EP0304108B1 - Metal-phosphating process - Google Patents

Metal-phosphating process Download PDF

Info

Publication number
EP0304108B1
EP0304108B1 EP88201613A EP88201613A EP0304108B1 EP 0304108 B1 EP0304108 B1 EP 0304108B1 EP 88201613 A EP88201613 A EP 88201613A EP 88201613 A EP88201613 A EP 88201613A EP 0304108 B1 EP0304108 B1 EP 0304108B1
Authority
EP
European Patent Office
Prior art keywords
phosphating
contain
aluminum
zinc
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88201613A
Other languages
German (de)
French (fr)
Other versions
EP0304108A1 (en
Inventor
Werner Dr. Rausch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0304108A1 publication Critical patent/EP0304108A1/en
Application granted granted Critical
Publication of EP0304108B1 publication Critical patent/EP0304108B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/368Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing magnesium cations

Definitions

  • the invention relates to a method for phosphating galvanized steel, optionally together with additionally present aluminum, before painting with phosphating solutions based on zinc magnesium phosphate.
  • the object of the invention is to provide a process for the phosphating of galvanized steel, optionally together with additionally present aluminum, as a pretreatment for the coating, which does not have the aforementioned disadvantages, but rather makes it possible to produce uniform phosphate layers on the metals which are outstanding as Are suitable for painting.
  • galvanized steel is understood to mean steel which, for example, on the hot-dip path or in the electrolytic process with zinc or zinc alloy coatings e.g. Pure zinc, zinc nickel, zinc iron, zinc aluminum was coated.
  • zinc or zinc alloy coatings e.g. Pure zinc, zinc nickel, zinc iron, zinc aluminum was coated.
  • aluminum in the sense of the invention includes Pure aluminum and alloys of aluminum with magnesium, zinc, copper, silicon, manganese etc.
  • the concentration of fluoride detected with the fluoride-sensitive electrode corresponds approximately to that in the Phosphating solution present proportion of dissociated fluoride (F ⁇ ).
  • F (el) value 80 to 400 mg / l at the usual phosphating bath pH values of the baths, about 0.4 to 0.9 g / l NH4HF2 or equivalent amounts of other single fluoride-containing compounds must be added will.
  • the bath is preferably supplemented by adding enough fluoride-containing compound to the phosphating bath until the desired measured value of F (el) is reached.
  • the metal surfaces to be treated must be free from disruptive deposits of oils, lubricants, oxides and the like, which can impair proper layer formation.
  • the surfaces are cleaned in a suitable manner.
  • the surface is preferably coated with an activating agent known per se, e.g. an aqueous suspension containing titanium phosphate, activated.
  • the activating agent can be used in the cleaning bath or as a separate process step.
  • the phosphating solutions according to the invention are used in spraying, spray-immersion or immersion at temperatures between 40 and 60 ° C.
  • the times during which the metal surfaces are brought into contact with the phosphating solution to form a covering phosphate layer are in the case of galvanized steel, e.g. between 20 sec and 10 min, for aluminum e.g. between 1 and 10 min.
  • the cations zinc, magnesium and nickel are in the Phosphating solution introduced, for example, as metal, oxide, carbonate, phosphate, nitrate, chloride and / or complex fluoride.
  • the phosphate portion is fed to the solution via phosphates and / or phosphoric acid.
  • additional cations for example Na, K, NH4 or anions, for example nitrate, chloride, sulfate, are used.
  • the value of the free acid (total acid) is identical to the consumption of ml 0.1 n NaOH for neutralizing a 10 ml bath sample against the first turning point (second turning point) of the phosphoric acid.
  • the phosphating bath also contains at least one oxidizing agent from the group consisting of nitrate, nitrite, chlorate, bromate, peroxide and nitrobene sulfonate, e.g. the following quantities can be used: 2 to 20 g / l nitrate; 0.05 to 0.5 g / l nitrite; 0.5 to 5 g / l chlorate; 0.2 to 3 g / l bromate; 0.02 to 0.1 g / l peroxide; 0.1 to 1 g / l nitrobenzenesulfonate.
  • the oxidizing agents can also be combined with one another, e.g. Nitrate nitrite, (nitrate) chlorate nitrite, nitrate bromate, (nitrate) chlorate nitrobenzenesulfonate, nitrate nitrobenzenesulfonate.
  • the three components chloride and / or Bromide), (nitrate) and (nickel) only two each in a concentration of more than 0.1 g / l, while the third may only be present in a maximum concentration of 0.1 g / l.
  • Chloride and bromide are counted as one component and their individual concentrations are added. Chloride can, for example, get into the phosphating bath from the preparation water for the phosphating solution and / or as a reduction product of chlorate.
  • the bromate accelerator in particular should be regarded as the source.
  • the phosphating bath preferably contains simple and / or complex fluoride.
  • the group of suitable complex fluorides includes e.g. Fluoroborates and fluorosilicates.
  • the phosphating solutions used in the process according to the invention can also contain further additives, but mostly in minor amounts. These include Copper, manganese, calcium, iron, cobalt, polyphosphates, polyhydroxycarboxylic acids, surfactants and agents for influencing the sludge separation.
  • the phosphate layers produced according to the invention are used as preparation for a subsequent painting. They are preferably used for workpieces which are subsequently electrocoated, in particular cathodically electrocoated. In this way you get layers of paint, which are characterized by a high resistance to infiltration when exposed to corrosion, e.g. due to normal outdoor weathering, outdoor weathering accelerated with salt, moisture, salt spray and wash liquor, and have very good adhesion to scratching and impact stress before and after corrosion.
  • the method according to the invention is particularly suitable for the pretreatment of housings for household appliances and technical apparatus, of metal furniture, of vehicle bodies and of vehicle accessories before painting.
  • Sheets made of steel, electrolytically galvanized steel, hot-dip galvanized steel and AlMgSi were treated after alkaline cleaning, water rinsing and activation in an aqueous titanium phosphate suspension with the phosphating solutions listed in the table at 50 ° C for 2 minutes by spraying or 3 minutes by immersion. This was followed by rinsing with water, an aqueous passivating solution containing chromium (VI), demineralized water and a drying stage.
  • VI chromium
  • the table shows that flawless layers could be obtained on galvanized steel throughout the work area, with the exception of the cases in which nitrate, chloride and nickel were present in a concentration of more than 0.1 g / l each (Examples 6 and 11), insofar as the ranges essential to the invention were taken into account for the Zn, Mg and Ni concentration. Crystalline, uniform layer formation was always achieved on AlMgSi when the fluoride concentration F (el) measured electrometrically with a fluorine-sensitive electrode was in the range between 80 to 400 mg / l (Examples 4 to 6 and 13 to 20).
  • the layers were provided with a cathodic electrodeposition paint and an automotive paint structure and subjected to the usual technical tests. In all cases where crystalline layers were present on the metal substrate, excellent test results were achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Phosphatierung von verzinktem Stahl, gegebenenfalls gemeinsam mit zusätzlich vorhandenem Aluminium, vor der Lackierung mit Phosphatierlösungen auf Basis Zinkmagnesiumphosphat.The invention relates to a method for phosphating galvanized steel, optionally together with additionally present aluminum, before painting with phosphating solutions based on zinc magnesium phosphate.

Es ist bekannt, Metalle mit Zinkmagnesiumphosphatlösung zu behandeln und auf diese Weise Phosphatschichten auf ihnen abzuscheiden. Ferner gehört es zum Stand der Technik, insbesondere vor der Lackierung Niedrigzinkphosphatierverfahren einzusetzen, weil diese auf Stahl Phosphatschichten mit einem hohen Phosphophyllitanteil erzeugen, der sich günstig auf Lackhaftung und Unterwanderungsbeständigkeit des Lackfilms bei Korrosionsbeanspruchung auswirkt.It is known to treat metals with zinc magnesium phosphate solution and in this way to deposit phosphate layers on them. Furthermore, it is part of the prior art to use low-zinc phosphating processes, in particular before painting, because these produce phosphate layers on steel with a high proportion of phosphophyllite, which has a favorable effect on paint adhesion and resistance to infiltration of the paint film when exposed to corrosion.

Die bekannten Verfahren weisen jedoch in verschiedener Hinsicht Nachteile auf. So ist die Schichtbildung auf Zink in Phosphatierbädern, die nur Zn und Mg als zweiwertige Kationen enthalten, vielfach ungenügend. Nickelhaltige Niedrigzink-Phosphatierbäder liefern zwar visuell einwandfreie Phosphatschichten auf Stahl und Zink, jedoch ist die Haftung von Lackfilmen auf Zink bei Feuchteeinwirkung oft nicht ausreichend. Ferner treten insbesondere bei der Anwendung im Tauchverfahren häufig Oberflächenstörungen in der Phosphatschicht auf Zink auf, die auf lokale kristalline Ausblühungen, auch Stippen genannt, zurückzuführen sind, und die die Ausbildung eines gleichmäßigen Lackfilmes stören. Außerdem bereitet die Erzeugung kristalliner Phosphatschichten auf Aluminium aus Bädern auf Basis Zinkmagnesiumphosphat Schwierigkeiten.However, the known methods have disadvantages in various respects. The formation of layers on zinc in phosphating baths which contain only Zn and Mg as divalent cations is often insufficient. Nickel-containing low-zinc phosphating baths provide visually perfect phosphate layers on steel and zinc, but the adhesion of paint films to zinc is often not sufficient when exposed to moisture. In addition, surface defects in the phosphate layer on zinc, which are due to local crystalline efflorescence, also called specks, and which disrupt the formation of a uniform lacquer film, frequently occur, especially when used in the dipping process. In addition, the Generation of crystalline phosphate layers on aluminum from baths based on zinc magnesium phosphate difficulties.

Aufgabe der Erfindung ist es, ein Verfahren zur Phosphatierung von verzinktem Stahl, gegebenenfalls gemeinsam mit zusätzlich vorhandenem Aluminium, als Vorbehandlung für die Lackierung bereitzustellen, das die vorgenannten Nachteile nicht aufweist, sondern es ermöglicht, auf den Metallen gleichmäßige Phosphatschichten zu erzeugen, die hervorragend als Basis für eine Lackierung geeignet sind.The object of the invention is to provide a process for the phosphating of galvanized steel, optionally together with additionally present aluminum, as a pretreatment for the coating, which does not have the aforementioned disadvantages, but rather makes it possible to produce uniform phosphate layers on the metals which are outstanding as Are suitable for painting.

Die Aufgabe wird gelöst, indem das Verfahren der eingangs genannten Art entsprechend der Erfindung derart ausgestaltet wird, daß man die Metalloberflächen bei einer Temperatur zwischen 40 und 60°C mit wässrigen Phosphatierlösungen in Berührung bringt, die
0,4 bis 5,0 g/l Mg
0,05 bis 2,0 g/l Ni
8 bis 20 g/l P₂O₅
und mindestens ein Oxidationsmittel enthalten, in denen das Verhältnis von Freier Säure zu Gesamtsäure (0,02 bis 0,15):1 beträgt, mit der Maßgabe, daß

  • a) bei Abwesenheit von Aluminium die Zinkkonzentration der Phosphatierlösungen im Spritzverfahren auf einen Wert im Bereich von 0,4 und 1,0 g/l und im Spritz-Tauch- und Tauchverfahren auf einen Wert im Bereich von 0,9 und 1,5 g/l
  • b) bei Anwesenheit von Aluminium die Zinkkonzentration der Phosphatierlösungen im Spritzverfahren auf einen Wert im Bereich von 0,7 und 1,0 g/l und im Spritz-Tauch- und Tauchverfahren auf einen Wert im Bereich von 1,4 und 2,0 g/l eingestellt wird und zusätzlich einen Gehalt von 80 bis 400 mg/l Fluorid ("F(el)", bestimmt durch eine in die Badlösung eingetauchte fluoridsensitive Elektrode) aufweist.
The object is achieved by designing the method of the type mentioned at the outset in accordance with the invention in such a way that the metal surfaces are brought into contact with aqueous phosphating solutions at a temperature between 40 and 60 ° C.
0.4 to 5.0 g / l Mg
0.05 to 2.0 g / l Ni
8 to 20 g / l P₂O₅
and contain at least one oxidizing agent in which the ratio of free acid to total acid is (0.02 to 0.15): 1, with the proviso that
  • a) in the absence of aluminum, the zinc concentration of the phosphating solutions in the spray process to a value in the range of 0.4 and 1.0 g / l and in the spray-immersion and immersion process to a value in the range of 0.9 and 1.5 g / l
  • b) in the presence of aluminum, the zinc concentration of the phosphating solutions in the spray process to a value in the range from 0.7 and 1.0 g / l and in the spray-immersion and immersion process to a value in the range from 1.4 and 2.0 g / l is set and additionally has a content of 80 to 400 mg / l fluoride ("F (el)", determined by a fluoride-sensitive electrode immersed in the bath solution).

Unter dem Begriff verzinkter Stahl ist im Rahmen der Erfindung Stahl zu verstehen, der mit einem geeigneten Verfahren z.B. auf dem Schmelztauchwege oder im elektrolytischen Prozeß mit Zink- bzw. Zinklegierungsüberzügen z.B. Rein-Zink, Zink-Nickel, Zink-Eisen, Zink-Aluminium überzogen wurde. Unter den Begriff Aluminium im Sinne der Erfindung fallen u.a. Rein-Aluminium sowie Legierungen des Aluminium mit Magnesium, Zink, Kupfer, Silicium, Mangan etc.In the context of the invention, the term galvanized steel is understood to mean steel which, for example, on the hot-dip path or in the electrolytic process with zinc or zinc alloy coatings e.g. Pure zinc, zinc nickel, zinc iron, zinc aluminum was coated. The term aluminum in the sense of the invention includes Pure aluminum and alloys of aluminum with magnesium, zinc, copper, silicon, manganese etc.

Das Merkmal, wonach bei zusätzlich vorhandenem Aluminium die Lösungen einen Gehalt von 80 bis 400 mg/l Fluorid aufweisen müssen, bringt zum Ausdruck, daß eine derartige Fluoridkonzentration bei Anwesenheit von Aluminium unerläßlich ist. Andernfalls ist eine kristalline Schichtausbildung auf Aluminium nicht möglich. Das bedeutet nicht, daß bei Abwesenheit von Aluminium die Lösungen nicht auch Fluorid enthalten können.The feature, according to which the solutions must have a content of 80 to 400 mg / l fluoride in the presence of aluminum, indicates that such a fluoride concentration is essential in the presence of aluminum. Otherwise a crystalline layer formation on aluminum is not possible. This does not mean that the solutions cannot contain fluoride in the absence of aluminum.

Die mit der fluoridsensitiven Elektrode erfaßte Konzentration an Fluorid entspricht etwa dem in der Phosphatierlösung vorliegendem Anteil an dissoziiertem Fluorid (F⁻). Um einen F(el)-Wert von 80 bis 400 mg/l bei den üblichen Phosphatierbad-pH-Werten der Bäder einzustellen, müssen etwa 0,4 bis 0,9 g/l NH₄HF₂ oder äquivalente Mengen anderer Einfach-Fluorid enthaltender Verbindungen zugegeben werden. Die Badergänzung erfolgt vorzugsweise so, daß man dem Phosphatierbad so viel Einfach-Fluorid enthaltende Verbindung zusetzt, bis der gewünschte Meßwert von F(el) erreicht ist.The concentration of fluoride detected with the fluoride-sensitive electrode corresponds approximately to that in the Phosphating solution present proportion of dissociated fluoride (F⁻). In order to set an F (el) value of 80 to 400 mg / l at the usual phosphating bath pH values of the baths, about 0.4 to 0.9 g / l NH₄HF₂ or equivalent amounts of other single fluoride-containing compounds must be added will. The bath is preferably supplemented by adding enough fluoride-containing compound to the phosphating bath until the desired measured value of F (el) is reached.

Die zu behandelnden Metalloberflächen müssen frei sein von störenden Belägen aus Ölen, Schmierstoffen, Oxiden und dergleichen, die eine einwandfreie Schichtbildung beeinträchtigen können. Hierzu werden die Oberflächen in geeigneter Weise gereinigt. Zur Unterstützung der Phosphatschichtbildung wird die Oberfläche vorzugsweise vor der Erzeugung des Phosphatüberzuges mit einem an sich bekannten Aktivierungsmittel, z.B. einer titanphosphathaltigen wässrigen Suspension, aktiviert. Das Aktivierungsmittel kann im Reinigerbad oder als getrennte Verfahrensstufe zum Einsatz kommen.The metal surfaces to be treated must be free from disruptive deposits of oils, lubricants, oxides and the like, which can impair proper layer formation. For this purpose, the surfaces are cleaned in a suitable manner. To support the formation of the phosphate layer, the surface is preferably coated with an activating agent known per se, e.g. an aqueous suspension containing titanium phosphate, activated. The activating agent can be used in the cleaning bath or as a separate process step.

Die erfindungsgemäßen Phosphatierlösungen werden im Spritzen, Spritz-Tauchen oder Tauchen bei Temperaturen zwischen 40 und 60°C eingesetzt. Die Zeiten, während der die Metalloberflächen mit der Phosphatierlösung zur Ausbildung einer deckenden Phosphatschicht in Berührung gebracht werden, liegen bei verzinktem Stahl z.B. zwischen 20 sec und 10 min, bei Aluminium z.B. zwischen 1 und 10 min.The phosphating solutions according to the invention are used in spraying, spray-immersion or immersion at temperatures between 40 and 60 ° C. The times during which the metal surfaces are brought into contact with the phosphating solution to form a covering phosphate layer are in the case of galvanized steel, e.g. between 20 sec and 10 min, for aluminum e.g. between 1 and 10 min.

Die Kationen Zink, Magnesium und Nickel werden in die Phosphatierlösung z.B. als Metall, Oxid, Carbonat, Phosphat, Nitrat, Chlorid und/oder komplexes Fluorid eingebracht. Der Phosphatanteil wird über Phosphate und/oder Phosphorsäure der Lösung zugeführt. Zur Einstellung des gewünschten Verhältnisses von Freier Säure zur Gesamtsäure von (0,02 bis 0,15):1 werden weitere Kationen, z.B. Na, K, NH₄ oder Anionen, z.B. Nitrat, Chlorid, Sulfat mit verwendet.The cations zinc, magnesium and nickel are in the Phosphating solution introduced, for example, as metal, oxide, carbonate, phosphate, nitrate, chloride and / or complex fluoride. The phosphate portion is fed to the solution via phosphates and / or phosphoric acid. To set the desired ratio of free acid to total acid from (0.02 to 0.15): 1, additional cations, for example Na, K, NH₄ or anions, for example nitrate, chloride, sulfate, are used.

Der Wert der Freien Säure (Gesamtsäure) ist identisch mit dem Verbrauch an ml 0,1 n NaOH zur Neutralisation einer 10 ml Badprobe gegen den ersten Wendepunkt (zweiten Wendepunkt) der Phosphorsäure.The value of the free acid (total acid) is identical to the consumption of ml 0.1 n NaOH for neutralizing a 10 ml bath sample against the first turning point (second turning point) of the phosphoric acid.

Das Phosphatierbad enthält außerdem mindestens ein Oxidationsmittel aus der Gruppe Nitrat, Nitrit, Chlorat, Bromat, Peroxid und Nitrobensulfonat, wobei z.B. folgende Mengen zur Anwendung kommen können: 2 bis 20 g/l Nitrat; 0,05 bis 0,5 g/l Nitrit; 0,5 bis 5 g/l Chlorat; 0,2 bis 3 g/l Bromat; 0,02 bis 0,1 g/l Peroxid; 0,1 bis 1 g/l Nitrobenzolsulfonat. Die Oxidationsmittel können auch miteinander kombiniert werden, so z.B. Nitrat-Nitrit, (Nitrat-)Chlorat-Nitrit, Nitrat-Bromat, (Nitrat-)Chlorat-Nitrobenzolsulfonat, Nitrat-Nitrobenzolsulfonat.The phosphating bath also contains at least one oxidizing agent from the group consisting of nitrate, nitrite, chlorate, bromate, peroxide and nitrobene sulfonate, e.g. the following quantities can be used: 2 to 20 g / l nitrate; 0.05 to 0.5 g / l nitrite; 0.5 to 5 g / l chlorate; 0.2 to 3 g / l bromate; 0.02 to 0.1 g / l peroxide; 0.1 to 1 g / l nitrobenzenesulfonate. The oxidizing agents can also be combined with one another, e.g. Nitrate nitrite, (nitrate) chlorate nitrite, nitrate bromate, (nitrate) chlorate nitrobenzenesulfonate, nitrate nitrobenzenesulfonate.

Um bei der Phosphatierung von verzinktem Stahl die Ausbildung von kleinen punktförmigen Kristallausblühungen (Stippen) auf der Phosphatschicht, insbesondere bei der Anwendung im Spritz-Tauch- und Tauchverfahren zu vermeiden, dürfen in einer speziellen Ausgestaltung der Erfindung von den drei Komponenten (Chlorid und/oder Bromid), (Nitrat) und (Nickel) nur je zwei in einer Konzentration von je über 0,1 g/l zugegen sein, während die jeweils dritte nur in einer Maximalkonzentration von 0,1 g/l vorliegen darf. Chlorid und Bromid werden hierbei als eine Komponente gezählt und ihre Einzelkonzentrationen addiert. Chlorid kann z.B. aus dem Ansatzwasser für die Phosphatierlösung und/oder als Reduktionsprodukt von Chlorat in das Phosphatierbad gelangen. Im Falle des Bromid ist insbesondere der Bromatbeschleuniger als Quelle anzusehen.In order to avoid the formation of small punctiform crystal efflorescences (specks) on the phosphate layer during the phosphating of galvanized steel, in particular when used in the spray-immersion and immersion process, the three components (chloride and / or Bromide), (nitrate) and (nickel) only two each in a concentration of more than 0.1 g / l, while the third may only be present in a maximum concentration of 0.1 g / l. Chloride and bromide are counted as one component and their individual concentrations are added. Chloride can, for example, get into the phosphating bath from the preparation water for the phosphating solution and / or as a reduction product of chlorate. In the case of bromide, the bromate accelerator in particular should be regarded as the source.

Zur Unterstützung der Schichtbildung auf aluminiumhaltigen Zinküberzügen enthält das Phosphatierbad vorzugsweise einfaches und/oder komplexes Fluorid. Zur Gruppe der geeigneten komplexen Fluoride zählen z.B. Fluoroborate und Fluorosilikate.To support the layer formation on aluminum-containing zinc coatings, the phosphating bath preferably contains simple and / or complex fluoride. The group of suitable complex fluorides includes e.g. Fluoroborates and fluorosilicates.

Die im erfindungsgemäßen Verfahren zum Einsatz kommenden Phosphatierlösungen können außer den beschriebenen Komponenten noch weitere Zusätze, meist jedoch in untergeordneten Mengen, enthalten. Hierzu zählen u.a. Kupfer, Mangan, Calcium, Eisen, Kobalt, Polyphosphate, Polyhydroxicarbonsäuren, Tenside sowie Mittel zur Beeinflussung der Schlammabscheidung.In addition to the components described, the phosphating solutions used in the process according to the invention can also contain further additives, but mostly in minor amounts. These include Copper, manganese, calcium, iron, cobalt, polyphosphates, polyhydroxycarboxylic acids, surfactants and agents for influencing the sludge separation.

Die nach der Erfindung erzeugten Phosphatschichten werden als Vorbereitung für eine nachfolgende Lackierung eingesetzt. Vorzugsweise werden sie für Werkstücke angewendet, die anschließend elektrotauchlackiert, insbesondere kathodisch elektrotauchlackiert werden. Man erhält auf diese Weise Lackschichten, die sich durch eine hohe Unterwanderungsbeständigkeit bei Korrosionsbeanspruchung, z.B. durch normale Freibewitterung, durch mit Salz beschleunigte Freibewitterung, durch Feuchtigkeit, durch Salznebel und Waschlauge auszeichnen und eine sehr gute Haftung bei Kratz- und Schlagbeanspruchung vor und nach Korrosionsbelastung aufweisen.The phosphate layers produced according to the invention are used as preparation for a subsequent painting. They are preferably used for workpieces which are subsequently electrocoated, in particular cathodically electrocoated. In this way you get layers of paint, which are characterized by a high resistance to infiltration when exposed to corrosion, e.g. due to normal outdoor weathering, outdoor weathering accelerated with salt, moisture, salt spray and wash liquor, and have very good adhesion to scratching and impact stress before and after corrosion.

Das erfindungsgemäße Verfahren eignet sich insbesondere für die Vorbehandlung von Gehäusen für Haushaltsgeräte und technische Apparate, von Metallmöbeln, von Fahrzeugkarosserien und von Fahrzeugzubehörteilen vor der Lackierung.The method according to the invention is particularly suitable for the pretreatment of housings for household appliances and technical apparatus, of metal furniture, of vehicle bodies and of vehicle accessories before painting.

Das erfindungsgemäße Verfahren wird anhand der folgenden Beispiele beispielsweise und näher erläutert.The process according to the invention is explained, for example and in more detail, using the following examples.

BeispieleExamples

Bleche aus Stahl, elektrolytisch verzinktem Stahl, feuerverzinktem Stahl und AlMgSi wurden nach alkalischer Reinigung, Wasserspülung und Aktivierung in einer wässrigen Titanphosphatsuspension mit den in der Tabelle aufgeführten Phosphatierlösungen bei 50°C 2 min im Spritzen bzw. 3 min im Tauchen behandelt. Hieran schlossen sich Spülungen mit Wasser, Chrom(VI)-haltiger wässriger Passivierlösung, vollentsalztem Wasser sowie eine Trocknungsstufe an.Sheets made of steel, electrolytically galvanized steel, hot-dip galvanized steel and AlMgSi were treated after alkaline cleaning, water rinsing and activation in an aqueous titanium phosphate suspension with the phosphating solutions listed in the table at 50 ° C for 2 minutes by spraying or 3 minutes by immersion. This was followed by rinsing with water, an aqueous passivating solution containing chromium (VI), demineralized water and a drying stage.

Aus der Tabelle ist ersichtlich, daß auf verzinktem Stahl im gesamten Arbeitsbereich einwandfreie Schichten zu erhalten waren, mit Ausnahme der Fälle, in denen Nitrat, Chlorid und Nickel in einer Konzentration von über je 0,1 g/l vorlagen (Beispiele 6 und 11), soweit die erfindungswesentlichen Bereiche für die Zn-, Mg- und Ni-Konzentration beachtet wurden. Auf AlMgSi wurde immer dann eine kristalline, gleichmäßige Schichtbildung erzielt, wenn die elektrometrisch mit einer fluorsensitiven Elektrode gemessene Fluoridkonzentration F(el) im Bereich zwischen 80 bis 400 mg/l lag (Beispiele 4 bis 6 und 13 bis 20).The table shows that flawless layers could be obtained on galvanized steel throughout the work area, with the exception of the cases in which nitrate, chloride and nickel were present in a concentration of more than 0.1 g / l each (Examples 6 and 11), insofar as the ranges essential to the invention were taken into account for the Zn, Mg and Ni concentration. Crystalline, uniform layer formation was always achieved on AlMgSi when the fluoride concentration F (el) measured electrometrically with a fluorine-sensitive electrode was in the range between 80 to 400 mg / l (Examples 4 to 6 and 13 to 20).

Nach visueller Beurteilung wurden die Schichten mit einem kathodischen Elektrotauchlack und einem Automobillackaufbau versehen und den üblichen anwendungstechnischen Prüfungen unterworfen. In allen Fällen, in denen kristalline Schichten auf dem Metallsubstrat vorlagen, wurden ausgezeichnete Prüfergebnisse erzielt.

Figure imgb0001
After visual assessment, the layers were provided with a cathodic electrodeposition paint and an automotive paint structure and subjected to the usual technical tests. In all cases where crystalline layers were present on the metal substrate, excellent test results were achieved.
Figure imgb0001

Claims (5)

  1. A process for phosphating galvanized steel, optionally together with aluminum which is additionally present, prior to painting, wherein phosphating solutions based on zinc-magnesium phosphate are employed, characterized in that the metal surfaces are contacted at a temperature between 40 and 60°C with aqueous phosphating solutions which contain
    0.4 to 5.0 g/l Mg
    0.05 to 2.0 g/l Ni
    8 to 20 g/l P₂O₅
    and at least one oxidizing agent and wherein the ratio of free acid to total acid is (0.02 to 0.15) : 1, provided that
    a) in the absence of aluminum the zinc concentration of the phosphating solution is adjusted to a value in the range of 0.4 to 1.0 g/l when applied in a spraying process and to a value in the range of 0.9 to 1.5 g/l when applied in a spraying-dipping or dipping process
    b) in the presence of aluminum the zinc concentration of the phosphating solution is adjusted to a value in the range of 0.7 to 1.0 g/l when applied in a spraying process and to a value in the range of 1.4 to 2.0 g/l when applied in a spraying-dipping or dipping process, and that the phosphating solutions contain additionally 80 to 400 mg/l fluoride "F(el)" as determined with a fluoride-sensitive electrode which is immersed into the bath solution.
  2. A process according to claim 1, characterized in that the metallic surfaces are contacted with phosphating solutions which contain nitrate, nitrite, chlorate, bromate, peroxide and/or nitrobenzene sulfonate as an oxidizing agent.
  3. A process according to claim 1 or 2, characterized in that the metallic surfaces are contacted with phosphating solutions which contain the three components consisting of (chloride and/or bromide), nitrate and nickel, at least one present in a concentration not exceeding 0,1 g/l.
  4. A process according to claim 1, 2 or 3, characterized in that the metallic surfaces are contacted with phosphating solutions which contain simple or complex fluoride.
  5. A process according to one or more of the claims 1 to 4, characterized in that the phosphated workpieces are subsequently electro-dipcoated, preferably cathodically electro-dipcoated.
EP88201613A 1987-08-19 1988-07-26 Metal-phosphating process Expired - Lifetime EP0304108B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3727613 1987-08-19
DE3727613 1987-08-19

Publications (2)

Publication Number Publication Date
EP0304108A1 EP0304108A1 (en) 1989-02-22
EP0304108B1 true EP0304108B1 (en) 1992-05-13

Family

ID=6334038

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88201613A Expired - Lifetime EP0304108B1 (en) 1987-08-19 1988-07-26 Metal-phosphating process

Country Status (7)

Country Link
EP (1) EP0304108B1 (en)
JP (1) JP2680618B2 (en)
CA (1) CA1333147C (en)
DE (1) DE3871031D1 (en)
ES (1) ES2036666T3 (en)
GB (1) GB2208876B (en)
ZA (1) ZA886167B (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3828676A1 (en) * 1988-08-24 1990-03-01 Metallgesellschaft Ag PHOSPHATING PROCESS
JPH03107469A (en) * 1989-09-21 1991-05-07 Nippon Parkerizing Co Ltd Zinc plated material having phosphate chemical conversion coating film excellent in bare corrosion resistance
KR100197145B1 (en) * 1989-12-19 1999-06-15 후지이 히로시 Method for phosphating metal surface with zinc phosphate
JP2695963B2 (en) * 1990-03-16 1998-01-14 マツダ株式会社 Phosphating of metal surfaces
DE4131382A1 (en) * 1990-09-21 1992-03-26 Kobe Steel Ltd Surface treated aluminium@ alloy sheet for motor car construction - used in making decorative coloured items, zinc phosphate layer having fine grained structure of uniform thickness
US5144611A (en) * 1990-10-01 1992-09-01 International Business Machines Corporation Optical disk drive cleaner cartridge
US5454882A (en) * 1992-01-13 1995-10-03 Henkel Corporation Process for controlling a fluoride containing conversion coating forming composition during its use for conversion coating aluminum containing metal
JP3181658B2 (en) * 1992-01-13 2001-07-03 日本パーカライジング株式会社 Determination method of effective fluorine concentration in acid chemical conversion treatment of metallic materials
JPH05306497A (en) 1992-04-30 1993-11-19 Nippondenso Co Ltd Phophatizing chemical conversion treatment
DE4306446A1 (en) * 1993-03-02 1994-09-08 Metallgesellschaft Ag Procedures to facilitate cold forming
JPH07173643A (en) * 1993-12-21 1995-07-11 Mazda Motor Corp Method for phosphating metal surface and phosphating solution
US5478413A (en) * 1994-12-27 1995-12-26 Sermatech International, Inc. Environmentally friendly coating compositions
US5797987A (en) * 1995-12-14 1998-08-25 Ppg Industries, Inc. Zinc phosphate conversion coating compositions and process
DE19606018A1 (en) * 1996-02-19 1997-08-21 Henkel Kgaa Zinc phosphating with low levels of nickel and / or cobalt
US6413588B1 (en) 1999-01-11 2002-07-02 E. I. Du Pont De Nemours And Company Method of producing durable layered coatings
DE19921135A1 (en) * 1999-05-07 2000-11-09 Henkel Kgaa Process for low-zinc zinc phosphating followed by water treatment
JP4658339B2 (en) * 2001-01-17 2011-03-23 日本ペイント株式会社 Metal surface treatment method
DE102005059314B4 (en) * 2005-12-09 2018-11-22 Henkel Ag & Co. Kgaa Acid, chromium-free aqueous solution, its concentrate, and a process for the corrosion protection treatment of metal surfaces
JP5119864B2 (en) * 2006-10-31 2013-01-16 Jfeスチール株式会社 Phosphate-treated galvanized steel sheet and method for producing the same
JP4992385B2 (en) * 2006-10-31 2012-08-08 Jfeスチール株式会社 Organic resin-coated phosphate-treated zinc-based plated steel sheet and method for producing the same
KR101106516B1 (en) 2006-10-31 2012-01-20 제이에프이 스틸 가부시키가이샤 Phosphate-treated galvanized steel sheet and method for producing the same
JP2007314888A (en) * 2007-07-17 2007-12-06 Toyota Motor Corp Multilayer coating film structure
ES2397997B1 (en) * 2010-03-22 2014-01-17 Roberto Ruiz Sanz DEPOSIT BY PASS FOR COMPRESSED AIR.
CN102430506A (en) * 2011-12-15 2012-05-02 江苏腾奇电力设备科技有限公司 Paint coating process for radiator cast
KR101830508B1 (en) * 2016-06-24 2018-02-21 주식회사 포스코 Phosphate-treated zinc-based plated steel sheet having excellent discoloration resistance and film adhesiveness

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB648888A (en) * 1947-04-25 1951-01-17 Walterisation Company Ltd Improvements in the production of phosphate coatings on metal surfaces
US3597283A (en) * 1969-10-08 1971-08-03 Lubrizol Corp Phosphating solutions for use on ferrous metal and zinc surfaces
US3676224A (en) * 1970-10-16 1972-07-11 Lubrizol Corp Phosphating solution with scale suppressing characteristics
DE2327304C3 (en) * 1973-05-29 1982-01-21 Metallgesellschaft Ag, 6000 Frankfurt Process for applying phosphate coatings to metals
JPS5165041A (en) * 1974-12-04 1976-06-05 Nippon Packaging Kk Kinzokuno rinsanenhimakukeiseihoho
US4529451A (en) * 1983-01-03 1985-07-16 Detrex Chemical Industries, Inc. Zinc phosphate coated metal and process of producing same
DE3311738A1 (en) * 1983-03-31 1984-10-04 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR PHOSPHATING METAL SURFACES
EP0172806A4 (en) * 1984-01-06 1986-05-16 Ford Motor Co Alkaline resistance phosphate conversion coatings.
DE3408577A1 (en) * 1984-03-09 1985-09-12 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR PHOSPHATING METALS
US4595424A (en) * 1985-08-26 1986-06-17 Parker Chemical Company Method of forming phosphate coating on zinc
DE3630246A1 (en) * 1986-09-05 1988-03-10 Metallgesellschaft Ag METHOD FOR PRODUCING PHOSPHATE COVER AND ITS APPLICATION

Also Published As

Publication number Publication date
CA1333147C (en) 1994-11-22
ES2036666T3 (en) 1993-06-01
DE3871031D1 (en) 1992-06-17
GB2208876A (en) 1989-04-19
ZA886167B (en) 1990-04-25
JP2680618B2 (en) 1997-11-19
GB2208876B (en) 1991-08-14
JPS6468481A (en) 1989-03-14
EP0304108A1 (en) 1989-02-22
GB8819791D0 (en) 1988-09-21

Similar Documents

Publication Publication Date Title
EP0304108B1 (en) Metal-phosphating process
DE60226078T2 (en) TREATMENT LIQUID FOR THE SURFACE TREATMENT OF ALUMINUM OR MAGNESIUM BASED METAL AND SURFACE TREATMENT METHOD
DE69737728T2 (en) Solution and method for the production of protective layers on metals
DE3004927C2 (en)
DE3118375A1 (en) METHOD FOR PHOSPHATING METALS AND ITS APPLICATION FOR PRE-TREATMENT FOR ELECTRO DIP PAINTING
EP0261704B1 (en) Process for producing phosphate coatings on metal surfaces
WO2000068458A1 (en) Pretreatment of aluminum surfaces with chrome-free solutions
DE3689442T2 (en) Acidic, aqueous phosphate coating solutions for a process for phosphate coating of metallic surfaces.
DE3234558A1 (en) WATER-ACID ZINC PHOSPHATE COATING SOLUTIONS, LOW-TEMPERATURE METHODS USING SUCH SOLUTIONS FOR THE FORMATION OF CHEMICAL CONVERSION TRANSFORMERS ON IRON AND / OR ZINCO SURFACES AND THE USEFUL LIQUID DETERMINANT
EP0578670B1 (en) Process for phosphatizing metallic surfaces
DE4443882A1 (en) Process for applying phosphate coatings on metal surfaces
EP0359296B1 (en) Phosphating process
DE2406411A1 (en) PROCESS FOR INCREASING THE CORROSION RESISTANCE OF METALS
EP0361375A1 (en) Phosphate-coating process
EP0042631B1 (en) Method of phosphating metallic surfaces
EP0486576B1 (en) Process for producing manganese-containing zinc phosphate coatings on galvanized steel
EP0111223B1 (en) Process for phosphatizing metallic surfaces, and solutions for use therein
EP0039093B1 (en) Method of phosphating the surfaces of metals, and its use
DE19735314A1 (en) Simultaneously pretreating different metal surfaces
EP0662164B1 (en) Process for phosphating galvanised steel surfaces
WO2019042951A1 (en) Improved method for nickel-free phosphating metal surfaces
EP0215041B1 (en) Process for the phosphating of metal surfaces
DE3630246A1 (en) METHOD FOR PRODUCING PHOSPHATE COVER AND ITS APPLICATION
DE1696143B2 (en) PROCESS FOR CREATING BLACK MATS SURFACE LAYERS ON OBJECTS MADE OF FERROUS METAL, CADMIUM, ZINC OR ALUMINUM
EP0866888B1 (en) Method of phosphating metal surfaces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR IT NL SE

17P Request for examination filed

Effective date: 19890815

17Q First examination report despatched

Effective date: 19910208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR IT NL SE

REF Corresponds to:

Ref document number: 3871031

Country of ref document: DE

Date of ref document: 19920617

ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2036666

Country of ref document: ES

Kind code of ref document: T3

EAL Se: european patent in force in sweden

Ref document number: 88201613.2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980624

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980629

Year of fee payment: 11

Ref country code: FR

Payment date: 19980629

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980630

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980709

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980716

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19990528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

BERE Be: lapsed

Owner name: METALLGESELLSCHAFT A.G.

Effective date: 19990731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201

EUG Se: european patent has lapsed

Ref document number: 88201613.2

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050726