EP0313622A1 - PROCEDE DE CONTROLE DE SELECTIVITE DANS LA TRANSFORMATION DU n-HEPTANE EN PRESENCE DE CATALYSEURS ZEOLITHES - Google Patents

PROCEDE DE CONTROLE DE SELECTIVITE DANS LA TRANSFORMATION DU n-HEPTANE EN PRESENCE DE CATALYSEURS ZEOLITHES

Info

Publication number
EP0313622A1
EP0313622A1 EP19880904240 EP88904240A EP0313622A1 EP 0313622 A1 EP0313622 A1 EP 0313622A1 EP 19880904240 EP19880904240 EP 19880904240 EP 88904240 A EP88904240 A EP 88904240A EP 0313622 A1 EP0313622 A1 EP 0313622A1
Authority
EP
European Patent Office
Prior art keywords
heptane
zeolite
hydrogenating metal
catalytic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19880904240
Other languages
German (de)
English (en)
Inventor
Karl-Hermann Steinberg
Frank RÖSSNER
Uwe Mroczek
Gérard Marcel PAJONK
Stanislas Jean Teichner
Ahmed Zaki El Tanany
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP0313622A1 publication Critical patent/EP0313622A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/50Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the eroionite or offretite type, e.g. zeolite T

Definitions

  • the present invention relates to a process which aims to promote the cracking of n-heptane mainly into propane or a mixture of propane, butane, pentane and hexane by using a mixed catalyst in the form of a zeolite without metal or in the form of a component comprising a hydrogenating metal.
  • N-heptane is of only very limited interest as a volatile fuel constituent. By definition, its octane number is zero. This is why it is not desired in the composition of fuels. In the treatment of hydrocarbon mixtures containing n-heptane by catalytic reforming, the latter still remains up to now even with the best methods, in reaction products up to a few percent by mass.
  • the catalyst consists of an active component which is a zeolite, mainly the Y zeolite exchanged with rare earth cations.
  • a carbon deposition on the catalyst is formed as a result of side reactions, which has the consequence of deactivating it in a few minutes. For this reason the catalyst is continuously withdrawn from the reactor to be regenerated by oxidation in an appropriate installation.
  • n-heptane The catalytic cracking of n-heptane provides hydrocarbons from Cl to C6 which contain a significant part of olefins. Precisely these olefins are responsible for deactivation.
  • the subject of the present invention is a process which makes it possible to make selective the conversion of n-heptane and to control the selectivity so as to favor the formation of propane or mixtures of propane and higher alkanes, with a stable catalytic activity. in time.
  • the invention also relates to a process which uses a solid catalyst under appropriate conditions, to selectively transform n-heptane into desired products, with a catalytic activity stable over time.
  • the objective of the invention is achieved with n-heptane or with mixtures which contain it, at higher temperatures, by using a catalytic system with an hourly volume speed varying from 0.5 to 5 h - 1 , which consists of a mechanical mixture of a zeolitic component without hydrogenating metal and a non-zeolitic component containing a hydrogenating metal.
  • the desired selectivity is obtained in the desired direction by varying the mass proportion of the component containing the hydrogenating metal (in particular metal of the 8th subgroup) between 0.01 and 50% of the total mass of the catalyst.
  • Two preferred forks These can be used depending on whether one wishes to orient the cracked products rather towards propane, or rather towards butane, namely respectively:
  • the invention preferably allows the transformation of n-heptane to be carried out in the temperature range 400-800 K, in which the reaction products are sought and for which the partial pressure of n-heptane and the volume speed times are fixed.
  • n-heptane is excellent in the transformation of the hydrocarbon without being a compulsory condition.
  • a partial pressure of n-heptane in the raw material is used between 10 and 1000 kPa.
  • hydrocarbons such as iso-alkanes, naphthenes or aromatics can be mixed with n-heptane without impairing its conversion.
  • a zeolitic component in the form of zeolites with small pores such as the erionite or the zeolite ZSM-5 sold by SOCONY MOBIL.
  • the invention is based on the observation of a special effect resulting from the spatial separation of the active component in hydrogenation of zéolithi ⁇ component, by the use of a catalytic device in the form of a mechanical mixture composed of the nt hydrogenating which makes it possible to orient the selectivity of the conversion of n-heptane, either towards the main formation of propane or that of alkanes from C4 to C6 at the expense of the formation of propane.
  • zeolites such as erionite, zeolites pentasil or zeolites Y belong to the field of the invention.
  • the acid form of zeolites is obtained by the conventional process of ion exchange with ammoniacal solutions or / and salts of elements from families 2 to 4 of the periodic table and / or salts of elements from subgroups 3 and 4 of the periodic table.
  • Zeolites can be used without binders. Furthermore, the use of binders in the preparation of zeolitic components also belongs to the field of the invention.
  • the component containing the hydrogenating metal can consist of A1203, amorphous silicoaluminates or SiO2, or mixtures of these substances.
  • the hydrogenating metal can be incorporated on these substances in a conventional manner using solutions of combinations of the elements of subgroups 6 to 8 of the periodic classification.
  • the metal of the hydrogenating component can be reduced before being introduced into the catalytic system, the introduction of the unreduced metallic component also belongs to the field of the invention.
  • alumina in the form of a boeite
  • the zeolite is extruded into cylinders 3 mm in diameter. These are calcined at 870 K for 5 hours.
  • To 100 g of these extrudates is added 1 gd of a conventional commercial catalyst consisting of platinum (0.5% by weight) supported by gamma alumina in the form of extrudates 1.5 mm in diameter.
  • This composite catalyst is passed to 570 K in a dynamic n-heptane reactor with an hourly volume speed of 3 h -1 under a total pressure of 300 Pa of hydrogen. After 10 h of reaction, the reaction mixture contains the following constituents in hydrocarbons and in% by mass: n-heptane 32%, propane 20%, butane 22%, pentane 18%, hexane 8.4% and others 1.6%.
  • Example 2 A sample of ZSM-5 zeolite (sold by SOCONY MOBIL) NaH with a SiO2 / A1203 molar ratio of 40 is treated with a dilute solution of HCl for 6 h at 360 K. The resulting washed product is agglomerated with a solu ⁇ 40% silica. Agglomerates with an average diameter of 3 mm are calcined at 870 K for 6 hours.
  • n-heptane and hydrogen are passed with an hourly volume speed in n-heptane of 4 h '"*, the molar ratio of n-heptane being 1.6 / 1 and the total pressure of 1.1 MPa.
  • the conversion rate of n-heptane during the 150 hours of reaction remains constant and equal to 56%.
  • reaction products are 86% propane (based on the conversion of n-heptane).
  • the rest consists of butane and in smaller quantities with methane and ethane.
  • a sample of commercial zeolite Y with a molar ratio Si02 / A1203 4.8 is ionically exchanged in three times with a solution of Ce (N03) 3, 0.3 molar and provides a 0.88 CeNa-Y zeolite.
  • the 0.88 CeNa-Y dry powder is mixed with 28% by mass of crushed natural clay and compacted into discs 5 mm in diameter and 5 mm in height.
  • a mixture of n-heptane, H2 and N2 in the molar ratios 1/2/3, under a total pressure of 200 kPa and an hourly mass speed of 1.2 kg n-heptane / kg of catalyst / hour is sent to the reactor at 600 K.
  • the effluent stream from the reactor is composed of the following hydrocarbons: 17% n-heptane, 20% propane, 14% isobutane, 16% n-butane, 14% isopentane, 8 % of n-pentane, 6% of iso-hexane, 4% of n-hexane and 1% of other hydrocarbons.
  • the composition of the mixture remains identical at least for 160 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne un procédé de transformation sélective du n-heptane (ou de mélanges d'hydrocarbures contenant du n-heptane). Selon l'invention, on utilise un système catalytique combinant une zéolithe ne contenant pas de métal hydrogénant et un composé de métal hydrogénant ne contenant pas de zéolithe.

Description

PROCEDE DE CONTROLE DE SELECTIVITE DANS LA TRANSFORMA¬ TION DU n-HEPTANE EN PRESENCE DE CATALYSEURS ZEOLITHES
La présente invention concerne un procédé qui vise à favoriser le craquage du n-heptane principalement en propane ou en mélange de propane, butane, pentane et hexane par mise en oeuvre d'un catalyseur mixte sous forme de zéolithe sans métal ou sous forme d'un compo¬ sant comportant un métal hydrogénant.
Le n-heptane ne présente qu'un intérêt très faille en tant que constituant volatile de carburant. Par défi¬ nition son indice d'octane est nul. C'est pourquoi il n'est pas désiré dans la composition des carburants. Dans le traitement des mélanges hydrocarbures contenant le n-heptane par réformage catalytique, ce dernier sub¬ siste encore jusqu'à présent même avec les meilleurs procédés, dans les produits de réaction à concurrence de quelques pourcents en masse.
La conversion catalytique du n-heptane en isomère n'est pas réalisée au plan technique jusqu'à présent. L'isomérisation n'est pratiquée avec les alcanes normaux que pour ceux pour lesquels le nombre de carbone est compris entre 4 et 6. La raison de cette situation ré¬ side dans la concurrence entre le craquage et l'isoméri¬ sation, si bien qu'au cours de la tentative d'isomé- riser le n-heptane en isoheptane on observe la formation d'une grande quantité de produits de craquage.
Il est intéressant de valoriser les hydrocarbures à valeur réduite en les craquant en molécules plus peti¬ tes. Ceci est accompli dans les procédés modernes, dans des réacteurs à lits catalytiques mobiles. Le catalyseur est constitué d'un composant actif qui est une zéolithe, principalement la zéolithe Y échangée avec des cations des terres rares. Un dépôt de carbone sur le catalyseur se constitue par suite de réactions secondaires, ce qui a pour conséquence de le désactiver en quelques minutes. Pour cette raison le catalyseur est continuellement soutiré du réacteur pour être regénéré par oxydation dans une installation appropriée.
La rapidité avec laquelle le catalyseur est désac- tivé, constitue un important inconvénient du procédé, car la technique du lit mobile exige de très grandes quantités de catalyseur et il en découle un phénomène d'attrition qui est inévitable.
Le craquage catalytique du n-heptane fournit des hydrocarbures de Cl à C6 qui contiennent une part impor¬ tante d'oléfines. Précisément ces oléfines sont respon¬ sables de la désactivation.
Une alternative du craquage catalytique est repré¬ sentée par 1'hydrocraquage du n-heptane en lit fixe. Un tel procédé nécessite bien moins de catalyseur tandis que sa durée de vie est très longue. L'inconvénient de 1'hydrocraquage est la nécessité de mettre en oeuvre de grandes quantités de métal hydrogénant dans la compo¬ sition de la masse catalytique, et dont l'influence sur la génération des produits du craquage est à peine observée.
Les désavantages des procédés de traitement actuel¬ lement connus appliqués à la conversion du n-heptane sont les suivants :
- le réformage catalytique laisse le n-heptane intact et transforme d'autres hydrocarbures de façon non sélective : - 1'isomérisation du n-heptane est une technique complexe et non sélective ;
- le craquage catalytique nécessite de très grandes quantités de catalyseur et conduit à une très large gamme de produits ;
- 1'hydrocraquage exige de grandes quantités de métal hydrogénant qui ne joue pas de rôle sur les pro¬ duits obtenus encore une fois sous forme d'une large gamme.
La présente invention a pour objet un procédé qui permet de rendre sélective la conversion du n-heptane et de contrôler la sélectivité de manière à privilégier la formation du propane ou de mélanges de propane et d'al- canes supérieurs, avec une activité catalytique stable dans le temps.
L'invention a également pour objet un procédé qui met en jeu un catalyseur solide dans des conditions appropriées, pour transformer sélectivement le n-heptane en produits désirés, avec une activité catalytique sta¬ ble avec le temps.
L'objectif de l'invention est atteint avec le n- heptane ou avec des mélanges qui le contiennent, à tem¬ pératures plus élevées, en employant un système cataly¬ tique avec une vitesse volumique horaire variant de 0,5 à 5 h-1 , qui est constitué d'un mélange mécanique d'un composant zéolithique sans métal hydrogénant et d'un composant non zéolithique contenant un métal hydrogé¬ nant. La sélectivité désirée est obtenue dans le sens souhaité en faisant varier la proportion massique du composant contenant le métal hydrogénant (notamment métal du 8ème sous-groupe) entre 0,01 et 50 % de la masse totale du catalyseur. Deux fourchettes préféren- tielles peuvent être utilisées selon que l'on veut o- rienter les produits de craquage plutôt vers le propane, ou plutôt vers le butane, à savoir respectivement :
- 0,05 à 1 % en composant contenant le métal hydro- gênant ;
- 0,01 et 50 % en composant contenant le métal hydrogénan- .
L'invention permet préféren iellement la réalisa- tion de la transformation du n-heptane dans le domaine de température 400-800 K, dans lequel les produits de la réaction sont recherchés et pour lequel la pression partielle du n-heptane et la vitesse volumique horaire sont fixées.
L'addition hydrogène au n-heptane est faborable à la transformation de l'hydrocarbure sans être une condi¬ tion obligatoire. Préférentiellement, on utilise une pression partielle de n-heptane dans la matière première comprise entre 10 et 1 000 kPa.
D'autres hydrocarbures comme les iso-alcanes, les naphtènes ou les aromatiques peuvent être mélangés au n- heptane sans nuire à sa conversion. Cependant dans le cas de mélanges il est avantageux pour accroître l'ef¬ ficacité de la transformation du n-heptane d'utiliser un composant zéolithique sous la forme de zéolithes à petits pores telles que l'érionite ou la zéolithe ZSM-5 vendue par la Société SOCONY MOBIL.
L'invention repose sur l'observation d'un effet extraordinaire résultant de la séparation spatiale du composant actif en hydrogénation du composant zéolithi¬ que, par l'emploi d'un dispositif catalytique sous la forme d'un mélange mécanique du composa'nt hydrogénant qui permet d'orienter la sélectivité de la conversion du n-heptane, soit vers la formation principale du propane soit de celle des alcanes de C4 à C6 aux dépens de la formation du propane.
Si l'on désire obtenir principalement du propane, il est avantageux d'introduire de 10 jusqu'à 50 % en poids du composant contenant le métal hydrogénant dans le système catalytique (mélange mécanique) .
Si l'on désire principalement des alcanes de C4 à C6 et peu de propane, il est avantageux de maintenir le composant contenant le métal hydrogénant à une propor¬ tion inférieure comprise entre 0,05 et 10 % en masse.
Il est approprié d'utiliser des zéolithes transfor¬ mables en forme acide comme composant zéolithique, en raison de leur stabilité satisfaisante sous cette forme.
L'emploi de zéolithes comme l'érionite, les zéoli¬ thes pentasil ou les zéolithes Y appartiennent au do¬ maine de l'invention.
La forme acide des zéolithes est obtenue par le procédé classique d'échange d'ions avec des solutions ammoniacales ou/et des sels des éléments des familles 2 à 4 du tableau périodique et/ou des sels des éléments des sous-groupes 3 et 4 de la classification périodique.
Les zéolithes peuvent être utilisées sans liants. Par ailleurs l'emploi de liants dans l'élaboration de composants zeolithiques appartient aussi au domaine de 1'invention. Le composant contenant le métal hydrogénant peut être constitué de A1203, de silicoaluminates amorphes ou de Si02, ou encore des mélanges de ces substances. Le métal hydrogénant peut être incorporé sur ces substances de manière classique à l'aide de solutions des combi¬ naisons des éléments des sous-groupes 6 à 8 de la clas¬ sification périodique. Le métal du composant hydrogé- nante peut être réduit avant d'être introduit dans le système catalytique, l'introduction du composant métal¬ lique non réduit appartient également au domaine de l'invention.
Les exemples ci-dessous éclaireront la nature et la portée de la présente invention :
- Exemple 1
Une zéolithe commerciale classique Na- érionite avec un rapport molaire Sio2/A1203 = 6 est échangée ioniquement par une solution aqueuse ammoniacale à 90 % de ses ions alcalins pour donner la forme NH4+. Par addition de 30 % en poids d'alumine sous forme de boe- mite la zéolithe est extrudée en cylindres de 3 mm de diamètre. Ceux-ci sont calcinés à 870 K pendant 5 heures. A 100 g de ces extrudés on ajoute 1 g d un catalyseur classique du commerce constitué par du pla¬ tine (0,5 % en poids) supporté par l'alumine gamma sous forme d'extrudés de 1,5 mm de diamètre.
On fait passer sur ce catalyseur composite à 570 K dans un réacteur dynamique du n-heptane avec une vitesse volumique horaire de 3 h-1 sous une pression totale de 300 Pa d'hydrogène. Après 10 h de réaction le mélange réactionnel contient en hydrocarbures et en % massiques les constituants suivants : n-heptane 32 %, propane 20 %, butane 22 %, pentane 18 %, hexane 8,4% et autres 1,6 %.
- Exemple 2 Un échantillon de zéolithe ZSM-5 (vendue par SOCONY MOBIL) NaH avec un rapport molaire Si02/A1203 de 40 est traitée par une solution diluée de HC1 pendant 6 h à 360 K. Le produit résultant lavé est aggloméré par une solu¬ tion à 40 % de silice. Les agglomérats d'un diamètre moyen de 3 mm sont calcinés à 870 K pendant 6 heures.
A 100 g des ces agglomérats on ajoute 40 g d'un catalyseur classique du commerce Pd/"aérosil" à 0,8 % en masse de Pd sous forme de gros éclats de 1 à 2 mm ; "aérosil" est une silice à l'état divisé vendue par la
Société DEGUSSA.
A 520 K dans un réacteur dynamique on fait passer un mélange de n-heptane et d'hydrogène avec une vitesse volumique horaire en n-heptane de 4 h'"*, le rapport molaire en n-heptane étant de 1,6/1 et la pression to¬ tale de 1,1 MPa.
Le taux de transformation du n-heptane durant les 150 heures de réaction reste constant et égal à 56 %.
Les produits de la réaction sont le propane à 86 % (rapporté à la conversion du n-heptane) . Le reste est constitué par du butane et en quantité plus réduites par du méthane et de l'éthane.
- Exemple 3
Un échantillon de zéolithe Y, du commerce, avec un rapport molaire Si02/A1203 = 4,8 est échangée ionique- ment en trois fois par une solution de Ce(N03)3, 0,3 molaire et fournit une zéolithe 0,88 CeNa-Y.
La poudre sèche de 0,88 CeNa-Y est mélangée avec 28 % en masse d'argile naturelle broyée et compactée en disques de 5 mm de diamètre et 5 mm de hauteur.
A 100 g de ces disques sont ajoutés 300 mg d'un catalyseur commercial classique Pt/A1203 sous forme de grains de 0,1 à 0,3 mm de grosseur. Ce mélange est trai- té dans un réacteur dynamique sous courant d'air à 900 K pendant 3 heures et ensuite il est réduit par de l'hy¬ drogène pendant 2 heures à 800 K.
Un mélange de n-heptane, H2 et N2 dans les rapports molaires 1/2/3, sous une pression totale de 200 kPa et une vitesse massique horaire de 1,2 kg n-heptane/kg de catalyseur/heure est envoyé dans le réacteur à 600 K. Le courant effluent du réacteur est composé des hydrocar¬ bures suivants : 17 % de n-heptane, 20 % de propane, 14 % d'isobutane, 16 % de n-butane, 14 % d'isopentane, 8 % de n-pentane, 6 % d'iso-hexane, 4 % de n-hexane et 1 % d'autres hydrocarbures. La composition du mélange reste identique au moins pendant 160 heures.

Claims

REVENDICATIONS
1/ Procédé de transformation sélective du n-heptane
(ou de mélanges d'hydrocarbures contenant du n-heptane) au moyen d'un catalyseur zéolithe, caractérisé en ce que le système catalytique est une combinaison de zéolithe ne contenant pas de métal hydrogénant et d'un composé de métal hydrogénant ne contenant pas de zéolithe.
2/ Procédé selon la revendication 1, caractérisé en ce qu'on utilise une gamme de températures de con¬ version du n-heptane comprise entre 400 et 800 K.
3/ Procédé selon l'une quelconque des revendica- tions 1 et 2, caractérisé en ce qu'on utilise une pres¬ sion partielle de n-heptane dans la matière première comprise entre 10 et 1 000 kPa.
4/ Procédé selon l'une quelconque des revendica- tions 1 à 3, caractérisé en ce qu'on met en oeuvre un composant zéolitique lié ou libre sous forme d'hydrogène ou échangée avec des ions des éléments des groupes 2 à 4 et/ou des sous-groupes 3 et 4 de la classification pé¬ riodique.
5/ Procédé selon l'une quelconque des revendica¬ tions 1 à 4, caractérisé en ce qu'on met en oeuvre de la zéolithe érionite, zéolithe pentasil ou de zéolithe Y.
6/ Procédé selon l'une quelconque des revendica¬ tions 1 à 3, caractérisé en ce qu'on introduit un com¬ posant contenant le métal hydrogénant, tel que l'alumi¬ ne, les aluminosilicates amorphes et/ou la silice et traité par des solutions des combinaisons des éléments des sous-groupes 6 à 8 de la classification périodique. 7/ Procédé selon l'une quelconque des revendica¬ tions 1 à 6, caractérisé en ce que le composant conte¬ nant le métal hydrogénant a une teneur massique en métal du 8ème sous-groupe comprise entre 0,05 et 1 % de la combinaison catalytique globale.
8/ Procédé selon l'une quelconque des revendica¬ tions 1 à 7, caractérisé en ce qu'on emploie le com¬ posant contenant le métal hydrogénant dans des pro- portions massiques comprises entre 0,01 et 50 % dans la combinaison catalytique globale.
EP19880904240 1987-05-12 1988-05-09 PROCEDE DE CONTROLE DE SELECTIVITE DANS LA TRANSFORMATION DU n-HEPTANE EN PRESENCE DE CATALYSEURS ZEOLITHES Withdrawn EP0313622A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DD30267487A DD261358A1 (de) 1987-05-12 1987-05-12 Verfahren zur selektivitaetssteuerung der n-heptanumwandlung an zeolithkatalysatoren
DD431940 1987-05-12

Publications (1)

Publication Number Publication Date
EP0313622A1 true EP0313622A1 (fr) 1989-05-03

Family

ID=5588925

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880904240 Withdrawn EP0313622A1 (fr) 1987-05-12 1988-05-09 PROCEDE DE CONTROLE DE SELECTIVITE DANS LA TRANSFORMATION DU n-HEPTANE EN PRESENCE DE CATALYSEURS ZEOLITHES

Country Status (3)

Country Link
EP (1) EP0313622A1 (fr)
DD (1) DD261358A1 (fr)
WO (1) WO1988008832A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929793A (en) * 1988-10-21 1990-05-29 Mobil Oil Corporation Production of middle distillates by paraffin disproportionation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1273513B (de) * 1963-03-27 1968-07-25 Union Carbide Corp Verfahren zur Hydrospaltung von n-Pentan, n-Hexan, n-Heptan und n-Octan in Gegenwartvon Wasserstoff und Platin als Katalysator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8808832A1 *

Also Published As

Publication number Publication date
DD261358A1 (de) 1988-10-26
WO1988008832A1 (fr) 1988-11-17

Similar Documents

Publication Publication Date Title
EP0946416B1 (fr) Zeolithe im-5, son procede de preparation et ses applications catalytiques
EP0999183B1 (fr) Procédé de préparation d'une zéolithe de type structural EUO a l'aide de precurseurs du structurant et son utilisation comme catalyseur d'isomerisation des AC8
EP1129993B1 (fr) Zéolithe MTT comprenant des cristaux et des agrégats de cristaux et des agrégats de cristaux de granulométries spécifiques et son utilisation comme catalyseur d'isomerisation des paraffines lineaires
FR2520749A1 (fr) Procede de reformage d'hydrocarbures a l'aide d'un catalyseur
FR2543153A1 (fr) Procede de transformation d'hydrocarbures par reformage pour favoriser la production de composes aromatiques
EP0789739B1 (fr) Procede d'hydroisomerisation selective de paraffines longues lineaires et/ou peu ramifiees avec un catalyseur a base de tamis moleculaire
FR2611739A1 (fr) Procede d'activation d'un catalyseur d'isomerisation de paraffines normales
FR2689517A1 (fr) Procédé d'hydrogénation sélective des hydrocarbures.
FR2757533A1 (fr) Procede de preparation d'une matiere premiere de melange pour essence exempte de benzene et isomerisee utlisant un catalyseur a double fonction
EP0256945B1 (fr) Catalyseur à base de mordénite pour l'isomérisation de paraffines normales
WO2005028594A1 (fr) Procede de conversion directe d’une charge comprenant des olefines a quatre, et/ou cinq atomes de carbone ou plus, pour la production de propylene
EP0196965B1 (fr) Nouveau catalyseur d'isomérisation de coupes riches en paraffines normales
FR2792550A1 (fr) Catalyseur comprenant un element des groupes 8,9 et 10 presentant une bonne accessibilite et son utilisation dans un procede de deshydrogenation des paraffines
EP0234974A1 (fr) Catalyseur contenant une mordenite, sa préparation et son application à l'isomérisation de coupes riches en paraffines normales
CA2797748A1 (fr) Procede de deshydratation et d'isomerisation d'alcools en c4 utilisant un solide amorphe a porosite adaptee
EP0363253B1 (fr) Catalyseur à base de mordénite renfermant au moins un métal du groupe VIII et son utilisation en isomérisation d'une coupe C8 aromatique
CA1334980C (fr) Procede d'isomerisation du butene-1 en butenes-2 dans une coupe d'hydrocarbures en c _ contenant du butadiene et des composes sulfures
EP0313622A1 (fr) PROCEDE DE CONTROLE DE SELECTIVITE DANS LA TRANSFORMATION DU n-HEPTANE EN PRESENCE DE CATALYSEURS ZEOLITHES
FR2795405A1 (fr) Production d'un isomere du xylene en trois etapes: separation, isomerisation avec un catalyseur a base de zeolithe euo et transalkylation avec recyclage des aromatiques en c10
FR2945224A1 (fr) Preparation de catalyseurs de deshydrogenation par impregnation a sec
FR2765236A1 (fr) Procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines avec un catalyseur a base de zeolithe nu-87 modifiee
FR2765207A1 (fr) Zeolithe nu-85, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines
EP0967013B1 (fr) Catalyseur à base d'une zéolithe MTT, TON ou FER et d'un élément du groupe VB et son utilisation pour l'amélioration du point d'écoulement de charges hydrocarbonées
FR2527199A1 (fr) Procede de production d'ethylbenzene
FR2520343A1 (fr) Procede de preparation directe synthetique de zeolites de type zsm-5 a faible teneur en sodium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19890428

17Q First examination report despatched

Effective date: 19900829

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19910713