EP0296921B1 - Torche à plasma micro-onde, dispositif comportant une telle torche et procédé pour la fabrication de poudre les mettant en oeuvre - Google Patents

Torche à plasma micro-onde, dispositif comportant une telle torche et procédé pour la fabrication de poudre les mettant en oeuvre Download PDF

Info

Publication number
EP0296921B1
EP0296921B1 EP88401405A EP88401405A EP0296921B1 EP 0296921 B1 EP0296921 B1 EP 0296921B1 EP 88401405 A EP88401405 A EP 88401405A EP 88401405 A EP88401405 A EP 88401405A EP 0296921 B1 EP0296921 B1 EP 0296921B1
Authority
EP
European Patent Office
Prior art keywords
gas
sleeve
waveguide
torch
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88401405A
Other languages
German (de)
English (en)
Other versions
EP0296921A1 (fr
Inventor
Jean-Luc Labat
Lahcen Ougarane
Michel Gastiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of EP0296921A1 publication Critical patent/EP0296921A1/fr
Application granted granted Critical
Publication of EP0296921B1 publication Critical patent/EP0296921B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to a microwave plasma torch of the type comprising at least one gas inlet and one waveguide, as well as a device and a method for manufacturing powder using such a torch.
  • a torch of this type is known from document DE-A-23.36.050 which describes a combined assembly of waveguide and electrode-carrying torch and cooled by water for analysis by emission spectrum.
  • a device and a method for manufacturing powder with a microwave plasma torch are known from document DE-A-31.34.501.
  • the present invention relates to a new plasma torch structure particularly suitable for the manufacture of powders with increased yield and low energy consumption.
  • the microwave plasma torch characterized in that it comprises a resonant cavity forming around the pipe a sleeve open on the side of the pipe outlet and having a lateral opening; a coaxial transition structure perpendicular to the sleeve comprising an external tube connected to the lateral opening of the sleeve and an internal member one end of which is in contact with the pipe and the other end of which is in contact with the internal face of the waveguide and carries a transition piece disposed in the waveguide; the microwave energy supply waveguide having a rectangular section and perpendicular to the coaxial structure and being provided with an opening where the external tube of said structure is connected; cladding gas supply means in the waveguide and / or the coaxial structure and / or the sleeve; possibly means of agreement; and possibly plasma ignition means.
  • FIGS. 1, 2 and 3 a coaxial gas supply pipe appears, the internal pipe 1 conducting the active gas introduced by the end 22 connected to a gas source not shown. Via the transverse pipe 23 connected to a source of plasma-producing gas (not shown), the gas circulating in the outside pipe 2 arrives conductive material.
  • the coaxial pipe (1,2) is surrounded by a cylindrical metallic sleeve of the same axis forming a resonance cavity 3 closed on the side of the gas inlet by an annular flange 18 fixed on the sleeve 3 by screws 19. This flange 18 is traversed by and screwed onto the hollow rod and externally threaded with a piston 9 sliding in the sleeve 3 and taken through the pipe 1,2.
  • O-rings 25, 25 ′, 26 and 26 ′ ensure gas tightness.
  • the sleeve 3 has a lateral opening 4 on which the metallic external tube 5 of the coaxial transition structure is fixed perpendicularly to the gasket.
  • the internal metallic member 6 disposed on the axis of the coaxial structure is on the one hand in contact with the external pipe 2, the contact being produced by a removable contact piece 20 and on the other hand in contact with the internal face of the wall of the waveguide of rectangular section 8 opposite to the circular opening 27 where the outer tube 5 of the coaxial structure is connected with a gasket.
  • the waveguide 8 is arranged perpendicular to the coaxial structure and to the axis of the pipe and of the sleeve 3.
  • the internal member 6 is provided with a piece 7 of agreement which is not necessarily fixed.
  • the waveguide 8 opens a pipe 21 for supplying sheathing gas.
  • the sleeve-forming cavity 3 is extended by the sleeve 10 disposed around the pipe 1,2 and which carries a fixing flange 17.
  • the central portions 24 and the lateral portions 23-23 ′ also appear on the waveguide 8, the double flanges 12-13 fixed between the flanges 28 and 29 integral with portions 23-23′ and 24 respectively. waveguide 8.
  • the window structure appears, each comprising two rectangular metal flanges 12 and 13 which enclose in a recess 15 a window 11 transparent to waves, for example made of quartz.
  • the gas tightness is ensured by silicone seals 14 disposed between the window 11 and the facing surfaces of the flange 12 and the recess of the flange 13.
  • the flange 13 further has a groove and 16 where is disposed a rectangular metal gasket which seals the central portion 24 of the waveguide 8 with gas by contact on the flange 28.
  • edges and the sharp angles are softened to avoid the arcing of the plasma.
  • the flange 18 is crossed in its center only by the line 1,2 and the piston 9, inside the sleeve and without a hollow rod, is moved into the sleeve by one or more rods passing through the flange 18 .
  • the introduction of sheathing gas takes place in the sleeve 3 or 10.
  • the gas tightness in the torch can be ensured by a part arranged in the coaxial structure for example, the windows 12, 13 are then not necessary.
  • gas sealing means are not necessary in certain applications of these torches.
  • the coaxiality of the pipes 1 and 2 is ensured by means of pins or a metal spring disposed between the two pipes.
  • the gas supply line is not necessarily coaxial and may consist of only one line.
  • the length of lines 1 and 2 can be changed in line by sliding along the axis. These lengths and that of the sleeve can be further modified by the addition of end caps 30,31,32 screwed at their end and interchangeable.
  • these tips can be chosen from a material suitable for the products treated in the torch, good conductors with a high melting point and preferably refractory for the sleeve and the outer pipe, possibly also refractory for the pipe 1 and not necessarily conductive.
  • the end of the pipes 1,2 and of the sleeve 10 or of the end caps screwed at their end is rounded.
  • the present invention also relates to a sealed device for the manufacture of powder which uses a torch according to the invention and further comprises a microwave generator, a microwave plasma torch, a reaction vessel, supply means. reactive gas, plasma gas and a cladding gas, means for separation of powder and gases, means for collecting powders, and means for discharging effluent gases.
  • the device comprises a microwave generator 41 connected by usual means to the waveguide 48. It also includes pipes for supplying sheathing gas 42, reactive gas 47 and plasma gas 46. Means of tuning, for example pistons can be provided on the waveguide. Other usual means of agreement are also possible.
  • the sleeve 40 opens and protrudes from D1 into the reaction vessel 53 of length L and of diameter D, the end opposite to a cone shape with an angle preferably approximately equal to 20 °.
  • the L / D ratio is between 1.5 and 6, preferably between 2 and 4.
  • the enclosure wall To avoid contamination of the powders by the material of the enclosure wall, it can be electropolished or fitted with a quartz lining.
  • the reaction chamber opens into a powder and gas separator consisting of a metallic cylindrical filter 50 surrounded by a sealed sleeve 49 and connected to a gas evacuation pipe 52.
  • a powder collector 51 valves and a supply 56 of purge gas and a vacuum line 55 are further provided to facilitate the change of collector without contamination of the powders.
  • Other usual means for separating powder and gas can be envisaged.
  • the ignition device 54 allows the plasma to be ignited by electrical contact with the gas line.
  • the plasma ignition means are not necessarily chosen as shown. They can be constituted by any usual ignition means at the end of the pipe, by any external means compatible with the structure of the enclosure. It can in particular be produced by means of a metal wire introduced into the pipe 2 and removable or not once the plasma is on.
  • the cladding gas can be introduced at the sleeve 40 or the cavity 43 or the coaxial (which does not appear in FIG. 5) and the plasma gas by the internal organ of the coaxial transition which in this case leads into the external pipe 2 to lead the plasma gas there.
  • the torch in which the gases in the configuration shown here circulate from top to bottom can be oriented in a different way, for example oriented from bottom to top.
  • the device according to the invention applies in particular to the synthesis of powder, this is why the present invention also relates to a process for the preparation of powder, characterized in that a device according to the invention is used and in that the reactive gas is chosen from silanes, ammonia, boron hydrides, tungsten and titanium halides, oxygen and gaseous organo-metals and their mixtures.
  • the method according to the invention applies in particular to the preparation of silicon-based powder, namely silicon, silica, carbide and silicon nitride powder.
  • the reactive gas is then according to the invention chosen from silanes and polysilanes, halogenosilanes, alkylsilanes and their mixture with oxygen and ammonia.
  • the cladding gas ultimately flows, regardless of the supply line, between the sleeve and the external pipe 2.
  • Any conventional cladding gas can be used, and in particular inert gases such as nitrogen or hydrogen for example.
  • the plasma gas used is a conventional plasma gas, in particular argon.
  • the active gas circulates in the internal pipe or in the single pipe when this embodiment is used.
  • plasma gas can be injected at ignition and then replaced by or mixed with active gas.
  • the resumption of use is of the order of atmospheric pressure or higher than this, up to approximately 5 atmosphere.
  • microwave By microwave is meant the band from about 400 to 12000 MHz.
  • a single crystal was drawn from the powders thus obtained. Analysis of the single crystal revealed 7 1017 atom / cm3 of oxygen and 10 1017 atom / cm3 of carbon.
  • the diameters d1 to d6 are defined in Figure 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

  • La présente invention concerne une torche à plasma micro-onde du type comprenant au moins une arrivée de gaz et un guide d'onde, ainsi qu'un dispositif et un procédé pour la fabrication de poudre mettant en oeuvre une telle torche.
  • Une torche de ce type est connue du document DE-A-23.36.050 qui décrit un ensemble combiné de guide d'onde et de torche porteuse d'électrode et refroidie par eau pour l'analyse par spectre d'émission.
  • Un dispositif et un procédé pour la fabrication de poudre avec une torche plasma à micro-ondes sont connus du document DE-A-31.34.501.
  • La présente invention a pour objet une nouvelle structure de torche à plasma convenant tout particulièrement pour la fabrication de poudres avec un rendement accru et une faible consommation en énergie.
  • Selon la présente invention, la torche à plasma micro-onde, caractérisée en ce qu'elle comporte une cavité résonnante formant autour de la conduite un manchon ouvert du côté de la sortie de la conduite et comportant une ouverture latérale ; une structure coaxiale de transition perpendiculaire au manchon comportant un tube externe raccordé à l'ouverture latérale du manchon et un organe interne dont l'une des extrémités est au contact de la conduite et dont l'autre extrémité est au contact de la face interne du guide d'onde et porte une pièce de transition disposée dans le guide d'onde ; le guide d'onde d'alimentation en énergie micro-ondes ayant une section rectangulaire et perpendiculaire à la structure coaxiale et étant pourvue d'une ouverture où est raccordé le tube externe de ladite structure ; des moyens d'alimentation en gaz de gainage dans le guide d'onde et/ou la structure coaxiale et/ou le manchon ; éventuellement des moyens d'accord ; et éventuellement des moyens d'allumage du plasma.
  • La présente invention sera mieux comprise en regard des figures annexées sur lesquelles :
    • la figure 1 représente une coupe latérale d'une torche selon l'invention dans son plan de symétrie ;
    • la figure 2 représente une vue de face de la torche ;
    • la figure 3 représente une vue de dessus de la torche ;
    • la figure 4 représente une vue en coupe de la fenêtre d'étanchéité au gaz ; et
    • la figure 5 représente une vue schématique d'un dispositif selon l'invention.
  • Sur les figures 1, 2 et 3 apparaît une conduite coaxiale d'amenée de gaz, la conduite intérieure 1 conduisant le gaz actif introduit par l'extrémité 22 reliée à une source de gaz non représentée. Par la conduite transversale 23 reliée à une source de gaz plasmagène non représentée arrive le gaz circulant dans la conduite extérieure 2 en matériau conducteur. La conduite coaxiale (1,2) est entourée d'un manchon métallique cylindrique de même axe faisant cavité de resonnance 3 fermée du coté de l'arrivée des gaz par une bride 18 annulaire fixée sur le manchon 3 par des vis 19. Cette bride 18 est traversée par et vissée sur la tige creuse et extérieurement filetée d'un piston 9 coulissant dans le manchon 3 et empruntée par la conduite 1,2. Des joints 25, 25′, 26 et 26′ toriques assurent l'étanchéité aux gaz.
  • Le manchon 3 comporte une ouverture latérale 4 sur laquelle est fixée perpendiculairement à joint étanche le tube externe métallique 5 de la structure de transition coaxiale. L'organe interne métallique 6 disposée sur l'axe de la structure coaxiale est d'une part au contact de la conduite externe 2, le contact étant réalisé par une pièce de contact 20 amovible et d'autre part au contact de la face interne de la paroi du guide d'ondes à section rectangulaire 8 opposée à l'ouverture 27 circulaire où est raccordée à joint étanche le tube externe 5 de la structure coaxiale. Le guide d'onde 8 est disposé perpendiculairement à la structure coaxiale et à l'axe de la conduite et du manchon 3. L'organe interne 6 est pourvu d'une pièce 7 d'accord non nécessairement fixe.
  • Dans le guide d'onde 8 débouche une canalisation 21 d'amenée de gaz de gainage. La cavité formant manchon 3 est prolongée par le manchon 10 disposé autour de la conduite 1,2 et qui porte une bride 17 de fixation.
  • Sur la figure 2 apparait en outre sur le guide d'onde 8 les portions centrale 24 et les portions latérales 23-23′, les doubles brides 12-13 fixées entre les brides 28 et 29 solidaires respectivement des portions 23-23′et 24 du guide d'onde 8.
  • Sur la figure 4 apparait la structure de fenêtres comportant chacune deux brides 12 et 13 rectangulaires metalliques qui enserrent dans une évidement 15 une fenêtre 11 transparente aux ondes, par exemple en quartz.
  • L'étanchéité en gaz est assurée par des joints 14 en silicone disposés entre la fenêtre 11 et les surfaces en regard de la bride 12 et de l'évidement de la bride 13. La bride 13 comporte en outre une gorge et 16 où est disposé un joint rectangulaire métallique qui assure l'étanchéité au gaz de la portion centrale 24 du guide d'onde 8 par contact sur la bride 28.
  • De préférence, les arêtes et les angles vifs sont adoucis pour éviter l'arcage du plasma.
  • Dans une variante non représentée, la bride 18 n'est traversée en son centre que par la conduite 1,2 et le piston 9, intérieur au manchon et sans tige creuse, est déplacé dans le manchon par une ou plusieurs tiges traversant la bride 18.
  • Dans une autre variante non représentée, l'introduction de gaz de gainage a lieu dans le manchon 3 ou 10. L'étanchéité au gaz dans la torche peut être assurée par une pièce disposée dans la structure coaxiale par exemple, le fenêtres 12, 13 ne sont alors par nécessaires.
  • En outre, les moyens d'étanchéité au gaz ne sont pas nécessaires dans certaines applications de ces torches.
  • Est nécessaire par contre, un bon contact électrique entre toutes les parties conductrices qui guident les micro-ondes. A cet effet, leur jonction parfaitement conductrice entre les parties métalliques jointes par brides peut être assurée par des joints en cuivre ou en indium.
  • Dans une variante non représentée, la coaxialité des conduites 1 et 2 est assurée au moyen de picots ou d'un ressort métallique disposé entre les deux conduites.
  • La conduite d'amenée de gaz n'est pas nécessairement coaxiale et peut n'être constituée que d'une conduite.
  • La longueur des conduites 1 et 2 peut-être modifiée en ligne par coulissement le long de l'axe. Ces longueurs et celle du manchon peuvent être en outre modifiées par l'adjonction d'embouts 30,31,32 vissés à leur extrémité et interchangeables.
  • Selon l'application de la torche, ces embouts peuvent être choisis dans un matériau adapté aux produits traités dans la torche, bon conducteurs à point de fusion élevé et de préférence réfractaire pour le manchon et la conduite extérieure, éventuellement aussi réfractaire pour la conduite 1 et non nécessairement conducteur.
  • De préférence, l'extrémité des conduites 1,2 et du manchon 10 ou des embouts vissés à leur extrémité est arrondie.
  • La présente invention concerne également en dispositif étanche pour la fabrication de poudre qui met en oeuvre une torche selon l'invention et comporte en outre un générateur micro-ondes, une torche à plasma micro-ondes, une enceinte réactionnelle, des moyens d'alimentation en gaz réactif, en gaz plasmagène et un gaz de gainage, des moyens de séparation de poudre et des gaz, des moyens de collection des poudres, et des moyens d'évacuation des gaz effluents.
  • Outre la cavité de résonnance 43, le manchon 40 et le guide d'onde 48 qui correspondent à la cavité 3, au manchon 10 et au guide d'onde 8 représentés que les figures précédentes, le dispositif comporte un générateur de micro-ondes 41 relié par des moyens usuels au guide d'onde 48. Il comporte aussi des canalisations d'amenée de gaz de gainage 42, de gaz réactif 47 et de gaz plasmagène 46. Des moyens d'accord, par exemple des pistons peuvent être prévus sur le guide d'onde. D'autres moyens d'accord usuels sont également envisageables.
  • Le manchon 40 débouche et dépasse de D₁ dans l'enceinte réactionnelle 53 de longueur L et de diamètre D, dont l'extrémité opposée à une forme de cône d'angle de préférence environ égal à 20°.
  • Selon l'invention, le rapport L/D est compris entre 1,5 et 6, de préférence entre 2 et 4.
  • Pour éviter la contamination des poudres par le matériau de la parroi de l'enceinte, celle-ci peut être électropolie ou équipée d'une doublure en quartz.
  • L'enceinte réactionnelle débouche dans un séparateur de poudre et de gaz constitué d'un filtre cylindrique métallique 50 entouré d'un manchon 49 étanche et relié à une conduite d'évacuation des gaz 52. A la sortie du filtre cylindrique 50 est disposé un collecteur de poudre 51 des vannes et une alimentation 56 de gaz de purge et une conduite de mise sous vide 55 sont en outre prévues pour faciliter le changement de collecteur sans contamination des poudres. D'autres moyens usuels de séparation de poudre et de gaz sont envisageables.
  • Le dispositif d'allumage 54 permet d'allumer le plasma par contact électrique avec la conduite de gaz.
  • Le moyens d'allumage du plasma ne sont pas nécessairement choisi tels que représentés. Ils peuvent être constitués par tout moyen d'allumage usuel au niveau de l'extrémité de la conduite, par tout moyen extérieur compaptible avec la structure de l'enceinte. Il peut être en particulier réalisé au moyen d'un fil métallique introduit dans la conduite 2 et amovible ou non une fois le plasma allumé.
  • Dans un autre mode de réalisation non représenté, le gaz de gainage peut être introduit au niveau du manchon 40 ou de la cavité 43 ou du coaxial (qui n'apparait pas sur la figure 5) et le gaz plasmagène par l'organe interne de la transition coaxiale qui débouche dans ce cas dans la conduite externe 2 pour y conduire le gaz plasmagène.
  • Dans un autre mode de réalisation, on peut prévoir d'autres modes usuels de récupération des poudres et des gaz à la sortie de l'enceinte réactionnelle. Les gaz résiduels peuvent être séparés, détruits pour certains toxiques et recyclés pour d'autres (plasmagène, de gainage).
  • Dans un autre mode de fonctionnement, la torche dans lesquels les gaz dans la configuration représenté ici circulent du haut vers le bas, peut être orientée de façon différente, par exemple orientée du bas vers le haut.
  • Le dispositif selon l'invention s'applique notamment à la synthèse de poudre, c'est pourquoi la présente invention concerne également un procédé pour la préparation de poudre caractérisé en ce que l'on utilise un dispositif selon l'invention et en ce que le gaz réactif est choisi parmi les silanes, l'ammoniac, les hydrures de bore, les halogènures de tungstène et de titane, l'oxygène et les organo métalliques gazeux et leurs mélanges.
  • Le procédé selon l'invention s'applique en particulier à la préparation de poudre à base de silicium, à savoir poudre de silicium, de silice, de carbure et nitrure de silicium.
  • Le gaz réactif est alors selon l'invention choisi parmi les silanes et polysilanes, halogeno silanes, alkylsilanes et leur mélange à l'oxygène et à l'ammoniac.
  • Le gaz de gainage circule in fine, où que soit la conduite d'alimentation, entre le manchon et la conduite externe 2. On peut utiliser tout gaz de gainage usuel, et en particulier des gaz inertes comme l'azote, ou l'hydrogène par exemple.
  • Le gaz plasmagène utilisé est un gaz plasmagène classique, en particulier l'argon.
  • Il est injecté et circule dans la conduite extérieure. Le gaz actif circule dans la conduite interne ou dans la conduite unique quand ce mode de réalisation est utilisé. Dans ce cas, du gaz plasmagène peut être injecté à l'allumage puis remplacé par ou mélangé à du gaz actif.
  • Selon l'invention, la ression d'utilisation est de l'ordre de la pression atmosphérique ou supérieur à celle-ci, jusqu'à 5 atmosphère environ.
  • Par micro-onde, on entend la bande allant d'environ 400 à 12000 MHz.
  • Exemple 1.
  • La demanderesse a mis en oeuvre l'invention dans les conditions suivantes :
    • L/D = 2,5 ; D₁ compris entre D/4 et 3 D/4, de préférence 0,4 D.
    • D/d₁ = compris entre 40 et 150, de préférence 100.
    • d₁ = 2 mm (diamètre interne de la conduite 1)
    • d₂ = 4 mm ( " externe " " 1)
    • d₃ = 7,5 mm ( " interne " " 2)
    • d₄ = 12 mm ( " externe " " 2)
    • d₅ = 27 mm ( " interne du manchon 10)
    • d₆ = 33 mm ( " externe du manchon 10)
    • la conduite 1 a un embout en quartz
    • la conduite 2 a un embout en tungstène
    • le manchon 10 a un embout en laiton
    • le réacteur est en inox 316 L - (la température de référence interne est 440°C).
    • gaz réactif : SiH₄ 71/mn
    • gaz plasmagène : Ar 31/mn
    • gaz de gainage : N₂ 111/mn
    • puissance µ-onde 2,5 kW
    • production = 490 g/h de poudre de silicium soit un rendement énergétique de 5,15 kWh/kg de poudre et 7,90 kWh électrique/kg de poudre (conversion 100%, rendement du générateur 66%).
  • On a étiré un monocristal à partir des poudres obtenues ainsi. L'analyse du monocristal à révélé 7 10¹⁷ atome/cm³ d'oxygène et 10 10¹⁷ atome/cm³ de carbone.
  • Exemple 2
  • Avec le même réacteur et les débits suivants :
  • SiH₄
    9,5 l/mn
    Ar
    3 l/mn
    N₂
    14 l/mn
    pour une puissance de 3,125 kW, on a obtenu 665 g/h de poudre de silicium soit un rendement de 4,69 kWh µ-onde/kg poudre et 7,20 kWh électrique /kg poudre (conversion 100%) Exemple 3.
  • Avec le même réacteur ( et d₅ = 25 mm) et les débits suivants :
  • SiH₄
    : 12 l/mn
    Ar
    : 2,5l/mn
    N₂
    : 12 l/mn
    pour un puissance de 3,2 kW, on a obtenu 840 g/h de poudre de silicium, soit un rendement de 3,81 kWh/kg de poudre et 5,86 kWh électrique/kg poudre (conversion 98,3 %).
  • Les diamètres d₁ à d₆ sont définis sur la figure 1.

Claims (15)

1. Torche à plasma micro-onde comprenant au moins une conduite d'amenée de gaz (1,2) et un guide d'onde (8), caractérisée en ce qu'elle comporte une cavité résonnante (3) formant autour de la conduite (2) un manchon ouvert du côté de la sortie de la conduite et comportant une ouverture latérale (4); une structure coaxiale de transition perpendiculaire au manchon comportant un tube externe (5) raccordé à l'ouverture latérale (4) du manchon et un organe interne (6) dont l'une des extrémités (20) est au contact de la conduite (2) et dont l'autre extrémité est au contact de la face interne du guide d'onde (8) et porte une pièce de transition (7) disposée dans le guide d'onde (8); le guide d'onde (8) d'alimentation en énergie micro-ondes ayant une section rectangulaire et perpendiculaire à la structure coaxiale (5,6) et étant pourvu d'une ouverture (27) de raccordement avec le tube externe (5) de ladite structure ; des moyens d'alimentation en gaz de gainage dans le guide d'onde (8) et/ou la structure coaxiale (5,6) et/ou le manchon ; éventuellement des moyens d'accord ; et éventuellement des moyens d'allumage du plasma.
2. Torche selon la revendication 1, caractérisée en ce que le tube externe (5) est raccordé de façon étanche à l'ouverture latérale (4) et/ou au guide d'onde (8).
3. Torche selon la revendication 1 ou 2, caractérisée en ce que le guide d'onde (8) est relié à une source (21) de gaz de gainage et est muni, de part et d'autre de la pièce de transition (7), de moyens d'étanchéité au gaz.
4. Torche selon l'une des revendications 1 à 3, caractérisée en ce que les moyens d'étanchéité (11, 12, 13) au gaz sont conducteurs et comportent au moins une fenêtre rectangulaire (11) en matériau transparent aux micro-ondes, deux brides rectangulaires (12, 13) enserrant la fenêtre, des moyens d'étanchéité au gaz (14, 15) entre la fenêtre et les brides, et des moyens d'étanchéité (16) au gaz entre la bride (13) située en regard de la portion (24) du guide d'onde étanche au gaz et la bride.
5. Torche selon la revendication 1 ou 2, caractérisée en ce que le manchon (3) est relié à une source de gaz de gainage et la structure coaxiale (5, 6) est munie de moyens d'étanchéité au gaz.
6. Torche selon l'une des revendications 1 à 5, caractérisée en ce que l'extrémité fermée du manchon est une bride annulaire (18) traversée à joint étanche par des moyens de réglage d'un piston annulaire (9), la bride et le piston étant traversés par la conduite d'amenée de gaz (1, 2).
7. Torche selon l'une des revendications 1 à 6, caractérisée en ce qu'elle comporte deux conduites d'amenée (1, 2) de gaz coaxiales.
8. Torche selon l'une des revendications 1 à 7, caractérisée en ce que les longueurs de la conduite d'amenée de gaz et de la sortie du manchon sont réglables.
9. Torche selon l'une des revendications 1 à 8, caractérisée en ce que les longueurs de la conduite d'amenée de gaz et de la sortie du manchon sont arrondies.
10. Torche à plasma selon l'une des revendications 1 à 9, caractérisée en ce que la pièce de transition (7) est réglable.
11. Torche à plasma selon l'une des revendications 1 à 10, caractérisée en ce que la conduite d'amenée de gaz (1) est constituée au moins en partie d'un matériau réfractaire.
12. Dispositif étanche à plasma micro-onde pour la fabrication de poudre, du type comportant un générateur micro-ondes (41), une torche à plasma micro-ondes (40, 43, 48) comportant des moyens d'alimentation en gaz réactif (46) et en gaz plasmagène (47), une enceinte réactionnelle (53), des moyens de séparation de poudre et des gaz, des moyens de collection des poudres (51) et des moyens d'évacuation des gaz effluents (52), caractérisé en ce que la torche à plasma est réalisée selon l'une des revendications 1 à 11.
13. Dispositif selon la revendication 12, caractérisé en ce que le rapport de la longueur et du diamètre de l'enceinte réactionnelle est compris entre 1,5 et 6, de préférence entre 2 et 4.
14. Procédé de préparation de poudre, caractérisé en ce que l'on met en oeuvre un dispositif selon l'une des revendications 12 et 13 avec un gaz réactif choisi parmi les silanes, l'ammoniac, les hydrures de bore, les halogènes de tungstène et de titane, l'oxygène et les organométalliques gazeux et leurs mélanges.
15. Procédé selon la revendication 14, caractérisé en ce que la pression d'utilisation est supérieure ou égale à la pression atmosphérique.
EP88401405A 1987-06-10 1988-06-09 Torche à plasma micro-onde, dispositif comportant une telle torche et procédé pour la fabrication de poudre les mettant en oeuvre Expired - Lifetime EP0296921B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8708096 1987-06-10
FR8708096A FR2616614B1 (fr) 1987-06-10 1987-06-10 Torche a plasma micro-onde, dispositif comportant une telle torche et procede pour la fabrication de poudre les mettant en oeuvre

Publications (2)

Publication Number Publication Date
EP0296921A1 EP0296921A1 (fr) 1988-12-28
EP0296921B1 true EP0296921B1 (fr) 1992-07-29

Family

ID=9351899

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88401405A Expired - Lifetime EP0296921B1 (fr) 1987-06-10 1988-06-09 Torche à plasma micro-onde, dispositif comportant une telle torche et procédé pour la fabrication de poudre les mettant en oeuvre

Country Status (7)

Country Link
US (1) US4924061A (fr)
EP (1) EP0296921B1 (fr)
JP (1) JPS63312907A (fr)
CA (1) CA1311277C (fr)
DE (1) DE3873193T2 (fr)
DK (1) DK310088A (fr)
FR (1) FR2616614B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004029466A1 (de) * 2004-06-18 2006-01-05 Leybold Optics Gmbh Medieninjektor

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4126216B4 (de) * 1991-08-08 2004-03-11 Unaxis Deutschland Holding Gmbh Vorrichtung für Dünnschichtverfahren zur Behandlung großflächiger Substrate
US5349154A (en) * 1991-10-16 1994-09-20 Rockwell International Corporation Diamond growth by microwave generated plasma flame
NO174180C (no) * 1991-12-12 1994-03-23 Kvaerner Eng Innföringsrör for brenner for kjemiske prosesser
US5565118A (en) * 1994-04-04 1996-10-15 Asquith; Joseph G. Self starting plasma plume igniter for aircraft jet engine
EP0946414B1 (fr) * 1996-11-04 2005-06-29 Materials Modification, Inc. Synthese chimique par plasma hyperfrequence de poudres ultrafines
EP0930810A1 (fr) 1997-12-29 1999-07-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Torche à plasma à injecteur réglable et installation d'analyse d'un gaz utilisant une telle torche
FR2773299B1 (fr) * 1997-12-29 2000-01-21 Air Liquide Torche a plasma a injecteur reglable et installation d'analyse d'un gaz utilisant une telle torche
DE19814812C2 (de) 1998-04-02 2000-05-11 Mut Mikrowellen Umwelt Technol Plasmabrenner mit einem Mikrowellensender
DE19829760B4 (de) * 1998-07-03 2006-10-12 Institut für Oberflächenmodifizierung e.V. Koaxialer Mikrowellenapplikator zur Erzeugung eines Plasmas mit automatischer oder manueller Anpassung
JP2000133494A (ja) 1998-10-23 2000-05-12 Mitsubishi Heavy Ind Ltd マイクロ波プラズマ発生装置及び方法
DE19856307C1 (de) * 1998-12-07 2000-01-13 Bosch Gmbh Robert Vorrichtung zur Erzeugung eines freien kalten Plasmastrahles
KR19990068381A (ko) 1999-05-11 1999-09-06 허방욱 마이크로웨이브플라즈마버너
DE19925790A1 (de) * 1999-06-05 2000-12-07 Inst Oberflaechenmodifizierung Verfahren und Vorrichtung zur Bearbeitung von optischen und anderen Oberflächen mittels Hochrate-Plasmaprozessen
US7510664B2 (en) * 2001-01-30 2009-03-31 Rapt Industries, Inc. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces
US7591957B2 (en) * 2001-01-30 2009-09-22 Rapt Industries, Inc. Method for atmospheric pressure reactive atom plasma processing for surface modification
US6660177B2 (en) * 2001-11-07 2003-12-09 Rapt Industries Inc. Apparatus and method for reactive atom plasma processing for material deposition
EP1361437A1 (fr) * 2002-05-07 2003-11-12 Centre National De La Recherche Scientifique (Cnrs) Un nouveau marqueur biologique pour des tumeurs et des méthodes pour la détection de phénotype cancéreux ou non-cancéreux de cellules
EP1501690B1 (fr) * 2002-05-08 2007-11-21 Leonhard Kurz GmbH & Co. KG Procede de decoration de grands objets tridimensionnels en plastique
US7638727B2 (en) * 2002-05-08 2009-12-29 Btu International Inc. Plasma-assisted heat treatment
US7498066B2 (en) * 2002-05-08 2009-03-03 Btu International Inc. Plasma-assisted enhanced coating
US20050233091A1 (en) * 2002-05-08 2005-10-20 Devendra Kumar Plasma-assisted coating
US20060237398A1 (en) * 2002-05-08 2006-10-26 Dougherty Mike L Sr Plasma-assisted processing in a manufacturing line
US20060233682A1 (en) * 2002-05-08 2006-10-19 Cherian Kuruvilla A Plasma-assisted engine exhaust treatment
US20060057016A1 (en) * 2002-05-08 2006-03-16 Devendra Kumar Plasma-assisted sintering
US20060062930A1 (en) * 2002-05-08 2006-03-23 Devendra Kumar Plasma-assisted carburizing
US7560657B2 (en) * 2002-05-08 2009-07-14 Btu International Inc. Plasma-assisted processing in a manufacturing line
US7494904B2 (en) * 2002-05-08 2009-02-24 Btu International, Inc. Plasma-assisted doping
US7465362B2 (en) * 2002-05-08 2008-12-16 Btu International, Inc. Plasma-assisted nitrogen surface-treatment
US20060228497A1 (en) * 2002-05-08 2006-10-12 Satyendra Kumar Plasma-assisted coating
US7445817B2 (en) * 2002-05-08 2008-11-04 Btu International Inc. Plasma-assisted formation of carbon structures
AU2003234476A1 (en) 2002-05-08 2003-11-11 Dana Corporation Plasma-assisted nitrogen surface-treatment
US7432470B2 (en) 2002-05-08 2008-10-07 Btu International, Inc. Surface cleaning and sterilization
US7497922B2 (en) * 2002-05-08 2009-03-03 Btu International, Inc. Plasma-assisted gas production
FR2847893B1 (fr) * 2002-12-02 2006-05-05 Cit Alcatel Procede et dispositif de recharge par plasma d'une preforme pour fibre optique, a oxydes d'azote reduits
US7189940B2 (en) 2002-12-04 2007-03-13 Btu International Inc. Plasma-assisted melting
US20040173316A1 (en) * 2003-03-07 2004-09-09 Carr Jeffrey W. Apparatus and method using a microwave source for reactive atom plasma processing
US7371992B2 (en) 2003-03-07 2008-05-13 Rapt Industries, Inc. Method for non-contact cleaning of a surface
US20060027539A1 (en) * 2003-05-02 2006-02-09 Czeslaw Golkowski Non-thermal plasma generator device
US20040216845A1 (en) * 2003-05-02 2004-11-04 Czeslaw Golkowski Non-thermal plasma generator device
DE10335720B4 (de) * 2003-08-05 2018-05-09 Andreas Stihl Ag & Co. Kg Antivibrationselement
US7297892B2 (en) * 2003-08-14 2007-11-20 Rapt Industries, Inc. Systems and methods for laser-assisted plasma processing
US7304263B2 (en) * 2003-08-14 2007-12-04 Rapt Industries, Inc. Systems and methods utilizing an aperture with a reactive atom plasma torch
US20080129208A1 (en) * 2004-11-05 2008-06-05 Satyendra Kumar Atmospheric Processing Using Microwave-Generated Plasmas
JP4489680B2 (ja) 2005-10-03 2010-06-23 株式会社アドテック プラズマ テクノロジー マイクロ波プラズマ発生方法および装置
US7619178B2 (en) * 2006-02-06 2009-11-17 Peschel William P Directly connected magnetron powered self starting plasma plume igniter
KR101012345B1 (ko) * 2008-08-26 2011-02-09 포항공과대학교 산학협력단 저 전력 휴대용 마이크로파 플라즈마 발생기
US9505076B2 (en) * 2012-01-25 2016-11-29 Illinois Tool Works Inc. Auxiliary shielding gas filter for a welding apparatus
AU2013290093B2 (en) * 2012-07-13 2017-09-21 Peter Morrisroe Torches and methods of using them
KR101359320B1 (ko) * 2012-12-27 2014-02-10 한국기초과학지원연구원 전자파-고주파 혼성 플라즈마 토치
CN105072793B (zh) * 2015-07-24 2017-11-14 浙江全世科技有限公司 一种微波等离子体炬装置
CN105898975B (zh) * 2016-06-12 2018-07-17 浙江大学 一种大功率微波等离子体谐振腔
WO2019149897A1 (fr) * 2018-02-02 2019-08-08 Ionics Jet de plasma atmosphérique à tube de canule droit
IT201800020206A1 (it) * 2018-12-19 2020-06-19 Directa Plus Spa Apparecchiatura per il trattamento di materiali con plasma.
DE102021004675B4 (de) 2021-09-17 2024-02-01 Technische Universität Bergakademie Freiberg, Körperschaft des öffentlichen Rechts Hybrid-Verfahren und Hybrid-Vorrichtung für CO2-ärmere bzw. CO2-freie Hochtemperaturtechnologien zur thermischen Behandlung bzw. Herstellung von anorganischen Werkstoffen
DE102022122280A1 (de) 2022-09-02 2024-03-07 Technische Universität Bergakademie Freiberg, Körperschaft des öffentlichen Rechts Kombination elektrischer Heizelemente, enthalten einen Verbundwerkstoff, mit Mikrowellen-Plasmabrennern für Hochtemperaturanwendungen in der Metallurgie, in der chemischen Industrie und in der Zementindustrie

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211175A (en) * 1975-07-18 1977-01-27 Toshiba Corp Activated gas reacting apparatus
GB1523267A (en) * 1976-04-15 1978-08-31 Hitachi Ltd Plasma etching apparatus
JPS5939178B2 (ja) * 1977-04-25 1984-09-21 株式会社東芝 活性化ガス発生装置
US4208806A (en) * 1978-07-30 1980-06-24 Gebrueder Buehler Ag Process for treatment of pourable materials with microwaves
US4423303A (en) * 1980-05-06 1983-12-27 Tokyo Shibaura Denki Kabushiki Kaisha Apparatus for treating powdery materials utilizing microwave plasma
DE3134501A1 (de) * 1981-09-01 1983-08-11 Nikolaj Ivanovič Čebankov Ultrahochfrequenzplasmatron und anlage zur erhaltung feinst verteilter pulver
US4711983A (en) * 1986-07-07 1987-12-08 Gerling John E Frequency stabilized microwave power system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004029466A1 (de) * 2004-06-18 2006-01-05 Leybold Optics Gmbh Medieninjektor

Also Published As

Publication number Publication date
JPS63312907A (ja) 1988-12-21
DK310088D0 (da) 1988-06-08
CA1311277C (fr) 1992-12-08
US4924061A (en) 1990-05-08
DE3873193T2 (de) 1993-02-18
DE3873193D1 (de) 1992-09-03
FR2616614B1 (fr) 1989-10-20
EP0296921A1 (fr) 1988-12-28
DK310088A (da) 1988-12-11
FR2616614A1 (fr) 1988-12-16

Similar Documents

Publication Publication Date Title
EP0296921B1 (fr) Torche à plasma micro-onde, dispositif comportant une telle torche et procédé pour la fabrication de poudre les mettant en oeuvre
EP1332511B1 (fr) Dispositif de traitement de gaz par plasma
US5349154A (en) Diamond growth by microwave generated plasma flame
US4851254A (en) Method and device for forming diamond film
FR2480552A1 (fr) Generateur de plasmaŸ
CA2370479C (fr) Cartouche pour torche a plasma et torche a plasma equipee
US5069928A (en) Microwave chemical vapor deposition apparatus and feedback control method
CA2098652A1 (fr) Dispositif de formation de molecules gazeuses excitees ou instables et utilisations d'un tel dispositif
EP0576869A2 (fr) Procédé et dispositif pour l'injection de charbon pulvérisé dans un creuset de haut-fourneau
EP0614852B1 (fr) Procédé de préparation du disilane à partir du monosilane par décharge électrique et piégeage cryogénique et réacteur pour sa mise en oeuvre
FR2639474A1 (fr) Appareil de deposition chimique en phase vapeur par plasma a micro-ondes
EP1169889B1 (fr) Cartouche pour torche a plasma et torche a plasma
FR2631258A1 (fr) Procede de nettoyage en surface par plasma differe
EP0522986A1 (fr) Dispositif et procédé de dépot de diamant par DCPV assisté par plasma microonde
JPH0222460A (ja) マイクロ波透過性ウィンドウ組立体及びマイクロ波プラズマ発生装置、並びにそれらを用いたエッチング方法及び堆積膜形成法
JP5014324B2 (ja) 固体合成用高周波熱プラズマトーチ
US3950479A (en) Method of producing hollow semiconductor bodies
EP3560299B1 (fr) Réacteur plasma de dbd
FR2800365A1 (fr) Procede d'obtention de nanostructures a partir de composes ayant une forme cristalline hexagonale
Matsuo et al. Fullerene production by carbon arc method in various gases
EP0002406B1 (fr) Source d'ions notamment pour implanteur ionique
WO2022248788A1 (fr) Reacteur a plasma de type a barriere dielectrique
FR2478869A1 (fr) Fenetre coaxiale pour tube electronique hyperfrequence et tube electronique incorporant une telle fenetre
JPH06122513A (ja) フラーレンの製造方法及び装置
FR2601441A1 (fr) Four rotatif a plasma a alimentation en materiau a traiter a entrainement mecanique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880613

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19910516

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3873193

Country of ref document: DE

Date of ref document: 19920903

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930512

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930518

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930519

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930524

Year of fee payment: 6

Ref country code: CH

Payment date: 19930524

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930527

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930630

Year of fee payment: 6

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940630

Ref country code: CH

Effective date: 19940630

Ref country code: BE

Effective date: 19940630

BERE Be: lapsed

Owner name: S.A. L' AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

Effective date: 19940630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950101

EUG Se: european patent has lapsed

Ref document number: 88401405.1

Effective date: 19950110

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940609

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950301

EUG Se: european patent has lapsed

Ref document number: 88401405.1

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050609