EP0323862B1 - Element for tempering spaces - Google Patents
Element for tempering spaces Download PDFInfo
- Publication number
- EP0323862B1 EP0323862B1 EP89103119A EP89103119A EP0323862B1 EP 0323862 B1 EP0323862 B1 EP 0323862B1 EP 89103119 A EP89103119 A EP 89103119A EP 89103119 A EP89103119 A EP 89103119A EP 0323862 B1 EP0323862 B1 EP 0323862B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat
- conducting contact
- pipeline
- element according
- heat transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005496 tempering Methods 0.000 title abstract 2
- 238000012546 transfer Methods 0.000 claims abstract description 88
- 238000003780 insertion Methods 0.000 claims description 7
- 230000037431 insertion Effects 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000011888 foil Substances 0.000 claims description 2
- 229920002994 synthetic fiber Polymers 0.000 claims 2
- 238000005253 cladding Methods 0.000 claims 1
- 239000011796 hollow space material Substances 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 description 9
- 238000013461 design Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000010276 construction Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000013529 heat transfer fluid Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000009413 insulation Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000006163 transport media Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000037072 sun protection Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/04—Wing frames not characterised by the manner of movement
- E06B3/263—Frames with special provision for insulation
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/04—Wing frames not characterised by the manner of movement
- E06B3/263—Frames with special provision for insulation
- E06B2003/26349—Details of insulating strips
- E06B2003/2635—Specific form characteristics
- E06B2003/26352—Specific form characteristics hollow
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/04—Wing frames not characterised by the manner of movement
- E06B3/263—Frames with special provision for insulation
- E06B3/26336—Frames with special provision for insulation with two metal frame members having interpenetrating or overlapping parts when mounted
Definitions
- the present invention relates to a room temperature control element, consisting of at least one heat transfer profile and a pipe for a heat transfer medium, which rests on a heat-conducting contact surface, the heat-conducting contact surface for heat conduction being integrally connected to the heat transfer profile.
- An air heater is known from DE-PS 18 10 493, the interior spaces of the frame elements being designed as air guiding channels and the heating tubes having a large number of longitudinal ribs.
- This known system is accordingly essentially based on the fact that the air circulating through the interior is heated via the heating pipes and exits from the frame elements at air outlet openings, thereby heating the space facing the frame elements.
- the air circulating through the interior is heated via the heating pipes and exits from the frame elements at air outlet openings, thereby heating the space facing the frame elements.
- the efficiency of the heat transfer to the frame elements is relatively poor, so that the heat emission of the frame elements only makes a small contribution to space heating or temperature control.
- the present invention has for its object to provide a room temperature control element in which the efficiency of the system, ie the heat transfer from the pipes through which the heat transfer liquid flows to the heat transfer profile is improved and to an additional one Heating by circulating air through the heating elements can be dispensed with. Furthermore, the invention is based on the object of being able to use pipes which can be laid as flexible pipes within the frame elements.
- the heat transfer profile has the shape of a hollow support and / or a hollow bar and encloses with its side walls an upwardly open cavity in which the pipeline runs in the longitudinal direction of the heat transfer profile and is held clamped on the heat conducting contact surface, and wherein the Thermally conductive contact surface is connected to the heat transfer profile via at least three webs such that each web ends in one of the side walls of the heat transfer profile.
- a system element according to the invention which is part of an outer wall or facade of a building, consists of a pipeline 1 through which a heat transfer medium, in particular a transport liquid, e.g. water, flows, and a heat transfer profile 5, which with the pipe 1 is connected via a thermal contact element 4.
- This heat-conducting contact element 4 can be a contact film or a foil or a coating or a sleeve, in particular made of Plastic.
- a heat-conducting contact surface 6 is provided, which runs in an arc-shaped adaptation, in particular as a semi-circular profile (half-shell profile), to the pipeline 1 and which is connected to the inside of the heat transfer element 5 via heat-conducting webs 7.
- the heat transfer element or profile 5 is thus arranged separately from the heat- or cold-carrying pipeline 1 and is formed by the scaffolding elements consisting, for example, of supports or bars, so that it also serves to accommodate the building facade.
- An integrated clamping device 24 presses the pipeline 1 against the heat-conducting contact surface 6 via the heat-conducting contact element 4.
- the heat transfer profile 5 is preferably a support or a bar made of metal, which together form a scaffold element as a scaffold element, such as is used for building facade walls in buildings.
- These metal structures are preferably made of aluminum, but other materials with corresponding properties can also be used.
- the framework elements preferably have a rectangular cross-section, but other cross-sectional shapes, for example circular cross-sections, are also possible.
- the heat transfer element 5 can also be used separately from the support and locking function exclusively for space heating and cooling.
- the heat transfer profiles 5 are integrated into the room enclosure and arranged in the area of windows, walls or ceilings. Water is preferably used as the heat transport medium, to which corrosion-inhibiting additives are added in a known manner.
- the system element according to the invention serves to accommodate the building facade, which can consist, for example, of insulating glass panes 14 or windows and outer parapet or outer wall insulating walls 15.
- These facade elements are fastened to the system element according to the invention by means of an insulation holder 12 and a screw fastening 13. It is further preferably provided that the building facade is separated from the heat transfer profile 5 by insulation profiles 11, i.e. the support or the bar is thermally separated to avoid heat loss.
- the main advantage of the present invention is that the heat- or cold-carrying pipes 1 are separated from the heat transfer profiles 5, whereby the circulation volume of the heat transport medium flowing in the system according to the invention is minimized. Furthermore, there is the advantage that the supports and bars are practically depressurized, which considerably simplifies production and the heat transfer properties can be controlled more easily and optimally. In addition, a high level of operational safety is achieved because the supports and transoms are depressurized. According to the invention, this results in a high level of economy, since low heat losses occur and considerable material savings because of the small cross-sectional dimensions. Furthermore, a cost reduction is achieved by the fact that no additional scaffolding is required for the assembly and also by the possibility of cost-saving production, since no precision parts are required for this. The system according to the invention can be used in new and old buildings, since retrofitting is also possible.
- the half-shell-shaped heat-conducting contact surface 6 is connected to the heat transfer profile 5 via three webs 7, in each case via a web 7, to a wall surface of the heat transfer profile 5.
- One of the webs 7 is formed opposite the receiving opening 20 of the heat-conducting contact surface 6, and the other two webs 7 are offset by 90 ° with respect to this web.
- the latter webs begin at the longitudinal edges 8 of the half-shell-shaped heat-conducting contact surface 6 and run with a web section first parallel to the insulating glass pane 14 and then with a further web section perpendicular to the preceding section, which results in an extension section 9, which in turn extends into a section parallel to the insulating glass pane Section 10 merges.
- the web sections 10 end in the side walls 3 of the heat transfer profile 5 that are perpendicular to the insulating glass pane.
- the web 7 ends, starting from the heat-conducting contact surface 6, in the side wall 2 of the heat transfer profile 5 parallel to the insulating glass pane 14 are formed, molded.
- These spring arms 16 form the clamping device 24 in order to fix the pipeline 1 within the half-shell-shaped heat-conducting contact surface 6, so that an intimate contact between the two consists. It is expedient if the half-shell profile of the heat-conducting contact surface 6 extends over the entire length of the pipeline 1.
- the opposing resilient holding arms 16 are bent away from one another at their free ends and include an insertion opening 17 through which the pipeline 1 is pushed, in which case the holding arms 16 are spread apart, and after the pipeline 1 is pushed through, the holding arms 16 spring back and rest with their bent ends against the pipeline 1 and fix it in the heat-conducting contact surface 6.
- FIG. 2 shows an alternative embodiment of the invention to FIG. 1, the same parts as in FIG. 1 being provided with the same reference numbers.
- the webs 7 ending in the vertical side walls 3 are designed such that they run parallel to the insulating glass pane 14 starting from the edges 8 of the heat-conducting contact surface 6.
- the pipeline 1 is fixed in the heat-conducting contact surface 6 by the outer facade in a heat-insulating and pipe-guiding manner by means of a support insulating element 18 which is approximately frustoconical in cross section and is inserted between the pipeline and a support wall 19.
- the one-piece heat transfer profile 5 consisting of the side walls 2, 3, the webs 7 and the heat-conducting contact surface 6 is detachably fastened with suitable fastening means.
- FIG. 3 shows a further embodiment of the invention, the same parts as in FIGS. 1 and 2 being provided with the same reference numerals.
- a multiple pipe arrangement comprising conduit pipes 1 is shown within the heat transfer profiles.
- This embodiment of an element according to the invention can be used in particular as a wall or parapet heater, the rest of the same function being given as in the exemplary embodiments described above.
- FIG. 4 shows a further embodiment of the invention, the same parts as in FIGS. 1 to 3 being provided with the same reference numerals.
- the heat conducting webs 7 are arranged differently.
- a separate profile clamping device is provided instead of an integrated clamping device 24.
- two webs 7 instead of a web running perpendicular to the side wall 2, two webs 7 are shown, the overall half-shell profile forming the heat-conducting contact surface 6 being more solid.
- opposite latching arms 26 are formed in the exemplary embodiment shown, which run parallel to the side walls 3 and merge into horizontal web sections 10 at their free ends. These locking arms 26 have undercuts 27 at their free ends.
- the profile clamping device consists of clamping bodies 25 which have a substantially U-shaped cross section, the two vertical U-legs 28 having locking cams 29 projecting outwards at the ends.
- the vertical U-legs 28 are resilient, so that they are delimited by the locking arms 26 when inserted into the Insertion opening 17 are bent towards each other and spring apart again in the engaged state when the locking cams 29 are engaged in the undercuts 27.
- the clamping bodies 25 When the clamping bodies 25 are in the engaged state, they press the pipeline 1 into the half-shell profile of the heat-conducting contact surface 6 due to the length of the latching arms 26, so that there is an intimate contact.
- the clamping body 25 are also provided for connecting the heat transfer profile 5 to the support wall 19.
- 3 receiving chambers 30 are formed on the inner sides of the vertical side walls, in which the clamping bodies 25 can snap in with their vertical U-legs 28.
- the clamping bodies 25 are fixed with their horizontal U-leg 31 in recesses 32 in the support wall 19.
- FIG. 5 shows a further embodiment of the invention.
- the clamping device 24 in the exemplary embodiment shown consists of a U-shaped holding clip 33, which has its U-base leg 34 runs arcuate and the pipe 1 is adapted.
- locking cams 36 are formed on the outside. In the inserted state of the holding clip 33, these latching cams engage behind undercuts 27 of the latching arms 26, which are formed as an extension of the shell-shaped heat-conducting contact surface 6.
- the vertical legs 35 of the holding clip 33 are resiliently elastic, that when inserting the retaining clip into the insertion opening delimited by the latching arms 26, the U-legs 35 are bent towards one another and spring apart again when the undercuts 27 are reached by the latching cams.
- the distance between the locking cams from the base leg 34 is selected such that the retaining clip presses the pipeline 1 firmly against the heat-conducting contact surface 6. In this case, heat is also transferred to the heat transfer profile 5 via the holding clip 33.
- the fastening between the heat transfer profile 5 and the support wall 19 consists of chambers 36a formed on the support wall, in which fillers 37 are arranged. Plug-in profiles 38 are inserted into this filler 37, which are molded onto the inside of the side walls 3 of the heat transfer profile 5.
- the plug-in profiles 38 have a tooth profile on their outside, which improves the holding effect in the packing.
- the filler 37 consists of an elastic material.
- FIG. 6 shows a further embodiment of the invention, the same parts as in the previous figures being provided with the same reference numbers.
- a leaf spring 39 serves as the clamping device 24, which is supported with its free legs on the plug-in profiles 38 of the heat transfer profile and resiliently bears against the pipeline 1 with a bulge 40, which in turn presses it into the heat-conducting contact surface 6 and fixes it there .
- the heat transfer profile 5 has a compact structure.
- the horizontal webs are formed directly on the longitudinal edges 8 of the heat-conducting contact surface 6.
- FIG. 7 shows a further alternative embodiment of a heat transfer profile according to the invention, again the same parts as in the previous figures being provided with the same reference numbers.
- the formation of the heat-conducting contact surface 6 and the webs 7 corresponds to the embodiment according to FIG. 2.
- resilient holding arms 41 are formed on the profile of the heat-conducting contact surface 6 at the opposite edges 8, between which a clamping body 42 is clamped is.
- the clamping body 42 is frustoconical in cross-section, its tip being concave and adapted to the pipeline 1.
- the holding arms 41 have locking cams 43 projecting towards one another which overlap and fix the clamping body 42 in its inserted state.
- the clamping body 42 and the length of the holding arms 41 are dimensioned such that the clamping body 42 is pressed onto the pipeline 1 with a certain pretension so that it is in intimate contact with the heat-conducting contact surface 6.
- the heat transfer profile 5 has at the free ends of its vertical side walls 3 hook-shaped extensions 44, which cooperate with hook-shaped extensions 45 on the support wall 19, so that here a clamping connection between the support wall 19 and the heat transfer profile 5 is achieved by locking the hook-shaped extensions together. This type of connection balances tension.
- FIG. 8 shows an alternative embodiment of the invention, the same parts as in FIGS. 1 to 7 being provided with the same reference numbers.
- holding arms 46 are formed on the profile of the heat-conducting contact surface at the edges, which cooperate with a holding clip 47 with a U-shaped cross section, with its free U-legs 48.
- the holding arms 46 indicate their free ends on the outside of locking cams 43, which are engaged by locking cams 49 on the U-legs 48 in the attached state of the clamp 47.
- the free U-legs 48 are designed to be resilient so that they spring apart when the clamp 47 is attached and spring back behind the locking cams 43 with their locking cams 49 in the engaged state, see FIG. 8.
- a pressure body 52 made of elastic material is arranged, which presses the pipeline 1 into the profile of the heat-conducting contact surface 6 when the clamp 47 is attached.
- the clamping device 24 here consists of resilient holding arms 53 which are formed on the edges 8 of the heat-conducting contact surface 6. These resilient holding arms 53 are designed in the shape of a circular arc and have tips 54 rounded off at their free ends.
- the insertion opening delimited by the rounded tips 54 has a smaller opening width than the size of the diameter of the pipeline 1, so that when the pipeline 1 is inserted, the holding arms 53 are spread apart and when the pipeline 1 is in contact with the heat conducting surface 6 spring back and in this case embrace the pipeline 1 resiliently so that it is pressed against the heat-conducting contact surface 6.
- the heat-conducting contact surface 6 is formed directly on the inside of the horizontal side wall 2, the wall thickness being broadened.
- the webs 7, which are connected to the vertical side walls, are L-shaped.
- the design of the clamping device of the heat transfer profile 5 according to the invention corresponds to the design according to FIG. 9, and the same parts as in the remaining FIGS. 1 to 9 are provided with the same reference numbers.
- the webs which are connected to the side walls 3 are L-shaped, but the L-leg running to the side walls 3 is shorter than in FIG. 9.
- the profile of the heat-conducting contact surface 6 has an increased wall thickness, which increases the storage capacity of the profile. The same applies to the embodiment according to FIG. 9.
- FIGS. 11 and 12 each show an alternative embodiment of a heat transfer profile 5 according to the invention, the same parts as in the previous figures being provided with the same reference numbers.
- the design of the profile of the heat-conducting contact surface 6 corresponds to that of FIG. 9, but the clamping device 24 is designed in accordance with the embodiment according to FIG. 1.
- the Embodiment according to FIG. 12 corresponds in the design of the profile of the heat-conducting contact surface 6 and the clamping device 24 to the design in accordance with FIG. 9.
- Both embodiments in accordance with FIGS. 11 and 12 have the same design of the side walls 3 of the heat transfer profile 5 in common, here the Surface of the side walls 3 is increased by ribs 54, whereby a higher thermal output is achieved.
- FIGS. 1 to 12 have clamping devices of different shapes. These clamping devices 24 can extend over the entire length of the thermal contact surface 6, or they can each be spatially limited so that they do not extend over the entire length of the thermal contact surface 6, i.e. that several such clamping devices can be provided at a distance from each other.
- FIG. 13 shows an exemplary embodiment of the invention, a heat transfer profile 5 according to the invention being shown in connection with a facade construction consisting of a window 60 and a heat-insulated parapet element 61.
- the heat transfer profile 5 according to the invention is used here as a horizontal parapet bar.
- the use of a heat transfer profile 5 according to the invention is possible as a post.
- the same parts as in the previous figures are provided with the same reference numerals.
- the clamping device 24 for the pipeline 1 within the heat transfer profile 5 according to the invention the clamping devices described in the previous figures are alternatively possible.
- the heat transfer profile 5 according to the invention is designed as a load-bearing element, ie it is part of a facade, and the other facade elements are attached to the heat transfer profile.
- FIG. 14 shows an embodiment where the heat transfer profile 5 according to the invention does not serve as a load-bearing element, but rather the post 63 serves as a load-bearing element.
- FIG. 14 shows the use of the heat transfer profile 5 according to the invention in connection with fixed glazing 64 and vertical Double post 63 shown.
- the load-bearing wall 19 is connected to this via a T-flange 66, which is guided within the vertical double post 63.
- the vertical double post 63 takes over all the supporting functions. Otherwise, the same parts as in the previous figures are provided with the same reference numerals.
- the clamping devices 24 described in the previous figures can be used as the clamping device.
- FIG. 15 shows a further application example of a heat transfer profile according to the invention.
- a wall connection 67 is shown in connection with a curtain wall 68.
- Thermal insulation 69 and external sun protection 70 and a window 71 that can be opened are also shown.
- a vertical heating-cooling water supply line 72 runs inside a window reveal panel 73.
- the window reveal panel 73 also serves as a carrier for the heat transfer profile 5 according to the invention, in that the carrier wall 19 is formed on the reveal element.
- a wall covering 74 is also provided.
- a frame is formed from the heat transfer profile according to the invention, which is inserted into the window cutout on the side of the interior, so that here a frame profile is formed independently of the facade itself.
- the dimensioning of the heat transfer guide surfaces and the heat transfer cross sections from the heat transfer liquid via the pipeline, the heat transfer contact element, the heat transfer contact surface and the heat conducting webs to the heat transfer element takes into account the heat emission on the room side, namely from the surface of the heat transfer profile to the room air, in such a way that a Optimal heat flow with a small amount of material takes place so that a uniform temperature on the surface of the heat transfer element is achieved by a low temperature of the transport liquid.
- the heat flow density from the heat transfer profile to the environment determines the necessary area of the webs 7, taking into account the web length and the thickness of the heat-conducting contact element 4.
- This heat flow taking into account the fluid flow in the pipeline 1, defines the diameter of the pipeline 1. While the heat transfer profile consists of an inexpensive metal, in particular aluminum, for reasons of cost, the material of the pipeline carrying the heat transfer fluid corresponds to a corrosion-resistant material, in particular copper, which has been tried and tested in heating construction.
- the different length changes occurring due to different expansion coefficients of different metals and the resulting surface friction between different metals with the occurrence of Noise in the event of temperature changes is prevented according to the invention by the heat-conducting contact element which is arranged between the pipeline 1 and the heat-conducting contact surface 6.
- the lower coefficient of expansion of copper for example, produces different changes in length compared to the higher coefficient of expansion of, for example, aluminum with the same temperature change.
- the temperature of the heat transfer fluid in the pipeline can be selected according to the invention such that the smaller expansion of the pipeline compared to the higher expansion of the heat transfer contact surface at the same temperature is compensated for by the higher temperature of the heat transfer fluid.
- the thermal contact element according to the invention can therefore be used to control that the same length change is achieved in spite of different materials in the pipeline and in the thermal contact surface.
- the thermal contact element 4 is designed depending on the material combination of the heat transfer profile 5 with the pipeline 1. The difference in length between the heat transfer profile 5 with the associated linear expansion coefficient and the pipeline 1 with the associated linear expansion coefficient is eliminated due to the temperature gradients in the thermal conductive element. This reduces shear stresses at the material separation points.
- the present invention is not limited to the exemplary embodiments shown, but includes all means having the same effect in the sense of the invention. It is also within the scope of the invention to separate the heat transfer profiles from the facade construction, namely in connection with other components, such as windows, walls, Parapets and ceilings to be arranged on the room side, air ducts for room ventilation can also be assigned to the heat transfer profiles. Static or dynamic radiators can also be integrated with the system according to the invention. It is also within the scope of the invention to use the heat transfer profiles 5 according to the invention in all productive industrial and manufacturing heat processes.
Landscapes
- Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Thermal Insulation (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
Vorliegende Erfindung betrifft ein Raumtemperierungselement, bestehend aus mindestens einem Wärmeübertragungsprofil sowie einer Rohrleitung für ein Wärmetransportmedium, die auf einer Wärmeleitkontaktfläche aufliegt, wobei die Wärmeleitkontaktfläche zur Wärmeleitung mit dem Wärmeübertragungsprofil einstückig verbunden ist.The present invention relates to a room temperature control element, consisting of at least one heat transfer profile and a pipe for a heat transfer medium, which rests on a heat-conducting contact surface, the heat-conducting contact surface for heat conduction being integrally connected to the heat transfer profile.
Aus der DE-PS 18 10 493 ist eine Luftheizung bekannt, wobei die Innenräume der Rahmenelemente als Luftführungskanäle ausgebildet sind und die Heizrohre eine Vielzahl von Längsrippen aufweisen.An air heater is known from DE-PS 18 10 493, the interior spaces of the frame elements being designed as air guiding channels and the heating tubes having a large number of longitudinal ribs.
Dieses bekannte System basiert demgemäß im wesentlichen darauf, daß die durch die Innenräume zirkulierende Luft über die Heizrohre erwärmt wird und an Luftaustrittsöffnungen aus den Rahmenelementen austritt und hierdurch der den Rahmelementen zugekehrte Raum erwärmt wird. Hierbei erfolgt aber auch eine mittelbare Erwärmung der Rahmenelemente selbst. Jedoch ist der Wirkungsgrad der Wärmeübertragung auf die Rahmenelemente relativ schlecht, so daß die Wärmeabgabe der Rahmenelemente nur in geringem Maße zur Raumheizung bzw. Temperierung beiträgt.This known system is accordingly essentially based on the fact that the air circulating through the interior is heated via the heating pipes and exits from the frame elements at air outlet openings, thereby heating the space facing the frame elements. However, there is also indirect heating of the frame elements themselves. However, the efficiency of the heat transfer to the frame elements is relatively poor, so that the heat emission of the frame elements only makes a small contribution to space heating or temperature control.
Weiterhin ist aus der DE-A-26 21 186 ein System bekannt, bei dem durch die Stützen und Riegel Wärmeübertragungsmedium, insbesondere eine Flüssigkeit, hindurchgeleitet wird, wodurch die dem Gebäudeinnenraum zugewandten Flächen der Stützen und Riegel temperiert werden. Die in den Stützen und Riegeln strömende Wärmetransportflüssigkeit steht unter hohem Druck, nämlich dem statischen Druck, entsprechend der Höhe des Gebäudes zuzüglich dem erforderlichen Überdruck und Umwälzpumpendruck. Da die Stützen und Riegel unmittelbar durchströmt werden, sind große Umwälzvolumen erforderlich, die eine große Trägheit der Regelung zufolge haben. Zudem verursachen die unmittelbar mit der Wärmetransportflüssigkeit gefüllten Stützen und Riegel große Wärmeverluste. Weiterhin ist es nachteilig, daß eine hohe Anforderung an die Präzision bei der Herstellung der Gerüstelemente erforderlich ist, um eine absolute Dichtigkeit zu gewährleisten, wodurch sich hohe Herstellungs- und Montagekosten ergeben.Furthermore, from DE-A-26 21 186 a system is known in which heat transfer medium, in particular a liquid, is passed through the supports and transoms, whereby the surfaces of the supports and transoms facing the building interior are tempered. The heat transfer fluid flowing in the supports and bars is under high pressure, namely the static pressure, corresponding to the height of the building plus the required excess pressure and circulation pump pressure. Since the columns and transoms are directly flowed through, large circulation volumes are required, which are subject to a high degree of inertia according to the regulation. In addition, the supports and bars filled directly with the heat transfer fluid cause great heat losses. Furthermore, it is disadvantageous that a high level of precision is required in the manufacture of the scaffolding elements in order to ensure absolute tightness, which results in high manufacturing and assembly costs.
Aus der DE-A 1 932 591 ist ein Raumtemperierungselement der eingangs beschriebenen Art vorbekannt. Hierbei ist die Wärmeleitkontaktfläche über einen Steg zur Wärmeleitung mit dem Wärmeübertragungsprofil einstückig verbunden. Um eine hinreichende Wärmeübertragung und Wärmeleistung zu erzielen, sind dabei mehrere Rohrleitungen nebeneinander auf demselben Raumtemperierungselement angeordnet. Dies ist jedoch konstruktiv und anlagemäßig aufwendig.From DE-A 1 932 591 a room temperature control element of the type described in the opening paragraph is previously known. Here, the heat-conducting contact surface is integrally connected to the heat transfer profile via a web for heat conduction. In order to achieve sufficient heat transfer and heat output, several pipes are arranged side by side on the same room temperature control element. However, this is constructive and complex in terms of system.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Raumtemperierungselement zu schaffen, bei dem der Wirkungsgrad des Systems, d.h. der Wärmeübergang von den von der Wärmetransportflüssigkeit durchströmten Rohren zu dem Wärmeübertragungsprofil verbessert ist und auf eine zusätzliche Heizung durch die Wärmeelemente zirkulierende Luft verzichtet werden kann. Weiterhin liegt der Erfindung die Aufgabe zugrunde, Rohrleitungen verwenden zu können, die als flexible Rohrleitungen innerhalb der Rahmenelemente verlegt werden können.The present invention has for its object to provide a room temperature control element in which the efficiency of the system, ie the heat transfer from the pipes through which the heat transfer liquid flows to the heat transfer profile is improved and to an additional one Heating by circulating air through the heating elements can be dispensed with. Furthermore, the invention is based on the object of being able to use pipes which can be laid as flexible pipes within the frame elements.
Erfindungsgemäß wird dies dadurch erreicht, daß das Wärmeübertragungsprofil die Form einer Hohlstütze und/oder eines Hohlriegels hat und mit seinen Seitenwänden einen nach oben offenen Hohlraum umschließt, in dem die Rohrleitung in Längsrichtung des Wärmeübertragungsprofils verläuft und auf der Wärmeleitkontaktfläche klemmend gehalten ist, und wobei die Wärmeleitkontaktfläche über mindestens drei Stege mit dem Wärmeübertragungsprofil derart verbunden ist, daß jeder Steg in jeweils einer der Seitenwandungen des Wärmeübertragungsprofils endet.According to the invention this is achieved in that the heat transfer profile has the shape of a hollow support and / or a hollow bar and encloses with its side walls an upwardly open cavity in which the pipeline runs in the longitudinal direction of the heat transfer profile and is held clamped on the heat conducting contact surface, and wherein the Thermally conductive contact surface is connected to the heat transfer profile via at least three webs such that each web ends in one of the side walls of the heat transfer profile.
Vorteilhafte Ausführungen der Erfindung sind in den Unteransprüchen enthalten.Advantageous embodiments of the invention are contained in the subclaims.
Anhand der in den beiligenden Zeichnungen dargestellten Ausführungsbeispiele wird die Erfindung nunmehr näher erläutert. Es zeigen:
- Fig. 1 einen Schnitt durch ein Rahmenelement als Teil des erfindungsgemäßen Raumtemperierungselements,
- Fig. 2 bis 12 weitere Schnitte durch Ausgestaltungen von Rahmenelementen mit erfindungsgemäßen Raumtemperierungselementen,
- Fig. 13 einen Vertikalschnitt durch eine Fensterkonstruktion mit wärmegedemmten Brüstungselement mit einem waagerechten erfindungsgemäßen Raumtemperierungselement als Brüstungsriegel,
- Fig. 14 einen Horizontalschnitt durch eine Fensterverglasung mit senkrechten Doppelpfosten und einem erfindungsgemäßen integrierten Raumtemperierungselement,
- Fig. 15 einen Horizontalschnitt durch einen Wandanschluß mit vorgehängter Fassade und Wärmedemmung, äußerem Sonnenschutz und zu öffnenden Fenster sowie einem integrierten erfindungsgemäßen Raumtemperierungselement.
- 1 shows a section through a frame element as part of the room temperature control element according to the invention,
- 2 to 12 further sections through configurations of frame elements with room temperature control elements according to the invention,
- 13 shows a vertical section through a window construction with heat-insulated parapet element with a horizontal room temperature element according to the invention as parapet bar,
- 14 shows a horizontal section through a window glazing with vertical double posts and an integrated room temperature control element according to the invention,
- 15 shows a horizontal section through a wall connection with a curtain wall and thermal insulation, external sun protection and windows to be opened and an integrated room temperature control element according to the invention.
Wie sich aus Fig. 1 ergibt, besteht ein erfindungsgemäßes Systemelement, das Teil einer Gebäudeaußenwand oder -fassade ist, aus einer Rohrleitung 1, die von einem Wärmeübertragungsmedium, insbesondere einer Transportflüssigkeit, z.B. Wasser, durchflossen wird, und aus einem Wärmeübertragungsprofil 5, das mit der Rohrleitung 1 über ein Wärmeleitkontaktelement 4 verbunden ist. Bei diesem Wärmeleitkontaktelement 4 kann es sich um einen Kontaktfilm handeln oder um eine Folie oder eine Beschichtung bzw. eine Manschette, insbesondere aus Kunststoff. Weiterhin ist eine Wärmeleitkontaktfläche 6 vorgesehen, die in kreisbogenförmiger Anpassung, insbesondere als halbkreisförmiges Profil (Halbschalenprofil), an die Rohrleitung 1 verläuft und die über Wärmeleitstege 7 mit der Innenseite des Wärmeübertragungselementes 5 verbunden ist. Auch das Wärmeübertragungselement bzw. -profil 5 ist damit getrennt von der wärme- oder kälteführenden Rohrleitung 1 angeordnet und wird von den z.B. aus Stützen oder Riegeln bestehenden Gerüstelementen gebildet, so daß es gleichzeitig zur Aufnahme der Gebäudefassade dient. Durch eine integrierte Klemmvorrichtung 24 wird die Rohrleitung 1 über das Wärmeleitkontaktelement 4 an die Wärmeleitkontaktfläche 6 angepreßt. Bei dem Wärmeübertragungsprofil 5 handelt es sich vorzugsweise um eine Stütze oder einen Riegel aus Metall, die gemeinsam als Gerüstelement ein Gerüst bilden, wie es zum Aufbau von Fassadenwänden in Gebäuden verwendet wird. Diese Metallgerüste bestehen vorzugsweise aus Aluminium, jedoch können auch andere Materialien mit entsprechenden Eigenschaften verwendet werden. Vorzugsweise besitzen die Gerüstelemente einen rechteckigen Querschnitt, jedoch sind auch andere Querschnittsformen, beispielsweise kreisförmige Querschnitte, möglich. Das Wärmeübertragungselement 5 kann auch losgelöst von Stützen- und Riegelfunktion ausschließlich zur Raumheizung und Raumkühlung dienen. Zu diesem Zweck werden die Wärmeübertragungsprofile 5 in die Raumumschließung integriert und im Bereich von Fenstern, Wänden oder Decken angeordnet. Als Wärmetransportmedium wird vorzugsweise Wasser verwendet, dem in bekannter Weise korrosionshemmende Zusätze beigegeben sind.As can be seen from Fig. 1, a system element according to the invention, which is part of an outer wall or facade of a building, consists of a
Wie sich aus Fig. 1 ergibt, dient das erfindungsgemäße Systemelement zur Aufnahme der Gebäudefassade, die beispielsweise aus Isolierglasscheiben 14 oder Fenstern sowie Außenbrüstungs- oder Außenwandisolierwänden 15 bestehen kann. Diese Fassadenelemente werden mittels einer Isolierungshalterung 12 und einer Schraubbefestigung 13 am erfindungsgemäßen Systemelement befestigt. Weiterhin ist vorzugsweise vorgesehen, daß die Gebäudefassade durch Isolierungsprofile 11 vom Wärmeübertragungsprofil 5, d.h. der Stütze oder dem Riegel, zum Vermeiden von Wärmeverlusten thermisch getrennt ist. Der zwischen der Rohrleitung 1 und dem Wärmeübertragungsprofil 5 dargestellte Wärmetransport von Wärmetransportmedium in der Rohrleitung 1 über die Rohrwand der Rohrleitung 1, das Wärmeleitkontaktelement 4, die Wärmeleitkontaktfläche 6 und die Wärmeleitstege 7 an das Wärmeübertragungselement bzw. -profil 5 erfolgt erfindungsgemäß so, daß eine mittelbare (indirekte) Wärmeübertragung zwischen der Rohrleitung 1 und dem Wärmeübertragungsprofil 5 gegeben istAs can be seen from FIG. 1, the system element according to the invention serves to accommodate the building facade, which can consist, for example, of
Der wesentliche Vorteil der vorliegenden Erfindung besteht darin, daß die wärme- oder kälteführenden Rohrleitungen 1 von den Wärmeübertragungsprofilen 5 getrennt sind, wodurch das Umwälzvolumen des im erfindungsgemäßen System strömenden Wärmetransportmittels minimiert wird. Weiterhin ergibt sich damit der Vorteil, daß die Stützen und Riegel praktisch drucklos werden, wodurch die Fertigung wesentlich vereinfacht wird und die Wärmeübertragungseigenschaften leichter und optimaler geregelt werden können. Darüber hinaus wird eine hohe Betriebssicherheit erreicht, da die Stützen und Riegel drucklos sind. Dabei ergibt sich erfindungsgemäß eine hohe Wirtschaftlichkeit, da geringe Wärmeverluste auftreten sowie eine erhebliche Materialersparnis wegen der geringen Querschnitts- dimensionen. Weiterhin wird eine Kostensenkung dadurch erreicht, daß keine zusätzlichen Gerüste für die Montage erforderlich sind und ebenfalls durch die Möglichkeit einer kostensparenden Herstellung, da keine Präzisionsteile hierzu benötigt werden. Das erfindungsgemäße System ist bei Neubauten und Altbauten einsetzbar, da auch eine nachträgliche Montage möglich ist.The main advantage of the present invention is that the heat- or cold-carrying
Wie in Fig. 1 dargestellt ist, ist die halbschalenförmige Wärmeleitkontaktfläche 6 über drei Stege 7 mit dem Wärmeübertragungsprofil 5, und zwar jeweils über einen Steg 7, mit einer Wandfläche des Wärmeübertragungsprofils 5 verbunden. Einer der Stege 7 ist der Aufnahmeöffnung 20 der Wärmeleitkontaktfläche 6 gegenüberliegend ausgebildet, und die beiden anderen Stege 7 sind gegenüber diesem Steg um 90° versetzt. Die letzteren Stege beginnen an den Längsrändern 8 der halbschalenförmigen Wärmeleitkontaktfläche 6 und verlaufen mit einem Stegabschnitt zunächst parallel zur Isolierglasscheibe 14 und dann mit einem weiteren Stegabschnitt senkrecht zu dem vorhergehenden Abschnitt, wodurch sich ein Verlängerungsabschnitt 9 ergibt, der dann wiederum in einen parallel zur Isolierglasscheibe verlaufenden Abschnitt 10 übergeht. Die Stegabschnitte 10 enden in den zur Isolierglasscheibe senkrechten Seitenwänden 3 des Wärmeübertragungsprofils 5. Der Steg 7 endet ausgehend von der Wärmeleitkontaktfläche 6 in der zur Isolierglasscheibe 14 parallelen Seitenwand 2 des Wärmeübertragungsprofils 5. An den freien Enden der Stegabschnitte 10 sind Klemmelemente, die als Federarme 16 ausgebildet sind, angeformt. Diese Federarme 16 bilden die Klemmvorrichtung 24, um die Rohrleitung 1 innerhalb der halbschalenförmigen Wärmeleitkontaktfläche 6 zu fixieren, so daß ein inniger Berührungskontakt zwischen beiden besteht. Dabei ist es zweckmäßig, wenn das Halbschalenprofil der Wärmeleitkontaktfläche 6 sich über die gesamte Länge der Rohrleitung 1 erstreckt. Die einander gegenüberliegenden federnden Haltearme 16 sind an ihren freien Enden voneinander weg abgebogen und schließen eine Einstecköffnung 17 ein, durch die die Rohrleitung 1 hindurchgeschoben wird, wobei dann die Haltearme 16 auseinandergespreizt werden, und nach dem Hindurchdrücken der Rohrleitung 1 federn die Haltearme 16 zurück und liegen mit ihren abgebogenen Enden gegen die Rohrleitung 1 an und fixieren diese in der Wärmeleitkontaktfläche 6.As is shown in FIG. 1, the half-shell-shaped heat-conducting
In Fig. 2 ist eine alternative Ausführungsform der Erfindung zu Fig. 1 dargestellt, wobei gleiche Teile wie in Fig. 1 mit denselben Bezugsziffern versehen sind. Bei dieser Ausführungsform sind die in den vertikalen Seitenwänden 3 endenden Stege 7 derart ausgebildet, daß sie ausgehend von den Rändern 8 der Wärmeleitkontaktfläche 6 parallel zur Isolierglasscheibe 14 verlaufen. Durch ein Stützisolierelement 18, das im Querschnitt etwa kegelstumpfförmig ausgebildet ist und zwischen Rohrleitung und einer Trägerwand 19 eingesetzt ist, wird die Rohrleitung 1 von der Außenfassade wärmedämmend und rohrführend in der Wärmeleitkontaktfläche 6 fixiert. An der Trägerwand 19 ist das aus den Seitenwänden 2, 3, den Stegen 7 und der Wärmeleitkontaktfläche 6 bestehende, einstückige Wärmeübertragungsprofil 5 mit geeigneten Befestigungsmitteln lösbar befestigt.FIG. 2 shows an alternative embodiment of the invention to FIG. 1, the same parts as in FIG. 1 being provided with the same reference numbers. In this embodiment, the
In Fig. 3 ist eine weitere Ausführungsform der Erfindung dargestellt, wobei gleiche Teile wie in den Fig. 1 und 2 mit denselben Bezugsziffern versehen sind Hierbei ist im Unterschied zu den vorhergehenden Ausführungsformen innerhalb der Wärmeübertragungsprofile eine Mehrfachrohranordnung aus Leitungsrohren 1 dargestellt. Diese Ausführungsform eines erfindungsgemäßen Elements kann insbesondere als Wand- oder Brüstungsheizung verwendet werden, wobei im übrigen dieselbe Funktion gegeben ist, wie bei den vorbeschriebenen Ausführungsbeispielen.FIG. 3 shows a further embodiment of the invention, the same parts as in FIGS. 1 and 2 being provided with the same reference numerals. In contrast to the previous embodiments, a multiple pipe arrangement comprising
In Fig. 4 ist eine weitere Ausführungsform der Erfindung gezeigt, wobei gleiche Teile wie in den Fig. 1 bis 3 mit denselben Bezugsziffern versehen sind. Insbesondere die Wärmeleitstege 7 sind andersartig angeordnet. Im Unterschied zu der Ausführungsform gemäß Fig. 1 ist anstelle einer integrierten Klemmvorrichtung 24 eine separate Profilklemmvorrichtung vorhanden. In diesem gezeigten Ausführungsbeispiel sind anstelle eines senkrecht zur Seitenwand 2 verlaufenden Steges zwei Stege 7 dargestellt, wobei insgesamt das die Wärmeleitkontaktfläche 6 bildende Halbschalenprofil massiver ausgebildet ist. An den Rändern 8 der Wärmeleitkontaktfläche 6 sind im dargestellten Ausführungsbeispiel gegenüberliegende Rastarme 26 ausgebildet, die parallel zu den Seitenwänden 3 verlaufen und an ihren freien Enden in horizontale Stegabschnitte 10 übergehen. Diese Rastarme 26 weisen an ihren freien Enden Hinterschneidungen 27 auf. Die Profilklemmvorrichtung besteht aus Klemmkörpern 25, die im wesentlichen U-förmigen Querschnitt besitzen, wobei die beiden senkrechten U-Schenkel 28 endseitig nach außen abstehende Rastnocken 29 besitzen. Die senkrechten U-Schenkel 28 sind federelastisch ausgebildet, so daß sie beim Einstecken in die von den Rastarmen 26 begrenzte Einstecköffnung 17 aufeinanderzu verbogen werden und im eingerasteten Zustand, wenn die Rastnocken 29 in die Hinterschneidungen 27 eingerastet sind, wieder auseinanderfedern. Im eingerasteten Zustand der Klemmkörper 25 drücken diese aufgrund der Länge der Rastarme 26 die Rohrleitung 1 in das Halbschalenprofil der Wärmeleitkontaktfläche 6 hinein, so daß ein inniger Berührungskontakt vorhanden ist. Im dargestellten Ausführungsbeispiel sind ebenfalls die Klemmkörper 25 zur Verbindung des Wärmeübertragungsprofils 5 mit der Trägerwand 19 vorgesehen. Zu diesem Zweck sind an den Innenseiten der senkrechten Seitenwände 3 Aufnahmekammern 30 ausgebildet, in denen die Klemmkörper 25 mit ihren senkrechten U-Schenkeln 28 klemmend einrasten können. Die Klemmkörper 25 sind mit ihrem horizontalen U-Schenkel 31 in Ausnehmungen 32 in der Trägerwand 19 fixiert.4 shows a further embodiment of the invention, the same parts as in FIGS. 1 to 3 being provided with the same reference numerals. In particular, the
In Fig. 5 ist eine weitere Ausführungsform der Erfindung dargestellt. Auch hierbei sind wiederum gleiche Teile wie in den Fig. 1 bis 4 mit denselben Bezugsziffern versehen. Der Unterschied zu den vorhergehenden Ausgestaltungen liegt im wesentlichen in der Ausbildung der Klemmvorrichtung 24 sowie in der Befestigung zwischen dem Wärmeübertragungsprofil 5 und der Trägerwand 19. Die Klemmvorrichtung 24 besteht im dargestellten Ausführungsbeispiel aus einer U-förmigen Halteklammer 33, die mit ihrem U-Basisschenkel 34 bogenförmig verläuft und der Rohrleitung 1 angepaßt ist. An den senkrechten U-Schenkeln 35 sind an deren Außenseite Rastnocken 36 angeformt. Im eingesteckten Zustand der Halteklammer 33 hintergreifen diese Rastnocken 36 Hinterschneidungen 27 der Rastarme 26, die in Verlängerung der schalenförmigen Wärmeleitkontaktfläche 6 ausgebildet sind. Die senkrechten Schenkel 35 der Halteklammer 33 sind derart federnd elastisch, daß beim Einstecken der Halteklammer in die von den Rastarmen 26 begrenzte Einstecköffnung die U-Schenkel 35 aufeinanderzu gebogen werden und beim Erreichen der Hinterschneidungen 27 durch die Rastnocken wieder auseinanderfedern. Der Abstand der Rastnocken von dem Basisschenkel 34 ist derart gewählt, daß die Halteklammer die Rohrleitung 1 fest gegen die Wärmeleitkontaktfläche 6 drückt. Dabei erfolgt auch eine Wärmeübertragung über die Halteklammer 33 auf das Wärmeübertragungsprofil 5. Die Befestigung zwischen dem Wärmeübertragungsprofil 5 und der Trägerwand 19 besteht aus an der Trägerwand ausgebildeten Kammern 36a in denen Füllkörper 37 angeordnet sind. In diese Füllkörper 37 sind Steckprofile 38 eingesteckt, die an den Innenseiten der Seitenwände 3 des Wärmeübertragungsprofils 5 angeformt sind. Die Steckprofile 38 besitzen an ihrer Außenseite ein Zahnprofil, wodurch die Haltewirkung in dem Füllkörper verbessert wird. Der Füllkörper 37 besteht aus einem elastischen Material.5 shows a further embodiment of the invention. Here, too, the same parts as in FIGS. 1 to 4 are again provided with the same reference numbers. The difference from the previous embodiments lies essentially in the design of the
In Fig. 6 ist eine weitere Ausführungsform der Erfindung dargestellt, wobei gleiche Teile wie in den vorhergehenden Figuren mit denselben Bezugsziffern versehen sind. Bei dieser Ausführungsform dient als Klemmvorrichtung 24 eine Blattfeder 39, die sich mit ihren freien Schenkeln an den Steckprofilen 38 des Wärmeübertragungsprofils abstützt und mit einer Ausbuchtung 40 gegen die Rohrleitung 1 federnd unter Vorspannung anliegt, wodurch diese wiederum in die Wärmeleitkontaktfläche 6 hineingedrückt und dort fixiert wird. Indem der senkrecht verlaufende Steg 7 derart reduziert ist, daß die Wärmeleitkontaktfläche 6 unmittelbar an der horizontalen Seitenwand 2 angeformt ist, ergibt sich ein kompakter Aufbau des Wärmeübertragungsprofils 5. Die horizontalen Stege sind unmittelbar an den Längsrändern 8 der Wärmeleitkontaktfläche 6 angeformt.FIG. 6 shows a further embodiment of the invention, the same parts as in the previous figures being provided with the same reference numbers. In this embodiment, a
In Fig. 7 ist eine weitere alternative Ausführungsform eines erfindungsgemäßen Wärmeübertragungsprofils dargestellt, wobei wiederum gleiche Teile wie in den vorhergehenden Figuren mit denselben Bezugsziffern versehen sind. Die Ausbildung der Wärmeleitkontaktfläche 6 sowie dir Stege 7 entspricht der Ausführungsform gemäß Fig. 2. Im Bereich des Ansatzpunktes der horizontalen Stege 7 sind am Profil der Wärmeleitkontaktfläche 6 in Verlängerung derselben an den gegenüberliegenden Rändern 8 federnde Haltearme 41 ausgebildet, zwischen denen ein Klemmkörper 42 eingespannt ist. Der Klemmkörper 42 ist im Querschnitt kegelstumpfförmig ausgebildet, wobei seine Spitze konkav verläuft und der Rohrleitung 1 angepaßt ist. Die Haltearme 41 weisen aufeinanderzu vorspringende Rastnocken 43 auf, die den Klemmkörper 42 in seinem eingeschobenen Zustand übergreifen und fixieren. Der Klemmkörper 42 und die Länge der Haltearme 41 ist derart bemessen, daß der Klemmkörper 42 mit einer gewissen Vorspannung auf die Rohrleitung 1 gedrückt wird, so daß diese in inniger Berührung mit der Wärmeleitkontaktfläche 6 steht. Das Wärmeübertragungsprofil 5 weist an den freien Enden seiner senkrechten Seitenwände 3 hakenförmige Fortsätze 44 auf, die zusammenwirken mit hakenförmigen Fortsätzen 45 an der Trägerwand 19, so daß hier eine Klemmverbindung zwischen der Trägerwand 19 und dem Wärmeübertragungsprofil 5 durch Verrasten der hakenförmigen Fortsätze miteinander erreicht wird. Diese Art der Verbindung wirkt spannungsausgleichend.FIG. 7 shows a further alternative embodiment of a heat transfer profile according to the invention, again the same parts as in the previous figures being provided with the same reference numbers. The formation of the heat-conducting
In Fig. 8 ist eine alternative Ausführungsform der Erfindung dargestellt, wobei gleiche Teile wie in den Fig. 1 bis 7 mit denselben Bezugsziffern versehen sind. Als Unterschied zu der Ausführungsform gemäß Fig. 7 sind an dem Profil der Wärmeleitkontaktfläche an den Rändern 8 Haltearme 46 ausgebildet, die mit einer im Querschnitt U-förmigen Halteklammer 47 zusammenwirken, und zwar mit deren freien U-Schenkeln 48. Die Haltearme 46 weisen an ihren freien Enden an deren Außenseite Rastnocken 43 auf, die von Rastnocken 49 an den U-Schenkeln 48 im aufgesteckten Zustand der Klammer 47 hintergriffen werden. Die freien U-Schenkel 48 sind federelastisch ausgebildet, so daß diese beim Aufstecken der Klammer 47 auseinanderfedern und im eingerasteten Zustand, siehe Fig. 8, hinter die Rastnocken 43 mit ihren Rastnocken 49 zurückfedern. An der der Rohrleitung zugekehrten Seite des Basisschenkels 51 ist ein Druckkörper 52 aus elastischem Material angeordnet, der im aufgesteckten Zustand der Klammer 47 die Rohrleitung 1 in das Profil der Wärmeleitkontaktfläche 6 hineindrückt.FIG. 8 shows an alternative embodiment of the invention, the same parts as in FIGS. 1 to 7 being provided with the same reference numbers. In contrast to the embodiment according to FIG. 7, 8 holding
In Fig. 9 ist eine weitere Ausführungsform der Erfindung dargestellt, wobei wiederum gleiche Teile wie in den vorhergehenden Figuren mit denselben Bezugsziffern versehen sind. Die Klemmvorrichtung 24 besteht hier aus federnden Haltearmen 53, die an den Rändern 8 der Wärmeleitkontaktfläche 6 ausgebildet sind. Diese federnden Haltearme 53 sind kreisbogenförmig ausgebildet und haben an ihren freien Enden nach außen abgerundete Spitzen 54. Die von den abgerundeten Spitzen 54 begrenzte Einstecköffnung besitzt eine geringere Öffnungsweite als die Größe des Durchmessers der Rohrleitung 1, so daß beim Einführen der Rohrleitung 1 die Haltearme 53 auseinandergespreizt werden und bei der Anlage der Rohrleitung 1 an der Wärmeleitkontaktfläche 6 zurückfedern und hierbei die Rohrleitung 1 federnd umfassen, so daß diese gegen die Wärmeleitkontaktfläche 6 gedrückt wird. Die Wärmeleitkontaktfläche 6 ist im vorliegenden Ausführungsbeispiel unmittelbar an der Innenseite der horizontalen Seitenwand 2 ausgebildet, wobei eine Verbreiterung der Wandstärke vorgesehen ist. Die Stege 7, die mit den senkrechten Seitenwänden in Verbindung stehen, sind L-förmig ausgebildet.A further embodiment of the invention is shown in FIG. 9, again the same parts as in the previous figures being provided with the same reference numbers. The clamping
In Fig. 10 ist die Ausbildung der Klemmvorrichtung des erfindungsgemäßen Wärmeübertragungsprofils 5 entsprechend der Ausbildung gemäß Fig. 9, und gleiche Teile wie in den übrigen Fig. 1 bis 9 sind mit denselben Bezugsziffern versehen. Auch hier sind die mit den Seitenwänden 3 in Verbindung stehenden Stege L-förmig ausgebildet, jedoch ist der zu den Seitenwänden 3 verlaufende L-Schenkel kürzer als in Fig. 9. Als Unterschied zu Fig. 9 ist hier wiederum ein parallel zu den Seitenwänden 3 und senkrecht zur Seitenwand 2 verlaufender Steg der Öffnung des Profils der Wärmeleitkontaktfläche 6 gegenüberliegend vorhanden. In der dargestellten Ausführungsform besitzt das Profil der Wärmeleitkontaktfläche 6 eine vergrößerte Wandstärke, wodurch die Speicherfähigkeit des Profils erhöht wird. Entsprechendes gilt auch für die Ausführungsform gemäß Fig. 9.In FIG. 10, the design of the clamping device of the
In den Fig. 11 und 12 ist wiederum je eine alternative Ausführungsform eines erfindungsgemäßen Wärmeübertragungsprofils 5 dargestellt, wobei gleiche Teile wie in den vorhergehenden Figuren mit denselben Bezugsziffern versehen sind. In Fig. 11 entspricht die Ausbildung des Profils der Wärmeleitkontaktfläche 6 der der Fig. 9, wobei jedoch die Klemmvorrichtung 24 entsprechend der Ausführungsform gemäß Fig. 1 ausgebildet ist. Die Ausführungsform gemäß Fig. 12 entspricht in der Ausbildung des Profils der Wärmeleitkontaktfläche 6 sowie der Klemmvorrichtung 24 der Ausbildungsform gemäß Fig. 9. Beiden Ausführungsformen gemäß Fig. 11 und Fig. 12 ist die gleiche Ausbildung der Seitenwände 3 des Wärmeübertragungsprofils 5 gemeinsam, wobei hier die Oberfläche der Seitenwände 3 durch Rippen 54 vergrößert ist, wodurch eine höhere Wärmeleistung erzielt wird.11 and 12 each show an alternative embodiment of a
Die in den Fig. 1 bis 12 dargestellten Ausführungsformen weisen Klemmvorrichtungen unterschiedlicher Gestalt auf. Diese Klemmvorrichtungen 24 können sich über die gesamte Länge der Wärmeleikontaktfläche 6 erstrecken, oder sie können jeweils räumlich begrenzt ausgebildet sein, so daß sie sich nicht über die gesamte Länge der Wärmeleitkontaktfläche 6 erstrecken, d.h. daß mehrere derartiger Klemmvorrichtungen im Abstand zueinander vorgesehen sein können.The embodiments shown in FIGS. 1 to 12 have clamping devices of different shapes. These clamping
In Fig. 13 ist ein Ausführungsbeispiel der Erfindung gezeigt, wobei ein erfindungsgemäßes Wärmeübertragungsprofil 5 in Verbindung mit einer Fassadenkonstruktion gezeigt ist, die aus einem Fenster 60 und einem wärmegedämmten Brüstungselement 61 besteht. Das erfindungsgemäße Wärmeübertragungsprofil 5 ist hier als waagerechter Brüstungsriegel verwendet. Ebenso ist bei einer entsprechenden Konstruktion der Einsatz eines erfindungsgemäßen Wärmeübertragungsprofils 5 als Pfosten möglich. Im übrigen sind hier gleiche Teile wie in den vorhergehenden Figuren mit denselben Bezugsziffern versehen. Als Klemmvorrichtung 24 für die Rohrleitung 1 innerhalb des erfindungsgemäßen Wärmeübertragungsprofils 5 sind die in vorhergehenden Figuren beschriebenen Klemmvorrichtungen alternativ möglich. In der dargestellten Konstruktion gemäß Fig. 13 und in der Ausführungsform gemäß Fig. 1 sowie in den übrigen Ausführungsformen der Fig. 2 bis 12 ist das erfindungsgemäße Wärmeübertragungsprofil 5 als tragendes Element ausgebildet, d.h. es ist Teil einer Fassade, und die übrigen Fassadenelemente sind am Wärmeübertragungsprofil befestigt.FIG. 13 shows an exemplary embodiment of the invention, a
In Fig. 14 ist nun eine Ausführungsform dargestellt, wo das erfindungsgemäße Wärmeübertragungsprofil 5 nicht als tragendes Element dient, vielmehr dient hier als tragendes Element der Pfosten 63. In Fig. 14 ist die Verwendung des erfindungsgemäßen Wärmeübertragungsprofils 5 in Verbindung mit einer Festverglasung 64 und senkrechten Doppelpfosten 63 dargestellt. Dabei ist die tragende Wand 19 über einen T-Flansch 66, der innerhalb des senkrechten Doppelpfostens 63 geführt ist, mit diesem verbunden. Der senkrechte Doppelpfosten 63 übernimmt dabei alle tragenden Funktionen. Im übrigen sind gleiche Teile wie in den vorgehenden Figuren mit denselben Bezugsziffern versehen. Als Klemmvorrichtung kommen die in den vorhergehenden Figuren beschriebenen Klemmvorrichtungen 24 alternativ in Frage.14 shows an embodiment where the
In Fig. 15 ist ein weiteres Anwendungsbeispiel eines erfindungsgemäßen Wärmeübertragungsprofils dargestellt. Hierbei ist ein Wandanschluß 67 in Verbindung mit einer vorgehängten Fassade 68 gezeigt. Eine Wärmedämmung 69 sowie ein äußerer Sonnenschutz 70 und ein zu öffnendes Fenster 71 sind ebenfalls dargestellt. Eine senkrechte Heiz-Kühl-Wasserversorgungsleitung 72 verläuft innerhalb einer Fensterlaibungsverkleidung 73. Die Fensterlaibungsverkleidung 73 dient gleichzeitig als Träger für das erfindungsgemäße Wärmeübertragungsprofil 5, indem an dem Laibungselement die Trägerwand 19 angeformt ist.15 shows a further application example of a heat transfer profile according to the invention. Here, a
Weiterhin ist eine Wandverkleidung 74 vorgesehen. In diesem Ausführungsbeispiel wird aus dem erfindungsgemäßen Wärmeübertragungsprofil ein Rahmen gebildet, der in den Fensterausschnitt auf der Seite des Innenraums eingesetzt wird, so daß hier ein Rahmenprofil unabhängig von der Fassade selbst gebildet wird.A wall covering 74 is also provided. In this embodiment, a frame is formed from the heat transfer profile according to the invention, which is inserted into the window cutout on the side of the interior, so that here a frame profile is formed independently of the facade itself.
Die Dimensionierung der Wärmeübertragungsleitflächen und der Wärmeleitquerschnitte von der Wärmetransportflüssigkeit über die Rohrleitung, das Wärmeleitkontaktelement, die Wärmeleitkontaktfläche und die Wärmeleitstege an das Wärmeübertragungselement erfolgt unter Berücksichtigung der Wärmeabgabe auf der Raumseite, nämlich von der Oberfläche des Wärmeübertragungsprofils an die Raumluft, und zwar so, daß ein optimaler Wärmefluß bei geringem Materialanteil so erfolgt, daß durch eine niedrige Temperatur der Transportflüssigkeit eine gleichmäßige Temperatur auf der Oberfläche des Wärmeübertragungselementes erzielt wird. Die Wärmestromdichte vom Wärmeübertragungsprofil an die Umgebung bestimmt die notwendige Fläche der Stege 7 unter Berücksichtigung der Steglänge sowie der Dicke des Wärmeleitkontaktelementes 4. Dieser Wärmestrom setzt unter Berücksichtigung der Fluidströmung in der Rohrleitung 1 den Durchmesser der Rohrleitung 1 fest. Während das Wärmeübertragungsprofil aus Kostengründen aus einem preiswerten Metall, insbesondere Aluminium, besteht, entspricht das Material der Wärmetransportflüssigkeit führenden Rohrleitung einem im Heizungsbau bewährten korrosionsbeständigen Material, insbesondere Kupfer.The dimensioning of the heat transfer guide surfaces and the heat transfer cross sections from the heat transfer liquid via the pipeline, the heat transfer contact element, the heat transfer contact surface and the heat conducting webs to the heat transfer element takes into account the heat emission on the room side, namely from the surface of the heat transfer profile to the room air, in such a way that a Optimal heat flow with a small amount of material takes place so that a uniform temperature on the surface of the heat transfer element is achieved by a low temperature of the transport liquid. The heat flow density from the heat transfer profile to the environment determines the necessary area of the
Die infolge unterschiedlicher Ausdehnungskoeffizienten verschiedener Metalle auftretende unterschiedliche Längenveränderung und die hierdurch hervorgerufene Flächenreibung zwischen verschiedenen Metallen mit Auftreten von Geräuschen bei Temperaturänderungen wird erfindungsgemäß durch das Wärmeleitkontaktelement verhindert, das zwischen der Rohrleitung 1 und der Wärmeleitkontaktfläche 6 angeordnet ist. Der niedrigere Ausdehnungskoeffizient von z.B. Kupfer erzeugt gegenüber dem höheren Ausdehnungskoeffizienten von z.B. Aluminium bei gleicher Temperaturveränderung unterschiedliche Längenveränderungen. Durch entsprechende Auslegung und Dimensionierung des Wärmeleitkontaktelementes kann erfindungsgemäß die Temperatur der Wärmetransportflüssigkeit in der Rohrleitung derart gewählt werden, daß die geringere Ausdehnung der Rohrleitung gegenüber der höheren Ausdehnung der Wärmeleitkontakifläche bei gleicher Temperatur durch die höhere Temperatur der Wärmetransportflüssigkeit kompensiert wird. Durch das erfindungsgemäße Wärmeleitkontaktelement kann demnach eine Steuerung dahingehend erfolgen, daß die gleiche Längenveränderung trotz verschiedener Materialien bei der Rohrleitung und bei der Wärmeleitkontaktfläche erzielt wird. Die Auslegung des Wärmeleitkontaktelementes 4 erfolgt in Abhängigkeit der Werkstoffkombination des Wärmeübertragungsprofiles 5 mit der Rohrleitung 1. Die Längendifferenz zwischen dem Wärmeübertragungsprofil 5 mit dem zugehörigen Längenausdehnungskoeffizienten und der Rohrleitung 1 mit dem zugehörigen Längenausdehnungskoeffizienten wird infolge der Temperaturgradienten im Wärmeleitkontaktelement eliminiert. Schubspannungen an den Werkstofftrennstellen werden damit abgebaut.The different length changes occurring due to different expansion coefficients of different metals and the resulting surface friction between different metals with the occurrence of Noise in the event of temperature changes is prevented according to the invention by the heat-conducting contact element which is arranged between the
Die vorliegende Erfindung ist nicht auf die gezeigten Ausführungsbeispiele beschränkt, sondern umfaßt alle im Sinne der Erfindung gleichwirkenden Mittel. Auch liegt es im Rahmen der Erfindung, die Wärmeübertragungsprofile von der Fassadenkonstruktion unabhängig, nämlich in Verbindung mit anderen Bauteilen, wie z.B. Fenster, Wände, Brüstungen und Decken, raumseitig anzuordnen, ebenso können den Wärmeübertragungsprofilen Luftführungen für eine Raumlüftung zugeordnet werden. Weiterhin können statische oder dynamische Heizkörper mit dem erfindungsgemäßen System integriert werden. Ebenso liegt es im Rahmen der Erfindung, die Wärmeübertragungsprofile 5 gemäß der Erfindung bei allen produktiven Industrie- und Fertigungswärmeprozessen anzuwenden.The present invention is not limited to the exemplary embodiments shown, but includes all means having the same effect in the sense of the invention. It is also within the scope of the invention to separate the heat transfer profiles from the facade construction, namely in connection with other components, such as windows, walls, Parapets and ceilings to be arranged on the room side, air ducts for room ventilation can also be assigned to the heat transfer profiles. Static or dynamic radiators can also be integrated with the system according to the invention. It is also within the scope of the invention to use the
Claims (23)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP89103119A EP0323862B1 (en) | 1985-03-06 | 1986-02-21 | Element for tempering spaces |
AT89103119T ATE62989T1 (en) | 1985-03-06 | 1986-02-21 | ROOM TEMPERATURE CONTROL ELEMENT. |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19853507951 DE3507951A1 (en) | 1985-03-06 | 1985-03-06 | SYSTEM FOR TEMPERATURE SPACES OF A BUILDING |
DE3507951 | 1985-03-06 | ||
EP89103119A EP0323862B1 (en) | 1985-03-06 | 1986-02-21 | Element for tempering spaces |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86102258.0 Division | 1986-02-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0323862A1 EP0323862A1 (en) | 1989-07-12 |
EP0323862B1 true EP0323862B1 (en) | 1991-04-24 |
Family
ID=25830042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89103119A Expired - Lifetime EP0323862B1 (en) | 1985-03-06 | 1986-02-21 | Element for tempering spaces |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0323862B1 (en) |
AT (1) | ATE62989T1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5597033A (en) * | 1993-06-15 | 1997-01-28 | Cali; Philip | Baseboard heater |
DE19835666C2 (en) * | 1998-08-06 | 2002-02-07 | Schneider Fensterfabrik Geb | Temperature-adjustable frame element |
FR2797319B1 (en) * | 1999-08-05 | 2002-03-08 | Legris Sa | FLUIDIC MODULE |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB243630A (en) * | 1925-06-12 | 1925-12-03 | Beniiam & Sons Ltd | Improvements in heating installations for buildings |
GB807649A (en) * | 1954-01-29 | 1959-01-21 | Karl Gunnar Frenger | Improvements in wall panels or ceilings, particularly for heating or cooling systemsfor rooms |
CH331442A (en) * | 1954-05-11 | 1958-07-31 | Anders Palmer Per | Construction element for forming the outer wall of buildings |
GB806503A (en) * | 1954-08-25 | 1958-12-23 | Ruberoid Co Ltd | Improvements in or relating to cooling and to radiant heating systems |
DE1810493A1 (en) * | 1968-11-22 | 1971-01-21 | Gartner & Co J | Building exterior wall |
DE1932591A1 (en) * | 1969-06-27 | 1971-01-21 | Willibald Staberei | Space heating |
DE2343168C2 (en) * | 1973-08-27 | 1975-09-04 | Hans 3559 Battenberg Viessmann | Prefabricated hall |
DE2621186C3 (en) * | 1976-05-13 | 1979-10-18 | Josef Gartner & Co, 8883 Gundelfingen | Device for temperature control of external rooms of a building |
DE2932284A1 (en) * | 1979-08-09 | 1981-02-26 | Karl Heinrich Ing Grad Notter | Heated floor pipe grid - has brick tiles as protective layer and aluminium U-profiles enclosing pipes |
-
1986
- 1986-02-21 AT AT89103119T patent/ATE62989T1/en not_active IP Right Cessation
- 1986-02-21 EP EP89103119A patent/EP0323862B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0323862A1 (en) | 1989-07-12 |
ATE62989T1 (en) | 1991-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0193810B1 (en) | System for tempering spaces | |
DE19700696B4 (en) | Facade or glass roof in fire protection version | |
DE3305266A1 (en) | SOLAR ENERGY COLLECTOR | |
DE102013008717A1 (en) | Surface heat exchanger element, method for producing a surface heat exchanger element and tool | |
DE2804301C2 (en) | Solar collector for roofs or facades of buildings | |
DE8660018U1 (en) | Frame profile for tempering rooms | |
EP0846245B1 (en) | Solar collector | |
EP0323862B1 (en) | Element for tempering spaces | |
CH643905A5 (en) | Heat-insulated posts for wall elements | |
DE29803166U1 (en) | Radiator or heat sink | |
WO2007042331A1 (en) | Heat exchanger plate | |
DE3108355A1 (en) | DEVICE FOR TEMPERATURE SPACES OF A BUILDING | |
DE102019107996A1 (en) | Frame for a window or a door | |
EP0082213B1 (en) | Roof or wall covering | |
EP0562545B2 (en) | Temperature control device for rooms in a building which border on a facade | |
DE19803114A1 (en) | Heat exchanger roof with heat conducting elements | |
DE202007015319U1 (en) | Insulator for window, door and façade systems | |
EP0181574A2 (en) | Method of constructing a covering of a building wall or roof, for use as an air collector for a heat pump | |
DE19504242B4 (en) | Structured heat exchanger, in particular for space heaters with profile tube members | |
DE3150538A1 (en) | Building element and energy or absorption roof or energy or absorption facade produced therewith | |
DE4031062A1 (en) | Heating and cooling arrangement | |
DE19835666C2 (en) | Temperature-adjustable frame element | |
DE2857662C2 (en) | Connection device for a weld-free connection in a temperature control device for facade walls | |
DE10104909B4 (en) | Building component with means for heating and / or cooling | |
DE7417129U (en) | Window unit with sliding windows |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19890223 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 193810 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19900329 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 193810 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19910424 |
|
REF | Corresponds to: |
Ref document number: 62989 Country of ref document: AT Date of ref document: 19910515 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REF | Corresponds to: |
Ref document number: 3678969 Country of ref document: DE Date of ref document: 19910529 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: SCHUECO INTERNATIONAL GMBH & CO. Effective date: 19920123 |
|
26 | Opposition filed |
Opponent name: JOSEF GARTNER & CO. Effective date: 19920124 Opponent name: SCHUECO INTERNATIONAL GMBH & CO. Effective date: 19920123 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: SCH CO INTERNATIONAL GMBH & CO. |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: JOSEF GARTNER & CO. |
|
EPTA | Lu: last paid annual fee | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Free format text: INGENIEURBUERO TIMMER REICHEL GMBH |
|
ITPR | It: changes in ownership of a european patent |
Owner name: CAMBIO RAGIONE SOCIALE;INGENIEURBUERO TIMMER REICH |
|
NLT1 | Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1 |
Owner name: INGENIEURSBUERO TIMMER REICHEL GESELLSCHAFT MIT BE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19960101 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19960214 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19960222 Year of fee payment: 11 |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 19951024 |
|
NLR2 | Nl: decision of opposition | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19970212 Year of fee payment: 12 Ref country code: FR Payment date: 19970212 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970221 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19970227 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19970228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19970429 Year of fee payment: 12 |
|
BERE | Be: lapsed |
Owner name: INGENIEURBURO TIMMER REICHEL G.M.B.H. Effective date: 19970228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19970901 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19970901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980221 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980228 Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19980228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980228 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19980221 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050221 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20050426 Year of fee payment: 20 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |