EP0301114B1 - Procédé pour enfoncer des éléments battus sous l'eau - Google Patents

Procédé pour enfoncer des éléments battus sous l'eau Download PDF

Info

Publication number
EP0301114B1
EP0301114B1 EP87110889A EP87110889A EP0301114B1 EP 0301114 B1 EP0301114 B1 EP 0301114B1 EP 87110889 A EP87110889 A EP 87110889A EP 87110889 A EP87110889 A EP 87110889A EP 0301114 B1 EP0301114 B1 EP 0301114B1
Authority
EP
European Patent Office
Prior art keywords
pile
driving device
drive unit
driving
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87110889A
Other languages
German (de)
English (en)
Other versions
EP0301114A1 (fr
Inventor
Hans Kühn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOMAG-BETEILIGUNGS-GMBH
Original Assignee
Menck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Menck GmbH filed Critical Menck GmbH
Priority to DE8787110889T priority Critical patent/DE3771216D1/de
Priority to EP87110889A priority patent/EP0301114B1/fr
Priority to NO873378A priority patent/NO168315C/no
Priority to JP62254522A priority patent/JPH0678616B2/ja
Priority to US07/133,901 priority patent/US4818149A/en
Priority to US07/275,592 priority patent/US4872514A/en
Publication of EP0301114A1 publication Critical patent/EP0301114A1/fr
Application granted granted Critical
Publication of EP0301114B1 publication Critical patent/EP0301114B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D15/00Handling building or like materials for hydraulic engineering or foundations
    • E02D15/08Sinking workpieces into water or soil inasmuch as not provided for elsewhere
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/02Placing by driving
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/12Underwater drilling
    • E21B7/124Underwater drilling with underwater tool drive prime mover, e.g. portable drilling rigs for use on underwater floors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S173/00Tool driving or impacting
    • Y10S173/01Operable submerged in liquid

Definitions

  • the invention relates to a method for driving in ramming parts under water, in which a ramming device hanging on a support element and a submersible, electro-hydraulic drive unit are lowered under water and a ramming part is driven in by the ramming device driven by the submerged drive unit, and a method suitable for carrying out this method Drive unit.
  • the ram piles used for this must often be dimensioned stronger and heavier than for the actual anchoring of the structure is necessary so that the ram pile, which is particularly long in the first phase of ramming and is therefore sensitive to bending forces, does not suffer bending damage from the heavy weight of the pile driver weighing several hundred tons and its high impact energy, or from the intended one Driving direction differs.
  • Such thick-walled tubular steel piles which in practice are often over a hundred meters long, are not only very expensive, but also difficult and dangerous to handle, especially since workshop ships with correspondingly large and strong jib cranes are required.
  • the ram pile which initially protrudes long from the sea floor, can only be pre-rammed with a light piling device with relatively low impact energy until no more difficulties with its flexibility are to be expected. Then the light pile driver has to be caught up and a heavier pile driver has to be lowered onto the pile in order to drive it into the intended penetration depth. To do this, however two different pile drivers are lowered one after the other onto the pile and brought up again over water, which takes a lot of time under the not always favorable weather conditions for offshore work and therefore a correspondingly high effort because of the enormous costs of modern workshop ships.
  • the object of the invention is now to provide a method for driving in rammed parts under water of the type mentioned at the outset and a drive unit suitable for this purpose, which in a simple manner enables time and labor-saving, more economical driving in of rammed parts.
  • the thin, thin-walled and lighter driven piles corresponding to the actual foundation requirements can be rammed in much more quickly and efficiently without risk of damage, using two preferably different heavy rammers.
  • the advantages are particularly pronounced when a plurality of adjacent driven piles are to be driven in. Since both pile drivers can be driven with one and the same drive unit in accordance with their energy requirements, only one drive unit is required flexible implementation of pile driving.
  • the invention furthermore, based on the preamble of claim 16, relates to a submersible, electrohydraulic drive unit for underwater piling equipment which is suitable for carrying out the method and has the features of claim 16.
  • This drive unit can also be designed in the manner described in the parallel European patent application EP-A-030 1116 from the same filing date.
  • the conventional method of driving free-standing ramming piles under water works with a ramming hammer 1 hanging from a crane rope 4 from the crane K of a work ship 5, which has several with a drive unit 2 with a pressure medium container 13 attached to its top with this connected via hose lines 12, each driven by electric motors pump units 11 with the interposition of shock absorbers.
  • the pump units 11 are connected to the hydraulic cylinder (not shown) of the ramming hammer 1 by hose lines 9 and 10.
  • the drive unit is supplied with electrical energy via a umbilical 8 guided by a winch 6 of the work ship 5 via a deflection roller 7.
  • the umbilical 8 contains a sufficient number of electrical lines and, in the usual way, the control lines, air supply lines, etc. required for actuating and controlling the ramming hammer 1 and the drive device 2. Since the parts of the drive device are arranged one above the other in the longitudinal direction, the one in the Practice at least about 20 m long hammer 1 and the overall arrangement consisting of at least about 30 m of the drive unit is of considerable length, so that it is particularly difficult to handle, particularly when picking up and putting down on the deck of the work ship 5. In addition, the elongated overall arrangement when lowering under water is difficult to position over the head of the ram pile in such a way that the ramming hammer 1 can be properly placed on the ram pile 14.
  • the heavier pile driver 1 hanging on the suspension cable 4 of the crane K of the work ship 5 is lowered with a lighter pile driver 15 attached to it via a further support element 3 and enclosed by a drive unit 2 connected to it which in turn is supplied with energy via an umbilical 8 and, on the other hand, is not only connected to the associated piling device 15, but also to the heavier piling device 1 via hose lines 9 and 10 and signal lines (not shown).
  • the pump units of the drive unit 2 can each be driven individually or in groups, and the pressure medium flow supplied by them can be supplied to the two rammers 1 and 15 via a switching device with adjustable volume fractions, these can also be driven independently of one another.
  • the lighter ramming device 15 connected to the drive unit 2 is placed on a ramming pile 14 installed ready to drive on the seabed, but still projecting freely with most of its length.
  • the lighter pile driver 15 is now driven by the drive unit 2 to first drive the pile driver 14 with a relatively low weight load and limited impact energy to such an extent that the heavier pile driver 1 can then be placed on the pile driver 14 without endangering it.
  • FIG. 5 This state is shown in which the lighter pile driver 15 moves from the already sufficiently driven pile 14 to an adjacent one Driving pile 14 implemented and the heavier pile driver 1 was applied to the pre-driven pile.
  • the lighter pile driver 15 is then simultaneously driven to advance its pile, while at the same time the heavier pile driver 1 driven by the drive unit 2 via the hose lines 9 and 10 rams the previously driven pile 14 to the intended penetration depth.
  • FIG. 6 shows an advanced phase of a similar mode of operation, but in which the drive unit 2 is connected to the heavier pile driver 1.
  • This arrangement has the advantage that the smaller piling device 15 freed from the drive unit 2, when placed on the ramming pile 14, causes the weight of the latter to be significantly lower, so that it can be pre-rammed particularly gently.
  • both pile drivers 1 and 15 are seated next to each other on adjacent pile piles 14 in the manner shown in FIGS. 5 and 6, it is of course also possible first to drive the pile pile 14 which has already been rammed in with the heavier pile driver 1 with the full energy of the drive unit 2 to the intended penetration depth , whereupon the next pile driver 14 is pre-rammed with the smaller pile driver 15.
  • this requires longer hose lines between the drive unit 2 and the ramming device 1 or 15, which is separate from the latter, since these move farther from one another than when working with the reverse driving sequence. The longer hose lines also make handling more difficult and cause additional costs.
  • two ramming devices 1 and 15 of different weights and different impact energy can be driven in with one and the same drive unit 2 and the ramming piles one after the other in a time-saving and efficient manner with only one lowering of the devices. Since that is in the meantime the necessary catching up of the devices over water and the associated handling risk is eliminated, overall considerable time, labor and cost savings are achieved.
  • the pile drivers 1 and 15 can be lowered on separate support ropes 4 and 3 so that the drive unit 2 attached to a pile driver 15 can both be driven with this , as well as via hose lines 9 and 10 and signal lines as well as a shorter distance limiting rope 47 is connected to the other pile driver 1.
  • the lighter pile driver 15 is designed as a vibration pile driver with unbalance motors driven by the hydraulic pumps of the drive unit 2 via hydraulic motors. According to a modified method of operation, indicated by dash-dotted lines in FIG.
  • one of the pile drivers preferably the lighter vibration pile driver 15, can also be suspended directly from the umbilical 8, which is required anyway for supplying the drive unit 2, and which is driven by a winch 6 on the work ship via a deflection roller 7 hangs on the crane k.
  • the Umbilical 8 which is designed for rough handling during offshore work, is usually designed to be particularly robust anyway and also withstands a relatively large tensile load.
  • This arrangement also makes it possible to keep the very expensive Umbilical 8 shorter, since it does not first have to be guided from the winch 6 to a deflection roller 7 at the upper end of the crane boom, which has a significant impact on work cranes with boom lengths over 100 m.
  • the lighter piling device 15 first rams one or more ramming piles 14 and / or the heavier piling device 1 simultaneously drives in another, possibly more resilient piling pile 14 and then is to be converted to pre-rammed piles 14 or both ramming piles 1 and 15 should drive in ram piles 14 which are assigned side by side.
  • it can also make sense to have two To drive rammers with the same impact power or weight next to each other by the same drive unit 2.
  • the progress of the individual ramming processes can also be observed side by side and, if necessary, the volume distribution of the pressure medium flow conveyed by the drive unit into the partial flows supplied to the individual ramming devices 1 and 15 can be adapted appropriately.
  • the left pile driver 14 has already been rammed a sufficient distance with the lighter pile driver 15, while the heavier pile driver 1 is either held above the right pile driver 14 or is deposited on it in the manner shown in broken lines. He can either remain stationary there or, if the drive unit has sufficient drive capacity and the delivery quantity divided as required, can work simultaneously with the lighter piling device 15.
  • the lighter ramming device 15 designed as a ramming hammer with the attached drive unit 2 is placed on a ramming pile 14 provided with a striking plate 28.
  • the drive unit 2 has a jacket housing with a continuous central receiving shaft A, an annular upper supporting plate 17, an annular lower supporting plate 18 provided with an insertion cone 19, an outer jacket wall 16 connecting the supporting plates and a cylindrical inner wall 20 surrounding the receiving slot A.
  • the annular space lying between the cylindrical jacket wall 16 and the inner wall 20 is a plurality of around its circumference
  • Distributed pump units 11 are arranged, each comprising an electric motor 21 and a hydraulic pump 24 connected to it and are aligned parallel to the longitudinal axis of the receiving shaft A.
  • Each pump unit is assigned an essentially cylindrical pressure medium container 22, which is connected to the hydraulic pump 24 via a hose line 46.
  • the electric motors 21 are connected to corresponding electrical lines in the umbilical 8 via separate electrical lines 43 and a watertight junction box arranged on the upper support plate 17.
  • the pump units 11 are each attached to the inner wall 20 via elastic support elements (not shown), which in turn is elastically cushioned relative to the lower support plate 18 and the upper support plate 17 by a plurality of prestressed spring cylinders 29 with pistons 30 distributed over the circumference and advantageously additionally by corresponding spring cylinders can also be supported radially inwards against the pile 14 or the hammer housing of the pile driver 15.
  • the pressure medium conveyed by the hydraulic pumps 24 flows via a hose line 44 to a switching device 37 arranged on the upper support plate 17, connected to the umbilical 8 via a signal line 42 and via a downstream collecting connection 31 and a hose line 33 to the hydraulic cylinder of the ramming device 15 and, if appropriate Via a hose line 9 to the ramming device 1.
  • the returning pressure medium runs via a hose line 34 or 10, the collecting connection 31 and a return line 45 to the pressure medium container 22. Further details in the arrangement, design and suspension of the electric motors 21, the hydraulic pumps 24 and the pressure medium container 22, and the lines connecting them to each other and to the piling device 15 are in the parallel European patent application further explained to the applicant from the same filing date.
  • At least one buoyancy tank 23 is also attached in the annular space between the jacket wall 16 and the inner wall 20, which either has a wall that withstands the intended diving depth or can be filled with gas via a supply line integrated in the umbilical 8 while expelling water.
  • FIG. 11 shows, two buoyancy containers 23 are provided in the embodiment shown, which extend over essentially the entire height of the jacket wall.
  • Each buoyancy tank 23 expediently has a lockable opening on the bottom for the inlet and outlet of water and a lockable top inlet opening for gas, so that both the extent of the gas filling in the buoyancy tank 23 and the gas pressure can be adjusted by appropriate control.
  • the pile driver 15 is detachably connected to the lower support plate 18 of the drive unit 2 via a fastening flange arranged in the lower section of the hammer housing.
  • the lower support plate 18 also carries a cylindrical downwardly projecting pile guide 25, the interior of which is also designed as a buoyancy container 26. This can be filled with gas via a gas supply line 38, a valve 39 and a passage opening 40.
  • outwardly projecting brackets 35 are arranged, on each of which a propeller device 27, which is driven by a hydraulic motor (not shown) and associated connecting lines from the hydraulic pumps 24, is attached.
  • the ramming device 15 hanging on the supporting cable 3 can be displaced essentially horizontally and / or rotated about its central axis for placement on the ramming pile 14.
  • the pile drivers 1 and 15 can also be equipped with such positioning devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Claims (19)

  1. Procédé pour enfoncer des pièces à battre sous l'eau, procédé dans lequel on fait descendre sous l'eau un appareil de battage de pieux suspendu à un élément porteur et une unité d'entraînement, électro-hydraulique immergeable et grâce à l'appareil de battage entraîné par l'unité d'entraînement immergée, on enfonce une pièce à battre, procédé caractérisé en ce que :
    a) outre un premier appareil de battage (1), on fait descendre un second appareil de battage (15), suspendu au premier appareil de battage ou à un autre élément porteur (3), de façon qu'au moins un appareil de battage (15 ou 1) prenne une position le mettant en place sur une pièce à battre (14),
    b) on dispose alors l'unité d'entraînement (2) latéralement auprès d'un appareil de battage (15 ou 1) contre le côté inférieur de cet appareil, et on la relie par des canalisations en tuyaux souples (9, 10) aux deux appareils de battage,
    c) après enfoncement d'une longueur prédéterminée d'une pièce à battre (14), on transfère directement l'appareil de battage (15 ou 1), précédemment mis en place, sur une autre pièce à battre (14) et avec l'autre appareil de battage (1 ou 15) on enfonce une autre pièce à battre (14) ou à nouveau la première pièce à battre (14),
    d) on entraîne successivement ou simultanément les deux appareils de battage (1, 15) par cette même unité d'entraînement (2).
  2. Procédé selon la revendication 1, caractérisé en ce qu'on utilise un second appareil de battage (15) plus léger et avec un effet d'enfoncement plus réduit en comparaison au premier appareil de battage (1).
  3. Procédé selon la revendication 2, caractérisé en ce qu'on suspend le second appareil de battage (15) au premier appareil de battage (1) par l'intermédiaire d'au moins un élément porteur flexible (3).
  4. Procédé selon une des revendications 1 à 3, caractérisé en ce qu'on dispose l'unité d'entraînement (2) tout près latéralement ou au-dessous de l'appareil de battage le plus léger (15).
  5. Procédé selon une des revendications 1 à 3, caractérisé en ce qu'on dispose l'unité d'entraînement (2) tout près latéralement ou au-dessous du premier appareil de battage (1).
  6. Procédé selon une des revendications 1 à 5, caractérisé en ce qu'on suspend l'un (15) des appareils de battage à un cordon d'alimentation (8) pour l'unité d'entraînement (2) disposée contre cet appareil.
  7. Procédé selon une des revendications 1 à 6 pour enfoncer plusieurs pièces à battre, caractérisé en ce qu'on enfonce tout d'abord la première pièce à battre (14) avec l'appareil de battage (15) le plus léger jusqu'à ce qu'elle puisse supporter sans risque les efforts d'enfoncement de l'appareil de battage le plus lourd (1), puis on transfère l'appareil de battage le plus léger (15) sur une autre pièce à battre (14) et on enfonce la première pièce à battre, grâce à l'appareil de battage le plus lourd (1), à la profondeur de pénétration prévue, et ensuite on transfère par étapes successives les appareils de battage (15, 1) sur d'autres pièces à battre (14), de sorte que chaque pièce à battre (14) soit tout d'abord enfoncée sur une longueur suffisante par l'appareil de battage le plus léger (15) et soit ensuite enfoncée plus profondément par l'appareil de battage le plus lourd (1).
  8. Procédé selon une des revendications 1 à 7, caractérisé en ce qu'on utilise au moins un appareil de battage par vibrations (15).
  9. Procédé selon la revendication 8, caractérisé en ce qu'on utilise un appareil de battage plus léger (15) à vibrations et un appareil de battage plus lourd (1) avec un corps de battage entraîné hydrauliquement.
  10. Procédé selon une des revendications 1 à 9, caractérisé en ce qu'on utilise une unité d'entraînement (2), avec un puits récepteur central (A) pour l'appareil de battage (1, 15) associé ou la pièce à battre, et avec un carter-enveloppe entourant ce puits.
  11. Procédé selon une des revendications 1 à 10, caractérisé en ce qu'on remplit totalement ou partiellement avec du gaz au moins un espace creux de sustentation (23, 26) de l'unité d'entraînement (2) et/ou de l'appareil de battage (15 ou 1).
  12. Procédé selon la revendication 11, caractérisé en ce qu'on mesure la quantité de gaz déterminée pour obtenir une sustentation, de sorte que la charge de poids exercée sur la pièce à battre (14) par l'appareil de battage (15) mis en place en premier lieu sur la pièce à battre (14), ainsi que par une unité d'entraînement (2) éventuellement rapportée sur cet appareil, ne dépasse pas une valeur limite prédéterminée.
  13. Procédé selon la revendication 11 ou la revendication 12, caractérisé en ce que pour éviter l'utilisation de parois résistant à la pression, on adapte la pression du gaz dans l'espace creux de sustentation (23, 26) à la pression extérieure régnant à la profondeur de travail prévue.
  14. Procédé selon une des revendications 1 à 13, caractérisé en ce que, pour positionner l'appareil à battre (15 ou 1) ou bien l'unité d'entraînement (2) disposée sur cet appareil, lors de la mise en place sur la pièce à battre (14), on produit au moins un jet de poussée dirigé essentiellement horizontalement.
  15. Procédé selon une des revendications 1 à 14, caractérisé en ce qu'on fait descendre, en même temps que les appareils de battage (1, 15), au moins une pièce à battre (14) reliée à un (1 ou 15) de ces appareils de battage.
  16. Unité électro-hydraulique d'entraînement immergeable pour appareils de battage sous l'eau, avec des pompes hydrauliques reliées à un réservoir de fluide sous pression et pouvant être respectivement entraînées par des moteurs électriques, unité d'entraînement caractérisée en ce que :
    a) l'unité d'entraînement (2) comporte un carter-enveloppe (16, 17, 18, 20) avec un puits central traversant (A) pour une pièce à battre (14) ou bien pour le carter du marteau ou la tête de vibrateur d'un appareil de battage (1, 15) respectivement une plaque porteuse supérieure et une plaque porteuse inférieure annulaires (17 ou 18) pour permettre la fixation amovible sur un appareil de battage (1, 15), une paroi-enveloppe externe (16) reliant les plaques porteuses (17, 18) et une paroi interne (20) entourant le puits récepteur (A),
    b) les pompes hydrauliques (24) et les moteurs électriques (21) qui leur sont associés sont reliés à des unités de pompage (21, 24) disposées, à intervalles périphériques et de préférence parallèlement au puits récepteur (A), entre la paroi interne (20) et la paroi-enveloppe (16).
    c) il est prévu des dispositifs de commutation (37) pour permettre d'amener et de répartir au premier et/ou au second appareil de battage (1 ou 15), par l'intermédiaire de canalisations en tuyaux souples (9, 10 ou 32, 33) associées à ces appareils, le débit de fluide sous pression fourni par les pompes hydrauliques (24).
  17. Unité d'entraînement selon la revendication 16, caractérisée en ce que les unités de pompage (21, 24) sont respectivement susceptibles d'être entraînées individuellement ou en groupe, et les dispositifs de commutation sont prévus pour amener aux deux appareils de battage (1, 15) des débits partiels de fluide sous pression réglables en volume.
  18. Unité d'entraînement selon la revendication 16 ou la revendication 17, caractérisée en ce que dans le carter-enveloppe et/ou dans une enveloppe de guidage (25) pour la pièce à battre (14) et qui fait saillie vers le bas à partir de la plaque porteuse inférieure (18), est disposé au moins un récipient de sustentation (23, 26) pour recevoir du gaz.
  19. Unité d'entraînement selon une des revendications 16 à 18, caractérisée en ce qu'elle comporte au moins un dispositif de positionnement (27) avec une hélice susceptible d'être entraînée ou bien un autre dispositif permettant d'obtenir un jet de poussée essentiellement horizontal.
EP87110889A 1987-07-28 1987-07-28 Procédé pour enfoncer des éléments battus sous l'eau Expired - Lifetime EP0301114B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE8787110889T DE3771216D1 (de) 1987-07-28 1987-07-28 Verfahren zum eintreiben von rammteilen unter wasser.
EP87110889A EP0301114B1 (fr) 1987-07-28 1987-07-28 Procédé pour enfoncer des éléments battus sous l'eau
NO873378A NO168315C (no) 1987-07-28 1987-08-12 Fremgangsmaate og drivenhet for inndriving av peler under vann
JP62254522A JPH0678616B2 (ja) 1987-07-28 1987-10-07 水中における杭打ち方法およびこの方法を実施するための駆動ユニット
US07/133,901 US4818149A (en) 1987-07-28 1987-12-15 Method of and a drive unit for driving ramming parts under water
US07/275,592 US4872514A (en) 1987-07-28 1988-11-14 Drive unit for driving ramming parts under water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP87110889A EP0301114B1 (fr) 1987-07-28 1987-07-28 Procédé pour enfoncer des éléments battus sous l'eau

Publications (2)

Publication Number Publication Date
EP0301114A1 EP0301114A1 (fr) 1989-02-01
EP0301114B1 true EP0301114B1 (fr) 1991-07-03

Family

ID=8197159

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87110889A Expired - Lifetime EP0301114B1 (fr) 1987-07-28 1987-07-28 Procédé pour enfoncer des éléments battus sous l'eau

Country Status (5)

Country Link
US (2) US4818149A (fr)
EP (1) EP0301114B1 (fr)
JP (1) JPH0678616B2 (fr)
DE (1) DE3771216D1 (fr)
NO (1) NO168315C (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4300075C1 (de) * 1993-01-05 1994-03-17 Hans Kuehn Anlage zur Übertragung von Antriebsenergie auf unter Wasser einsetzbare Ramm-, Trenn- oder dergleichen Arbeitsgeräte
DE4300074C1 (de) * 1993-01-05 1994-05-05 Hans Kuehn Vorrichtung zur Signal- und Datenübertragung für die Steuerung und Überwachung von Unterwasser-Ramm-, Trenn- oder dergleichen Arbeitsgeräten
DE4300073C2 (de) * 1993-01-05 1994-10-27 Hans Kuehn Selbständige tauchfähige Antriebseinheit für unter Wasser einsetzbare Ramm- und Arbeitsgeräte
US6129487A (en) * 1998-07-30 2000-10-10 Bermingham Construction Limited Underwater pile driving tool
US20050006105A1 (en) * 2002-12-02 2005-01-13 Bell Douglas B Method and apparatus for through rotary sub-sea pile-driving
GB0520891D0 (en) * 2005-10-14 2005-11-23 Tidal Generation Ltd Foundation structure for water current energy system
GB2448358B (en) * 2007-04-12 2009-07-08 Tidal Generation Ltd Installation of underwater ground anchorages
US8033756B2 (en) * 2008-07-21 2011-10-11 Adamson James E Deep water pile driver
NZ594578A (en) 2009-02-10 2013-07-26 Onesteel Wire Pty Ltd Fence post driver with a detachable guide for the post
GB0905663D0 (en) * 2009-04-01 2009-05-13 Marine Current Turbines Ltd Methods of and apparatus for the installation of columns/piles
NL2003073C2 (nl) 2009-06-23 2010-12-27 Ihc Holland Ie Bv Inrichting en werkwijze voor het reduceren van geluid.
EP2325397B1 (fr) 2009-11-24 2012-08-15 IHC Holland IE B.V. Système et procédé d'installation d'éléments de fondation dans une formation de sol sous-marine
AU2011258073B2 (en) * 2010-05-28 2015-07-09 Lockheed Martin Corporation Undersea anchoring system and method
KR101185031B1 (ko) 2010-06-23 2012-09-21 한국건설기술연구원 낙하추진장치를 구비한 석션 앵커 말뚝 및 낙하추진장치를 이용한 석션 앵커 말뚝의 시공방법
NL2006017C2 (en) 2011-01-17 2012-07-18 Ihc Holland Ie Bv Pile driver system for and method of installing foundation elements in a subsea ground formation.
NL2008279C2 (en) * 2012-02-13 2013-08-14 Ihc Holland Ie Bv A template for and method of installing a plurality of foundation elements in an underwater ground formation.
US20140347476A1 (en) * 2013-05-21 2014-11-27 National Taiwan University Bridge inspecting system and method
KR101652352B1 (ko) * 2014-09-24 2016-09-01 삼성중공업 주식회사 굴삭 펌프 장치
EP4335974A1 (fr) * 2022-09-08 2024-03-13 Technische Universität Hamburg Procédé d'application d'un profilé dans le souterrain, ainsi que dispositif vibrateur associé

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE593414C (de) * 1932-12-03 1934-02-26 Georg Peter Dipl Ing Verfahren zum Eintreiben von Spundbohlen
US2959016A (en) * 1957-10-21 1960-11-08 Jersey Prod Res Co Offshore apparatus and method of installing same
US3502159A (en) * 1968-03-26 1970-03-24 Texaco Inc Pile driving apparatus for submerged structures
GB1388689A (en) * 1971-09-09 1975-03-26 Hollandsche Betongroep Nv Impulse driving apparatus
JPS5116705A (en) * 1974-06-27 1976-02-10 Hollandsche Betongroep Nv Suichukuiuchihoho narabini sochi
NL180448C (nl) * 1974-11-16 1987-02-16 Koehring Gmbh Heiinrichting met waterdicht huis en een door druk aangedreven slaglichaam.
JPS5195128U (fr) * 1975-01-27 1976-07-30
NL7512021A (nl) * 1975-10-13 1977-04-15 Hollandsche Betongroep Nv Werkwijze en inrichting voor het vanaf een vaar- tuig op grote diepte onder water plaatsen van een inrichting op een paal of dergelijke.
GB1511829A (en) * 1976-02-05 1978-05-24 Taylor Woodrow Const Ltd Method of providing a foundation or anchorage at the sea bed
SU613008A1 (ru) * 1976-07-07 1978-06-30 Научно-Исследовательский Институт Строительного Производства Устройство дл погружени р да свай
DE3047375C2 (de) * 1980-12-16 1985-09-05 Koehring Gmbh, 2000 Hamburg Tauchfähige Rammvorrichtung

Also Published As

Publication number Publication date
NO873378L (no) 1989-01-30
NO168315C (no) 1992-02-05
JPS6436822A (en) 1989-02-07
EP0301114A1 (fr) 1989-02-01
US4872514A (en) 1989-10-10
DE3771216D1 (de) 1991-08-08
NO873378D0 (no) 1987-08-12
NO168315B (no) 1991-10-28
US4818149A (en) 1989-04-04
JPH0678616B2 (ja) 1994-10-05

Similar Documents

Publication Publication Date Title
EP0301114B1 (fr) Procédé pour enfoncer des éléments battus sous l'eau
EP0301113B1 (fr) Dispositif pour sectionner des pieux tubulaires de fondation sous l'eau
EP2417303B1 (fr) Procédé et dispositif permettant de réaliser la fondation subaquatique d'un ouvrage
DE2261836A1 (de) Vorrichtung zum vergraben von unter wasser verlegten rohrleitungen
EP0301116B1 (fr) Unité de commande électrohydraulique immergeable pour appareils de battage et de service mis en oeuvre sous l'eau
DE3047375A1 (de) "tauchfaehige rammvorrichtung"
DE2644725A1 (de) Bohrinsel
DE212012000290U1 (de) Mittel zur Demontage bzw. Montage des Unterwasserteils eines einfahrbaren Strahlruders
EP0900319B1 (fr) Procece et dispositif pour decouper des tubes ou des piliers ancres dans le sol
DE2514911B2 (de) Verfahren und Vorrichtung zum Anschließen eines Unterwasser-Bohrlochs an eine Produktionsleitung
DE1298472B (de) Einrichtung zum Ziehen und Nachlassen des Bohrgestaenges in Bohrtuermen oder Bohrinseln
DE3127978C2 (de) Schwimmende Plattform
EP0499106B1 (fr) Procédé et dispositif de filer et de haler de l'ombilicale d'un dispositif sous-marin
DE102011112026A1 (de) Verfahren zum Installieren einer Stahl-Jacket-Gründung auf einem Meeresboden mittels einer Ramm-, Bohr- oder Schraubschablone und Schraub- oder Rammschablone für die Installation von Stahl-Jacket-Gründungen
DE3634905C2 (fr)
DE1932230B2 (de) Unterwasseranlage zum anschliessen an mindestens eine unterwassertiefbohrung
DE2622991B2 (de) Vorrichtung zum Unterwassereintreiben von Pfählen und Verfahren ihrer Anwendung
DE69203980T2 (de) Verbesserte Vorrichtung zum Heben und Hämmern der Fundamentpfähle von Offshore-Bauwerken.
DE102011106043A1 (de) Transportverfahren für Windenergieanlagen auf See
DE102011012450A1 (de) Verfahren zum Einbau eines Schwergewichtsgründungssystems für eine Offshore-Windenergieanlage (WEA)
EP2020463A1 (fr) Batardeau-caisson et procédé de protection d'une construction offshore contre l'eau environnante en utilisant celui-ci
EP0225420A1 (fr) Installation pour enfoncer des tuyaux de fondation ou similaires dans des couches de sol par un dispositif de vibration
DE3234177C2 (de) Verfahren zum Absenken einer Plattform einer künstlichen Insel auf einer Stützkonstruktion sowie Einrichtung zum Durchführen des Verfahrens
DE4219078A1 (de) Verfahren und Vorrichtung zum Errichten eines Bauwerkes in Grundwasser
EP2674532B1 (fr) Procédé et système de fondation d'une construction offshore

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL SE

17Q First examination report despatched

Effective date: 19901029

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MENCK GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910703

Ref country code: SE

Effective date: 19910703

REF Corresponds to:

Ref document number: 3771216

Country of ref document: DE

Date of ref document: 19910808

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
NLS Nl: assignments of ep-patents

Owner name: MENCK GMBH

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: BOMAG-BETEILIGUNGS-GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030703

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050122

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060717

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070727