-05
DE3807251A DE3807251A1 (de) 1988-03-05 1988-03-05 Kapazitiver schallwandler

Publications (3)

Publication Number Publication Date
EP0331992A2 true EP0331992A2 (de) 1989-09-13
EP0331992A3 EP0331992A3 (de) 1991-07-03
EP0331992B1 EP0331992B1 (de) 1994-08-31

Family

ID=6348950

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89103276A Expired - Lifetime EP0331992B1 (de) 1988-03-05 1989-02-24 Kapazitiver Schallwandler

Country Status (6)

Country Link
US (1) US4922471A (de)
EP (1) EP0331992B1 (de)
JP (1) JPH01316099A (de)
AT (1) ATE110919T1 (de)
CA (1) CA1298396C (de)
DE (2) DE3807251A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2697675A1 (fr) * 1992-11-05 1994-05-06 Suisse Electronique Microtech Procédé de fabrication de transducteurs capacitifs intégrés.
WO2007062975A1 (de) 2005-11-29 2007-06-07 Robert Bosch Gmbh Mikromechanische struktur zum empfang und/oder zur erzeugung von akustischen signalen, verfahren zur herstellung einer mikromechanischen struktur und verwendung einer mikromechanischen struktur

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146435A (en) * 1989-12-04 1992-09-08 The Charles Stark Draper Laboratory, Inc. Acoustic transducer
DE4314888C1 (de) * 1993-05-05 1994-08-18 Ignaz Eisele Verfahren zum Abscheiden einer ganzflächigen Schicht durch eine Maske und optionalem Verschließen dieser Maske
US5446413A (en) * 1994-05-20 1995-08-29 Knowles Electronics, Inc. Impedance circuit for a miniature hearing aid
US5452268A (en) * 1994-08-12 1995-09-19 The Charles Stark Draper Laboratory, Inc. Acoustic transducer with improved low frequency response
US5894452A (en) * 1994-10-21 1999-04-13 The Board Of Trustees Of The Leland Stanford Junior University Microfabricated ultrasonic immersion transducer
US5619476A (en) * 1994-10-21 1997-04-08 The Board Of Trustees Of The Leland Stanford Jr. Univ. Electrostatic ultrasonic transducer
TW387198B (en) * 1997-09-03 2000-04-11 Hosiden Corp Audio sensor and its manufacturing method, and semiconductor electret capacitance microphone using the same
US5982709A (en) * 1998-03-31 1999-11-09 The Board Of Trustees Of The Leland Stanford Junior University Acoustic transducers and method of microfabrication
US6552469B1 (en) * 1998-06-05 2003-04-22 Knowles Electronics, Llc Solid state transducer for converting between an electrical signal and sound
FI105880B (fi) 1998-06-18 2000-10-13 Nokia Mobile Phones Ltd Mikromekaanisen mikrofonin kiinnitys
US6088463A (en) 1998-10-30 2000-07-11 Microtronic A/S Solid state silicon-based condenser microphone
EP1142442A2 (de) 1999-01-07 2001-10-10 Sarnoff Corporation Hörhilfegerät mit grossmembran-mikrofonelement einschliesslich leiterplatte
US6522762B1 (en) * 1999-09-07 2003-02-18 Microtronic A/S Silicon-based sensor system
WO2001050814A1 (en) * 2000-01-06 2001-07-12 Sarnoff Corporation Microphone assembly with jfet flip-chip buffer for hearing aid
DE10026474B4 (de) * 2000-05-27 2005-06-09 Sennheiser Electronic Gmbh & Co. Kg Wandler mit halbleitender Membran
US6842964B1 (en) 2000-09-29 2005-01-18 Tucker Davis Technologies, Inc. Process of manufacturing of electrostatic speakers
US6671379B2 (en) 2001-03-30 2003-12-30 Think-A-Move, Ltd. Ear microphone apparatus and method
US6647368B2 (en) 2001-03-30 2003-11-11 Think-A-Move, Ltd. Sensor pair for detecting changes within a human ear and producing a signal corresponding to thought, movement, biological function and/or speech
US7065224B2 (en) * 2001-09-28 2006-06-20 Sonionmicrotronic Nederland B.V. Microphone for a hearing aid or listening device with improved internal damping and foreign material protection
US7142682B2 (en) * 2002-12-20 2006-11-28 Sonion Mems A/S Silicon-based transducer for use in hearing instruments and listening devices
US7415121B2 (en) * 2004-10-29 2008-08-19 Sonion Nederland B.V. Microphone with internal damping
DE102005017357A1 (de) 2005-04-14 2006-10-26 Siemens Audiologische Technik Gmbh Mikrofonvorrichtung für ein Hörgerät
US20060233412A1 (en) * 2005-04-14 2006-10-19 Siemens Audiologische Technik Gmbh Microphone apparatus for a hearing aid
EP1742506B1 (de) * 2005-07-06 2013-05-22 Epcos Pte Ltd Mikrofonanordnung mit P-typ Vorverstärkerseingangsstufe
DE102005031601B4 (de) * 2005-07-06 2016-03-03 Robert Bosch Gmbh Kapazitives, mikromechanisches Mikrofon
US7317234B2 (en) * 2005-07-20 2008-01-08 Douglas G Marsh Means of integrating a microphone in a standard integrated circuit process
DE102005043690B4 (de) * 2005-09-14 2019-01-24 Robert Bosch Gmbh Mikromechanisches Mikrofon
US7983433B2 (en) 2005-11-08 2011-07-19 Think-A-Move, Ltd. Earset assembly
US7502484B2 (en) 2006-06-14 2009-03-10 Think-A-Move, Ltd. Ear sensor assembly for speech processing
US20080042223A1 (en) * 2006-08-17 2008-02-21 Lu-Lee Liao Microelectromechanical system package and method for making the same
US20080075308A1 (en) * 2006-08-30 2008-03-27 Wen-Chieh Wei Silicon condenser microphone
US20080083958A1 (en) * 2006-10-05 2008-04-10 Wen-Chieh Wei Micro-electromechanical system package
US20080083957A1 (en) * 2006-10-05 2008-04-10 Wen-Chieh Wei Micro-electromechanical system package
US7894622B2 (en) 2006-10-13 2011-02-22 Merry Electronics Co., Ltd. Microphone
TWI336770B (en) * 2007-11-05 2011-02-01 Ind Tech Res Inst Sensor
US8208671B2 (en) * 2008-01-16 2012-06-26 Analog Devices, Inc. Microphone with backside cavity that impedes bubble formation
US8855350B2 (en) * 2009-04-28 2014-10-07 Cochlear Limited Patterned implantable electret microphone
US9060229B2 (en) 2010-03-30 2015-06-16 Cochlear Limited Low noise electret microphone
DE102011002457A1 (de) * 2011-01-05 2012-07-05 Robert Bosch Gmbh Mikromechanische Mikrofoneinrichtung und Verfahren zum Herstellen einer mikromechanischen Mikrofoneinrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166400A (en) * 1979-06-14 1980-12-25 Nec Corp Capacitor microphone
JPS59171298A (ja) * 1983-03-17 1984-09-27 Matsushita Electric Ind Co Ltd マイクロホン装置
DE3325961A1 (de) * 1983-07-19 1985-01-31 Dietmar Hohm Kapazitive wandler auf siliziumbasis mit siliziumdioxid-elektret

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3624315A (en) * 1967-01-23 1971-11-30 Max E Broce Transducer apparatus and transducer amplifier system utilizing insulated gate semiconductor field effect devices
DE2130887B1 (de) * 1971-06-22 1972-09-07 Willco Hoergeraete Med Appbau Richtmikrophon fuer am Kopf zu tragende Kleinhoergeraete
SE358801B (de) * 1971-10-13 1973-08-06 Ericsson Telefon Ab L M
JPS4859823A (de) * 1971-11-24 1973-08-22
JPS5011787A (de) * 1973-06-04 1975-02-06
FR2425912A1 (fr) * 1978-05-17 1979-12-14 Muller Alfred Dispositif de coupe, en particulier coupe-boulon
JPS57193198A (en) * 1981-05-22 1982-11-27 Toshiba Corp Electrostatic microphone
US4429190A (en) * 1981-11-20 1984-01-31 Bell Telephone Laboratories, Incorporated Continuous strip electret transducer array
US4558184A (en) * 1983-02-24 1985-12-10 At&T Bell Laboratories Integrated capacitive transducer
US4524247A (en) * 1983-07-07 1985-06-18 At&T Bell Laboratories Integrated electroacoustic transducer with built-in bias
US4533795A (en) * 1983-07-07 1985-08-06 American Telephone And Telegraph Integrated electroacoustic transducer
US4691363A (en) * 1985-12-11 1987-09-01 American Telephone & Telegraph Company, At&T Information Systems Inc. Transducer device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166400A (en) * 1979-06-14 1980-12-25 Nec Corp Capacitor microphone
JPS59171298A (ja) * 1983-03-17 1984-09-27 Matsushita Electric Ind Co Ltd マイクロホン装置
DE3325961A1 (de) * 1983-07-19 1985-01-31 Dietmar Hohm Kapazitive wandler auf siliziumbasis mit siliziumdioxid-elektret

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 5, Nr. 44 (E-50)[716], 24. März 1981; & JP-A-55 166 400 (NIPPON DENKI K.K.) 25-12-1980 *
PATENT ABSTRACTS OF JAPAN, Band 9, no. 27 (E-294)[1750], 6. Februar 1985; & JP-A-59 171 298 (MATSUSHITA DENKI SANGYO K.K.) 27-09-1984 *
RADIO, FERNSEHEN, ELEKTRONIK, Band 12, 1986, Seite 749, Berlin, DD; Spalte 3, 3. Bericht v.o. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2697675A1 (fr) * 1992-11-05 1994-05-06 Suisse Electronique Microtech Procédé de fabrication de transducteurs capacitifs intégrés.
EP0596456A1 (de) * 1992-11-05 1994-05-11 CSEM, Centre Suisse d'Electronique et de Microtechnique S.A. Methode zur Herstellung eines integrierten kapazitiven Transduktors
US5408731A (en) * 1992-11-05 1995-04-25 Csem Centre Suisse D'electronique Et De Microtechnique S.A. - Rechere Et Developpement Process for the manufacture of integrated capacitive transducers
WO2007062975A1 (de) 2005-11-29 2007-06-07 Robert Bosch Gmbh Mikromechanische struktur zum empfang und/oder zur erzeugung von akustischen signalen, verfahren zur herstellung einer mikromechanischen struktur und verwendung einer mikromechanischen struktur
US7902615B2 (en) 2005-11-29 2011-03-08 Robert Bosch Gmbh Micromechanical structure for receiving and/or generating acoustic signals, method for producing a micromechanical structure, and use of a micromechanical structure

Also Published As

Publication number Publication date
DE58908250D1 (de) 1994-10-06
DE3807251A1 (de) 1989-09-14
ATE110919T1 (de) 1994-09-15
JPH01316099A (ja) 1989-12-20
EP0331992B1 (de) 1994-08-31
CA1298396C (en) 1992-03-31
US4922471A (en) 1990-05-01
EP0331992A3 (de) 1991-07-03

Similar Documents

Publication Publication Date Title
EP0331992A2 (de) Kapazitiver Schallwandler
DE102004011144B4 (de) Drucksensor und Verfahren zum Betreiben eines Drucksensors
EP1444864A1 (de) Mikromechanische sensoren und verfahren zur herstellung derselben
DE102018203029A1 (de) Kapazitives MEMS-Bauelement, kapazitiver MEMS-Schallwandler, Verfahren zum Bilden eines kapazitiven MEMS-Bauelements und Verfahren zum Betreiben eines kapazitiven MEMS-Bauelements
DE102006055147B4 (de) Schallwandlerstruktur und Verfahren zur Herstellung einer Schallwandlerstruktur
EP0721587B1 (de) Mikromechanische vorrichtung und verfahren zu deren herstellung
DE102013203180B4 (de) Verstellbare Ventilationsöffnungen in MEMS-Aufbauten
DE102017204023A1 (de) MEMS-Vorrichtung und MEMS-Vakuummikrophon
DE102017103195B4 (de) Mikroelektromechanisches Mikrofon und Herstellungsverfahren für ein Mikroelektromechanisches Mikrofon
DE112013003536B4 (de) Kapazitiver Sensor, Akustiksensor und Mikrophon
DE102013211943B4 (de) MEMS-Struktur mit einstellbaren Ventilationsöffnungen
DE112012005578T5 (de) Differenzielles Mikrofon und Verfahren zum Ansteuern eines differenziellen Mikrofons
DE102018200190B4 (de) Mikroelektromechanisches System mit Filterstruktur
DE102005043645A1 (de) Halbleitersensor für eine physikalische Grösse und Verfahren zur Herstellung eines solchen
DE112007000263T5 (de) Oberflächenmikromechanik-Differentialmikrofon
DE102016221634A1 (de) System und Verfahren für einen Wandler mit senkrechter Elektrode
DE102016208925A1 (de) Mikromechanischer Sensor und Verfahren zum Herstellen eines mikromechanischen Sensors
DE102020126222A1 (de) Sub-miniatur-Mikrofon
DE102020120232A1 (de) Mems-sensor
DE102014109908A1 (de) MEMS-Vorrichtungen, Schnittstellenschaltungen und Verfahren zu deren Herstellen
DE102017200108A1 (de) Mikromechanische Schallwandleranordnung und ein entsprechendes Herstellungsverfahren
DE10224790A1 (de) Beschleunigungssensor und Verfahren zum Herstellen eines Beschleunigungssensors
DE19900969C2 (de) Schlitzmikrofon
DE102016216234A1 (de) Mikromechanisches Bauteil und Herstellungsverfahren für ein mikromechanisches Bauteil
DE102018111079B4 (de) Mikromechanischer sensor und verfahren zum herstellen eines mikroelektromechanischen sensors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890301

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE ES FR GB LI

17Q First examination report despatched

Effective date: 19930817

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940831

Ref country code: FR

Effective date: 19940831

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940831

REF Corresponds to:

Ref document number: 110919

Country of ref document: AT

Date of ref document: 19940915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58908250

Country of ref document: DE

Date of ref document: 19941006

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950228

Ref country code: CH

Effective date: 19950228

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19940831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990317

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001201