EP0316189B1 - Source de rayonnement infrarouge et méthode de fabrication d'une telle source - Google Patents

Source de rayonnement infrarouge et méthode de fabrication d'une telle source Download PDF

Info

Publication number
EP0316189B1
EP0316189B1 EP88310636A EP88310636A EP0316189B1 EP 0316189 B1 EP0316189 B1 EP 0316189B1 EP 88310636 A EP88310636 A EP 88310636A EP 88310636 A EP88310636 A EP 88310636A EP 0316189 B1 EP0316189 B1 EP 0316189B1
Authority
EP
European Patent Office
Prior art keywords
chamber
gas
source
radiation
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88310636A
Other languages
German (de)
English (en)
Other versions
EP0316189A3 (en
EP0316189A2 (fr
Inventor
Shaul Yatsiv
Amnon Gabay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yissum Research Development Co of Hebrew University of Jerusalem
Original Assignee
Yissum Research Development Co of Hebrew University of Jerusalem
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yissum Research Development Co of Hebrew University of Jerusalem filed Critical Yissum Research Development Co of Hebrew University of Jerusalem
Publication of EP0316189A2 publication Critical patent/EP0316189A2/fr
Publication of EP0316189A3 publication Critical patent/EP0316189A3/en
Application granted granted Critical
Publication of EP0316189B1 publication Critical patent/EP0316189B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/14Selection of substances for gas fillings; Specified operating pressure or temperature having one or more carbon compounds as the principal constituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/35Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/245Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps
    • H01J9/247Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps specially adapted for gas-discharge lamps

Definitions

  • the present invention relates to sealed-off, molecular gas-discharge sources, without internal electrodes, radiating at discrete, non-coherent and spontaneous emission frequencies in the infra-red (IR) spectrum, and to a method of producing such sources.
  • IR infra-red
  • molecular gas-discharge IR sources are known in the art. These sources are, however, in general of short life span due to dissociation and/or depletion of the IR emitting gas during operation and are weak due to non-radiative relaxation of the excited molecules. Also, the ratio of the IR output to the input power of these known sources, is low. In order to overcome some of these shortcomings, solutions were suggested which include rather complicated structures, such as the device described in Robert A. Young's US-A-3,984,727 and the device described in GB-A-1,591,709, to R.S. Webley.
  • a source of IR-radiation comprising an enclosure defining between its walls a sealed-off, electrode-less chamber, said walls having at least one portion transparent to IR-radiation, characterized in that the sealed-off, electrode-less chamber contains a gas mixture of at least one molecular IR-active gas, at least one buffer gas, and at least one noble gas, said source of IR-radiation emitting discrete, solely non-coherent, spontaneous emission frequencies in the IR-spectrum which are characteristic of the decay of said at least one molecular IR-active gas from its rotational-vibrational state to its ground state.
  • the invention also provides a method for producing a source of IR-radiation, comprising (a) providing an enclosure made of a dielectric material defining between its walls a chamber; (b) soaking said chamber in a cleaning agent; (c) thoroughly rinsing said chamber with distilled de-ionized water; (d) drying said chamber; (e) baking said chamber at a temperature of from about 200 to 300°C; (f) introducing into the chamber at least one noble gas, effecting a discharge in the chamber for a period of time, and emptying said gas from the chamber; (g) filling said chamber with a gas mixture containing at least one, molecular, IR-active gas, at least one buffer gas, and at least one noble gas; (h) effecting a discharge for a period of time in said chamber containing said gas mixture introduced in step (g), emptying said gas mixture from said chamber and filling said chamber with a fresh gas mixture as in step (g); and (i) hermetically sealing-off said chamber.
  • an IR-radiation source 2 constituted by an enclosure 4 defining between its walls a sealed-off chamber 6.
  • the enclosure 4 is made of a dielectric material such as Pyrex R , glass or quartz and has at least one wall 8 transparent to IR-radiation, which radiation, during operation, can be emitted therefrom in the direction of arrows A.
  • the enclosure 4 may, however, be fitted on the outside thereof, with a pair of electrodes 10 and 12 connectable via a cable 14 to an RF driver (not shown) for powering and controlling the source 2.
  • the interior of the enclosure 4 is filled with a gas mixture containing:
  • the molecules are prone to quenching by three different processes: wall quenching, collisional quenching and self quenching.
  • the wall quenching is caused by the diffusion of excited molecules from a location in the bulk of the gaseous medium to the walls of the enclosure where it is rapidly quenched and the excitation is lost.
  • the average diffusion time for an average size of a source operating at gas pressures which are lower than optimal pressures for high output, is several times faster than the radiative life time.
  • the nature of a particular quenching agent depends on the specific emitting molecule and on the excited state. For example the 4.27 emission from the (001) state to the (000) state of a CO2 molecule is particularly susceptible to quenching by collision with water or hydrogen molecules.
  • IR-active molecular species in the source as well as atomic or molecular buffer species should be maintained at bound pressures not exceeding predetermined values. Since diffusion to the walls of the enclosure is faster at reduced pressure, wall quenching and collisional quenching are inter dependent. Thus, only relative large size sources can maintain high emission intensities at considerable power conversion efficiencies.
  • IR-radiation sources built and operated, in accordance with the present invention, are as follows:
  • the total pressure inside the chamber can vary from 1,33 ⁇ 102 Pa to 133 ⁇ 102 Pa (1 to 100 torr).
  • Fig. 2 illustrates the emission intensity of an IR-radiation source comprising CO2, N2, Xe, and He, having relative partial pressures of 1,2,3,3, and a total pressure in the range of 8,0 ⁇ 102 Pa - 3,3 ⁇ 103 Pa 6 - 25 torr.
  • the source has been excited by an RF oscillator operating at a frequency range of 4-7 MHz at an average output power of hundreds of milliwatts.
  • the output from the radiation source is in the order of tens of milliwatts.
  • this term as used herein is meant to encompass, both, the overall size and shape of an enclosure defining a chamber 6 containing the mixture of the gas.
  • the lifetime at the (001) vibrational state of a carbon dioxide (CO2) molecule which produces the 4,27 micron emission is approximately 5 milliseconds.
  • CO2 carbon dioxide
  • the size of the chamber should be small enough so that the diffusion of the molecules to the walls of the chamber will take less than the decay time of the molecule. While for the CO2 molecule the decay time is approximately 5 milliseconds, the decay time for CO (see example No. 4) is about 30 milliseconds.
  • the enclosure 4 is composed of two portions: a first portion of a greater diameter D (about 40 mm) and of a length L (about 50 mm) called the reservoir and of a second portion of a lesser diameter d, (about 15 mm) and of a length 1 (about 30 mm), called the discharge portion or zone.
  • the two electrodes 10 and 12 are coupled onto the discharge zone.
  • the desired gas emission exits the chamber 6 in the direction of arrow A.
  • the major volume of the chamber 6 is utilized as a reservoir for constantly replenishing the discharge zone with the same mixture of gas molecules. This type of source configuration increases the life span and stability of the output power of a source.
  • a modified source 2 having two compartments 14 and 16.
  • a gas mixture according to the invention having a certain active gas, (e.g., CO2).
  • an additional active gas e.g., N2O or any other molecule having a dissociation tendency similar to N2O.
  • N2O an active gas
  • the first active molecule will absorb the characteristic radiation emanating from the compartment 14 and by the collisional V-V process, will excite the second active molecule to its vibrational state.
  • a radiation in direction B of the second active gas will be emitted from the compartment 16, without inducing a gas discharge in it.
  • an essential feature of the present invention is the self-controlled long-life continuous emission IR-radiation source, which is achieved, inter alia, by avoiding, as far as possible, different quenching processes and other causes depleting the IR-active gas in the mixture.
  • it is proposed to pretreat the interior of the enclosure 4 prior to the introduction of the gas mixture therein as follows:
  • the selected gases as described hereinbefore, are introduced into the chamber at the calculated ratios and pressures, the chamber is then hermetically sealed-off.
  • the enclosure materials which normally have high relaxing tendency to the IR-active molecules can be coated with substances which reduce this tendency, for example, Barium Fluoride or Sapphire.
  • the enclosure wall material with a radioactive substance, that while radiating into the chamber, assists in pre-conditioning the gas mixture inside the enclosure for easy ignition.
  • the same effect can be achieved by adding traces of radioactive gas such as 85Kr.
  • IR active gas molecules in order to maintain a preferred level of IR active gas molecules, it is suggested in some cases, to add to the mixture gas molecules which will maintain the concentration of the IR-active gas molecules at the desired level.
  • Such an addition may be constituted by e.g., H2 molecules when the IR-active molecules are CH4.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Chemical Vapour Deposition (AREA)

Claims (14)

  1. Source de rayonnement IR comprenant une enceinte (4) définissant entre ses parois une chambre scellée sans électrodes (6 ; 14, 16), lesdites parois présentant au moins une partie transparente au rayonnement IR, caractérisée en ce que la chambre scellée sans électrodes (6; 14, 16) contient un mélange gazeux d'au moins un gaz moléculaire IR-actif, au moins un gaz tampon, et au moins un gaz rare, ladite source de rayonnement IR émettant des fréquences d'émission discrètes, uniquement non cohérentes, spontanées dans le spectre IR qui sont caractéristiques de l'amortissement dudit au moins un gaz moléculaire IR-actif de son état de rotation-vibration à son état fondamental.
  2. Source selon la revendication 1, dans laquelle le gaz IR-actif est CO₂ ou CO.
  3. Source selon la revendication 1, dans laquelle la molécule de gaz IR-actif contient au moins un isotope rare.
  4. Source selon l'une quelconque des revendications 1 à 3, dans laquelle le gaz tampon est N₂, CO, ou un mélange de ceux-ci.
  5. Source selon l'une quelconque des revendications précédentes, dans laquelle le gaz rare est He ou Xe.
  6. Source selon l'une quelconque des revendications précédentes, dans laquelle le mélange gazeux à l'intérieur d'un volume et d'une configuration donnés de ladite chambre (6 ; 14, 16) fournit une pression totale pour laquelle la durée moyenne de propulsion aléatoire des particules de gaz sur une paroi de ladite chambre dépasse environ 5 ms, pour maximiser la puissance débitée de rayonnement.
  7. Source selon l'une quelconque des revendications précédentes, dans laquelle pour un volume et une configuration donnés de ladite chambre (6; 14, 16) la pression partielle des particules de gaz en extinction à l'intérieur de ladite chambre (6; 14, 16) est telle que la vitesse d'extinction par collision des particules de gaz n'excède pas environ 200 s⁻¹, pour maximiser la puissance débitée de rayonnement.
  8. Source selon l'une quelconque des revendications 1 à 5, dans laquelle le mélange gazeux à l'intérieur d'un volume et d'une configuration donnés de ladite chambre (6 ; 14, 16) fournit une pression totale pour laquelle la durée moyenne de propulsion aléatoire des particules de gaz sur une paroi de ladite chambre (6 ; 14, 16) est inférieure à environ 5 ms pour obtenir une vitesse de modulation du rayonnement plus grande.
  9. Source selon l'une quelconque des revendications 1 à 5, dans laquelle pour un volume et une configuration donnés de ladite chambre (6; 14, 16) la pression partielle des particules de gaz en extinction à l'intérieur de ladite chambre (6; 14, 16) est telle que la vitesse d'extinction par collision des particules de gaz dépasse environ 200 s⁻¹, pour obtenir une vitesse de modulation du rayonnement débité plus grande.
  10. Source selon l'une quelconque des revendications précédentes, dans laquelle l'enceinte (4) est prévue en deux parties (figure 3), desquelles une première partie plus grande définit un réservoir et une seconde partie de taille plus petite défnit une zone de décharge.
  11. Source selon l'une quelconque des revendications 1 à 9, dans laquelle l'enceinte (4) est divisée en deux compartiments (14, 16) par une séparation, ladite séparation étant transparente au rayonnement IR.
  12. Source selon la revendication 11, dans laquelle un premier compartiment (14) des deux compartiments est rempli avec ledit mélange gazeux et le second compartiment (16) est rempli avec ledit mélange gazeux et une molécule de gaz actif supplémentaire présentant une tendance à la dissociation.
  13. Source selon l'une quelconque des revendications précédentes, dans laquelle les parois de la chambre (6; 14, 16) sont revêtues d'un matériau qui réduit la tendance de relaxation des molécules IR-actives excitées entrant en collision.
  14. Procédé pour produire une source de rayonnement IR, consistant:
    a) à fournir une enceinte (4) constituée d'un matériau diélectrique définissant entre ses parois une chambre (6; 14, 16);
    b) à faire tremper ladite chambre (6 ; 14, 16) dans un agent de nettoyage;
    c) à rincer parfaitement ladite chambre (6 ; 14, 16) avec de l'eau distillée désionisée;
    d) à sécher ladite chambre (6; 14, 16);
    e) à faire cuire ladite chambre (6; 14, 16) à une température comprise entre environ 200 et 300°C;
    f) à introduire dans la chambre (6 ; 14, 16) au moins un gaz rare, à effectuer une décharge dans la chambre (6 ; 14, 16) pendant une période de temps et à vider ledit gaz de la chambre (6; 14, 16);
    g) à remplir ladite chambre (6 ; 14, 16) avec un mélange gazeux contenant au moins un gaz moléculaire IR-actif, au moins un gaz tampon et au moins un gaz rare;
    h) à effectuer une décharge pendant une période de temps dans ladite chambre (6; 14, 16) contenant ledit mélange gazeux introduit dans l'étape (g), à vider ledit mélange gazeux de ladite chambre (6; 14, 16) et à remplir ladite chambre (6; 14, 16) avec un mélange gazeux frais comme dans l'étape (g); et
    i) à sceller hermétiquement ladite chambre (6; 14, 16).
EP88310636A 1987-11-12 1988-11-11 Source de rayonnement infrarouge et méthode de fabrication d'une telle source Expired - Lifetime EP0316189B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IL84463A IL84463A (en) 1987-11-12 1987-11-12 Ir-radiation source and method for producing same
IL84463 1987-11-12

Publications (3)

Publication Number Publication Date
EP0316189A2 EP0316189A2 (fr) 1989-05-17
EP0316189A3 EP0316189A3 (en) 1990-08-22
EP0316189B1 true EP0316189B1 (fr) 1995-01-18

Family

ID=11058319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88310636A Expired - Lifetime EP0316189B1 (fr) 1987-11-12 1988-11-11 Source de rayonnement infrarouge et méthode de fabrication d'une telle source

Country Status (6)

Country Link
EP (1) EP0316189B1 (fr)
JP (1) JPH01161661A (fr)
AT (1) ATE117462T1 (fr)
CA (1) CA1312114C (fr)
DE (1) DE3852813T2 (fr)
IL (1) IL84463A (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8914722D0 (en) * 1989-06-27 1989-08-16 Emi Plc Thorn A discharge tube arrangement
GB8920051D0 (en) * 1989-09-05 1989-10-18 Emi Plc Thorn A discharge tube arrangement
GB8922862D0 (en) * 1989-10-11 1989-11-29 Emi Plc Thorn A discharge tube arrangement
DE4120730C2 (de) * 1991-06-24 1995-11-23 Heraeus Noblelight Gmbh Elektrodenlose Niederdruck-Entladungslampe
DE10128915A1 (de) 2001-06-15 2002-12-19 Philips Corp Intellectual Pty Niederdruckgasentladungslampe mit quecksilberfreier Gasfüllung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3617110A1 (de) * 1986-05-21 1987-11-26 Leybold Heraeus Gmbh & Co Kg Lampe fuer die erzeugung von gas-resonanzstrahlungen

Also Published As

Publication number Publication date
CA1312114C (fr) 1992-12-29
DE3852813D1 (de) 1995-03-02
DE3852813T2 (de) 1995-08-31
JPH01161661A (ja) 1989-06-26
IL84463A (en) 1992-06-21
IL84463A0 (en) 1988-04-29
EP0316189A3 (en) 1990-08-22
EP0316189A2 (fr) 1989-05-17
ATE117462T1 (de) 1995-02-15

Similar Documents

Publication Publication Date Title
US4492898A (en) Mercury-free discharge lamp
US5300859A (en) IR-radiation source and method for producing same
US4480213A (en) Compact mercury-free fluorescent lamp
EP0316189B1 (fr) Source de rayonnement infrarouge et méthode de fabrication d'une telle source
US4636692A (en) Mercury-free discharge lamp
Tarasenko et al. UV and VUV excilamps excited by glow, barrier and capacitive discharges
US4230995A (en) Electrically excited mercury halide laser
Carbone et al. Intense Mercury‐Vapor Green‐Band Emission
US4087763A (en) Method and apparatus for secondary laser pumping by electron beam excitation
US4002922A (en) Vacuum ultraviolet continuum lamps
US3887882A (en) Electric discharge laser with electromagnetic radiation induced conductivity enhancement of the gain medium
JP2623499B2 (ja) オゾン水製造装置
JPH0562649A (ja) マイクロ波励起型紫外ランプ装置
US3536945A (en) Luminescent gas tube including a gas permeated phosphor coating
US4075579A (en) Gaseous laser medium and means for excitation
US4239995A (en) Metal vapor Raman frequency shifter
US4606030A (en) Vacuum ultraviolet laser
US3882414A (en) Halide dissociative transfer laser
JP3228090B2 (ja) 誘電体バリア放電ランプ
US6803724B2 (en) Electrodeless lamp and lamp bulb therefor
US3444415A (en) Fluorescent discharge lamp
Dlabal et al. Multiline (480–496 nm) discharge‐pumped iodine monofluoride laser
Cooper et al. Dependence of the recovery time of the pulsed carbon monoxide laser on gas pressure and tube bore
Collins et al. An atomic‐fluorine laser pumped by charge transfer from He+ 2 at high pressures
Boichenko et al. Efficient emission from an He—Xe—NF3 mixture pumped by a glow discharge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901220

17Q First examination report despatched

Effective date: 19930420

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950118

Ref country code: AT

Effective date: 19950118

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19950118

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950118

Ref country code: BE

Effective date: 19950118

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950118

Ref country code: CH

Effective date: 19950118

Ref country code: NL

Effective date: 19950118

REF Corresponds to:

Ref document number: 117462

Country of ref document: AT

Date of ref document: 19950215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3852813

Country of ref document: DE

Date of ref document: 19950302

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950418

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951130

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071113

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071029

Year of fee payment: 20

Ref country code: FR

Payment date: 20071129

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20081110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081110