EP0293883B1 - Gruppenlaufzeitmessvorrichtung mit automatischer Einstellung des Öffnungswertes - Google Patents

Gruppenlaufzeitmessvorrichtung mit automatischer Einstellung des Öffnungswertes Download PDF

Info

Publication number
EP0293883B1
EP0293883B1 EP88108819A EP88108819A EP0293883B1 EP 0293883 B1 EP0293883 B1 EP 0293883B1 EP 88108819 A EP88108819 A EP 88108819A EP 88108819 A EP88108819 A EP 88108819A EP 0293883 B1 EP0293883 B1 EP 0293883B1
Authority
EP
European Patent Office
Prior art keywords
aperture value
frequency
aperture
signal
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88108819A
Other languages
English (en)
French (fr)
Other versions
EP0293883A1 (de
Inventor
Hiroshi Itaya
Takehiko Kawauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Publication of EP0293883A1 publication Critical patent/EP0293883A1/de
Application granted granted Critical
Publication of EP0293883B1 publication Critical patent/EP0293883B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response

Definitions

  • This invention generally relates to a delay measurement apparatus and, more particularly, to a group delay time measurement apparatus with an automatic aperture value setting function according to the preamble of claim 1.
  • This invention broadly relates to an apparatus for measuring a group delay time (to be merely referred to as a delay hereinafter where it is not misleading) of a general electric circuit network.
  • a method for computing a group delay aperture in an RF device comprises measuring the group delay of the RF device to provide group delay data points; and smoothing the group delay data points to vary the equivalent aperture used for measuring the group delay and to thereby alter the noise content of the measured group delay, wherein the smoothing is performed over at least three adjacent group delay data points, so that a phase change greater than 180° across the equivalent aperture is achieved.
  • a phase gradient scheme is conventionally known as a scheme to use two signals having different frequencies and to measure a group delay time from a phase difference in the two frequency outputs.
  • a frequency difference (which is called an aperture value) of two signals having different frequencies is set at the optimum value in accordance with an object to be measured, e.g., an electric circuit network, an electric component, or the like.
  • This invention relates to a group delay time measurement apparatus (or merely a delay apparatus) with an automatic aperture value setting function which can automatically set the aperture value at the optimum value.
  • the Nyquist scheme that uses AM or FM waves the phase gradient scheme that uses a sweep frequency signal and differentiates the phase characteristics of the sweep frequency signal, the phase gradient scheme that uses two signals having different frequencies and performs measurement from a phase difference between the two signals, and so on are available.
  • Fig. 1 is a block diagram of an example of a measurement apparatus based on the phase gradient scheme and disclosed in JP-B-58-10711 as a prior art.
  • a signal output from oscillator 1 is split by power splitter 2 into two paths.
  • One of the split signals is input to phase detector 4 through object 3 to be measured such as an electric circuit network, while the other of the split signals is directly input to phase detector 4.
  • Detector 4 detects the phase difference between the two input signals.
  • a detected phase difference signal is converted into a digital signal by A/D (analog/digital) converter 5 and is output.
  • oscillator 1 outputs a signal having a frequency different from that of the signal originally output by oscillator 1 under the control of controller 6.
  • the output signal is supplied to A/D converter 5, thus obtaining a digital phase difference signal.
  • the detection range of phase detector 4 is generally - ⁇ to + ⁇ . Therefore, when a phase shift component falls outside this range, it must be corrected as shown in Fig. 2.
  • the calculation for obtaining group delay time D becomes very complicated.
  • Even when the precision of the output voltage with respect to the phase difference of phase detector 4 is improved to have an error falling only within a range of ⁇ 1%, if measurement is performed for the discontinuous points, the resultant precision has an error falling within a range of (2 ⁇ x 1)%, thus increasing the error.
  • the precision having an error of (2 ⁇ x 1)% is very high in the conventional apparatus, it is insufficient as a precision of a group delay time.
  • Fig. 3 shows a group delay measurement apparatus disclosed in JP-B-58-10711 to eliminate the drawbacks of the conventional apparatus described above.
  • a signal output by oscillator 11 is split by power splitter 12 into two signals.
  • One split signal is supplied to object 13 to be measured while the other split signal is supplied to one input terminal of phase detector 14.
  • the signal supplied to object 13 is output to variable phase shifter 15 to be phase-controlled and then supplied to the other input terminal of phase detector 14.
  • Detector 14 detects a phase difference between the two signals and outputs a detection signal.
  • the detection signal is supplied to the signal input terminal of DC amplifier 16 serving as a phase controller for controlling the phase shifting of phase shifter 15.
  • the detection signal is also converted into a digital signal by A/D converter 17, and the digital signal is applied to controller 18.
  • controller 18 Upon reception of the digital signal, controller 18 outputs a holding signal to DC amplifier 16 from output terminal 18a and a frequency control signal to oscillator 11 from output terminal 18b.
  • a signal having a frequency (f - ⁇ f/2) is supplied to the apparatus having the above arrangement through oscillator 11.
  • Phase detector 14 detects a phase difference between a signal obtained through object 13 and a signal from oscillator 11 and outputs a signal corresponding to the phase difference.
  • the phase difference signal is negatively fed back to variable phase shifter 15 through DC amplifier 16.
  • Phase shifter 15 controls the phase shift of the signal output from object 13 such that a phase difference between the signal output from object 13 and the signal supplied form oscillator 11 becomes zero. As a result, a zero signal is output from phase detector 14.
  • the zero signal is supplied to controller 18 through A/D converter 17.
  • controller 18 Upon reception of the digital zero signal, controller 18 stops negative feedback to phase shifter 15 performed by amplifier 16 to hold the phase shift control value obtained by phase shifter 15, while it also supplies a signal to oscillator 11.
  • oscillator 11 Upon reception of the signal, oscillator 11 outputs a signal having a frequency (f + ⁇ f/2), and phase detector 14 detects a phase difference between the signal output from oscillator 11 and the signal supplied through object 13.
  • phase difference detected by phase detector 14 for the frequency (f - ⁇ f/2) is controlled to be zero, and under this condition a phase difference is detected for the frequency (f + ⁇ f/2). Therefore, with this apparatus, since phase difference detection is performed constantly with respect to a phase difference of zero as a reference, the detection range can normally be ⁇ . Phase difference detection for discontinuous points is not performed unlike in the conventional case, and continuous detection can be constantly performed in the vicinity of the center of the detection range. The error in the measured signal depends only on the error of phase detector 14, e.g., 1%, and the measurement precision can be maintained as high as 1%.
  • a delay of an object to be measured is to be measured by a network analyzer using a group delay measurement apparatus based on the phase gradient scheme described above, an aperture value is set.
  • a delay is obtained by calculating a differential of a phase gradient of phase characteristics. More specifically, referring to the graph shown in Fig.
  • aperture value ⁇ F is uniquely determined by a measurement frequency range set in the measuring device before measurement. More specifically, referring to Fig. 5, since number N of display pixels of display screen A in the horizontal direction is determined to be, e.g., 512, this number corresponds to number N of measurement points. Therefore, when measurement frequency range S set in the measuring device is determined, the frequency among measurement points f n-1 , f n , f n+1 , and f n+2 is uniquely determined at S/N.
  • the frequency indicated as S/N is directly used and set as aperture value ⁇ F.
  • aperture value ⁇ F S/N is automatically set, and the delay range is accordingly set, as is apparent from equation (1).
  • aperture value ⁇ F is determined regardless of an object to be measured, and an optimum aperture for the object to be measured is not determined. This is because the values of delay differ depending on objects to be measured even when measurement is performed in the same frequency band. For example, in measurement of filter delay characteristics, one filter has a very high Q value like a quartz filter, and another filter has a very low Q value like an LCR filter. The phase gradients of their phase characteristics differ depending on the objects to be measured.
  • aperture value ⁇ F is set to be narrow where the actual delay characteristics are as indicated by the broken line, as in Fig. 6. Thus, the mountain-like portions of the graph exceeding ⁇ collapse and the resultant delay graph becomes as indicated by the solid line.
  • an object of the present invention to provide a new and improved group delay time measurement apparatus with an automatic aperture value setting function which measures a delay at a given point in time during which an aperture value is changed, and wherein an aperture value which provides a maximum delay can be obtained, thereby automatically detecting, in accordance with an object to be measured, an optimum aperture.
  • a group delay time measurement apparatus comprising:
  • phase gradient scheme is employed in the delay measurement apparatus of the present invention.
  • Phase values ⁇ 1 and ⁇ 2 at positions separated from each other by aperture value ⁇ F are detected as the two phases used for calculating the phase difference.
  • Values ⁇ 1 and ⁇ 2 are converted into digital values so that they can be subjected to an arithmetic operation using a microprocessor.
  • a frequency oscillated by a local oscillator is mixed with a frequency of a signal to be measured which has passed through a circuit, a delay time of which is to be measured, to obtain an intermediate frequency signal.
  • ⁇ F the calculation of phase values at positions which are separated from each other by ⁇ F becomes easy.
  • a delay can be calculated from the difference between the phase values and ⁇ F.
  • the aperture value is preferably set to be as large as possible in order to improve the measurement precision.
  • a reference value used for determining a high aperture value it is determined at a maximum value where
  • An aperture table is prepared to gradually increase an aperture value to be approximately that of the discrimination reference value. It is preferable that values on this table are increased by an exponential function of 2 in order to facilitate digital processing. In practice, however, values which approximate the exponential function of 2 may be used.
  • the group delay time measurement apparatus with an automatic aperture value setting function in delay measurement has a frequency converter, a phase detector, a measurement frequency setting unit, an aperture table, a local oscillation signal controller, an arithmetic unit, and a discrimination unit.
  • the frequency converter mixes a local oscillation signal oscillated by a local oscillator with an input signal to be measured, thus obtaining an intermediate frequency signal.
  • the phase detector detects a phase of the intermediate frequency signal supplied from the intermediate frequency converter.
  • the measurement frequency setting unit receives desired measurement frequency f0 of the signal waveform to be measured.
  • the aperture table stores, in advance, aperture values ⁇ F n assigned to corresponding set ranges n in order to set optimum aperture value ⁇ F in accordance with an object to be measured.
  • the local oscillation frequency controller controls the frequency oscillated by the local oscillator at f0 - ⁇ F n /2 and f0 + ⁇ F n /2 by using desired measurement frequency f0, input into the measurement frequency setting unit, and aperture value ⁇ F n read out from the aperture table.
  • the arithmetic unit calculates delay ⁇ n of the signal to be measured from outputs ⁇ 2 and ⁇ 1 of the phase detector when the frequencies oscillated by the local oscillator are f0 - ⁇ F n /2 and f0 + ⁇ F n /2, respectively.
  • delay time ⁇ n calculated by the arithmetic unit is larger than a predetermined value
  • the discrimination unit determines the corresponding value ⁇ F n as the aperture value.
  • delay time ⁇ n is smaller than the predetermined value
  • the discrimination unit causes the aperture table to read out aperture value ⁇ F n+1 assigned to next set range n + 1. An optimum aperture of an object to be measured can thus be automatically detected and set in accordance with the object.
  • Fig. 7 is a block diagram of a group delay time measurement apparatus with an automatic aperture value setting function according to an embodiment of the present invention.
  • Fig. 8 shows examples of aperture values assigned to the set ranges stored in the aperture table shown in Fig. 7.
  • Fig. 9 is a graph for explaining desired measurement frequency f0 input through the measurement frequency setting unit shown in Fig. 7.
  • Fig. 10 is a flow chart for explaining the operation of the apparatus shown in Fig. 7.
  • frequency converter 20 has mixer 21 and local oscillator 22.
  • the apparatus also has phase detector 23, A/D converter 24, arithmetic unit 25, determination unit 26, aperture table 27, local oscillation frequency controller 28, measurement frequency setting unit 29, data processor 30, and display unit 31.
  • Arithmetic unit 25, determination unit 26, local oscillation frequency controller 28, and data processor 30 can be included in microprocessor CPU.
  • a measurement signal input through an object to be measured is converted into an intermediate frequency (IF) signal by mixer 21 of frequency converter 20 by a signal oscillated by local oscillator 22, and then input to phase detector 23.
  • IF intermediate frequency
  • the outputs from detector 23 are ⁇ 2 and ⁇ 1, respectively, where f0 is a desired measurement frequency input through measurement frequency setting unit 29 and is set at a value which is approximately that of a frequency to be monitored, and ⁇ F n is the aperture value assigned to set range number n read out from aperture table 27. This will be described later in detail.
  • phase detector 23 operates as described in Fig. 3, and has an original phase detector section, a DC amplifier, and a variable phase shift section. Functions of the A/D converter and controller in Fig. 3, may be taken for those of A/D converter 24 and oscillation frequency controller 28. Thus, although a phase difference of ⁇ 2 - ⁇ 1 can be measured, it still becomes ⁇ . If phase detector 23 operates to measure within a small range of ⁇ 2 and ⁇ 1, it is then unnecessary for phase detector 23 to have the described above functions.
  • Arithmetic unit 25 calculates delay time ⁇ n from outputs ⁇ 2 and ⁇ 1, output from phase detector 23, and corresponding aperture value ⁇ F n read out from aperture table 27 when oscillation frequencies of local oscillator 22 are f0 - ⁇ F n /2 and f0 + ⁇ F n /2 in accordance with the following equation:
  • Determination unit 26 compares delay ⁇ n calculated by arithmetic unit 25 with predetermined determination value t , e.g., a measured value 1/2 or 1/2,5 that of the delay range. Value t as a reference value is set such that phase difference ⁇ is a maximum value not exceeding ⁇ . If ⁇ n ⁇ t, current aperture value ⁇ F n read out from aperture table 27 is determined to be optimum aperture value ⁇ F for the object to be measured. However, if ⁇ n ⁇ t, discrimination unit 25 outputs a signal to read out, from aperture table 27, aperture value ⁇ F n+1 assigned to the next set range number n + 1.
  • Aperture table 27 stores, in advance, aperture values ⁇ F n assigned to set range numbers n , as shown in Fig. 8.
  • Fig. 8 shows an example of the aperture table.
  • Maximum set range number K and a corresponding aperture value are arbitrarily set by a measurement device and stored such that the larger the set range n , the larger the aperture value will be, as will be described below.
  • the aperture values are 1, 2, 4, 10, 20, 40, 100, 200, and 400 Hz; 1, 2, 4, 10, 20, 40, 100, 200, and 400 kHz; and 1, 2, and 4 MHz which are exponentially increased, to increment a set range of numbers.
  • Measurement frequency setting unit 29 receives desired measurement frequency f0.
  • the object to be measured is a filter
  • the central frequency of the filter is selected as desired measurement frequency f0.
  • the object to be measured is found to have unknown delay time characteristics by scanning and measuring the measurement frequency with measurement frequency setting unit 29, they are displayed on display screen A as a curve, as shown in Fig. 9.
  • a marker point for reading the frequency is set at the peak value of the curve, thereby obtaining desired measurement frequency f0.
  • the characteristics curve does not represent a measurement of an optimum condition, however measurement frequency f0 of the delay characteristics does obtain a desired measurement frequency.
  • Local oscillation frequency controller 28 outputs a control signal to local oscillator 22 so that local oscillator 22 outputs two different oscillation frequencies f0 - ⁇ F n /2 and f0 + ⁇ F n /2, based on desired measurement frequency f0 input from frequency setting unit 29, and aperture value ⁇ F n read out from aperture table 27.
  • Desired measurement frequency f0 is input from measurement frequency setting unit 29.
  • the frequency at marker point B i.e., measurement frequency f0 is obtained (step S1).
  • step S4 local oscillator 22 outputs a signal having an oscillation frequency f0 - ⁇ F0/2, and thus an output, i.e., phase ⁇ 2 is obtained from phase detector 23.
  • Output ⁇ 2 is digitized by A/D converter 24 and input to arithmetic unit 25.
  • step S6 oscillator 22 outputs a signal having an oscillation frequency f0 + ⁇ F0/2, and thus an output, i.e., phase ⁇ 1, is obtained from phase detector 23.
  • Output ⁇ 1 is digitized by converter 24 and input to arithmetic unit 25.
  • the calculation result is supplied to determination unit 26.
  • step S8 if ⁇ n ⁇ t is obtained by determination unit 26 when aperture value ⁇ F assigned to set range number n is read out from aperture table 27, corresponding aperture value ⁇ F n assigned to current set range number n is determined to be optimum aperture value ⁇ F for the object to be measured, and value ⁇ F n is set in the measurement device.
  • the aperture values are sequentially read out from aperture table 27 down to value ⁇ F k assigned to set range number K . If ⁇ k ⁇ t, value ⁇ F k assigned to corresponding set range K is determined to be optimum aperture value ⁇ F for the object to be measured (step S9).
  • converter 24 can also serve as phase detector 23. In this case, it is not necessary that a separate phase detector 23 be provided. However, even when converter 24 serves as detector 23, a phase difference between two different frequencies must be obtained, as is apparent from the above description. Therefore, a phase detector is substantially needed.
  • the first embodiment can be modified in the following manner. More specifically, aperture value ⁇ F is gradually increased until a difference between measured phase values ⁇ 1 and ⁇ 2 of two frequencies f1 and f2 separated from each other by aperture value ⁇ F - becomes a maximum value not exceeding ⁇ .
  • arithmetic unit 25 need only calculates difference ⁇ between ⁇ 1 and ⁇ 2, as opposed to executing a calculation of equation (1).
  • > ⁇ by one step can be set.
  • an optimum aperture value can be automatically detected and set in accordance with an object to be measured. Therefore, high-precision delay time measurement can be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measuring Phase Differences (AREA)

Claims (9)

  1. Gruppenlaufzeitmeßvorrichtung, die folgendes aufweist:
    - eine Einrichtung, um ein zu messendes Signal einzugeben;
    - eine Überlagerungsoszillatoreinrichtung (22), um ein Überlagerungsoszillatorsignal, das eine vorbestimmte Frequenz hat, zu überlagern;
    - eine Frequenzumsetzereinrichtung (20), um das zu messende Signal, das von der Signaleingabeeinrichtung geliefert wird, und das Überlagerungsosziillatorsignal, das von der Überlagerungsoszillatoreinrichtung (22) geliefert wird, zu empfangen und ein Zwischenfrequenzsignal abzugeben;
    - eine Phasendetektoreinrichtung (23), die mit der Frequenzumsetzereinrichtung (20) verbunden ist, um die Phase des Zwischenfrequenzsignals zu detektieren; und
    - eine A/D-Wandlereinrichtung (24), um ein Phasendetektierausgangssignal, das von der Phasendetektoreinrichtung (23) geliefert wird, zu empfangen und einen entsprechenden Digitalwert abzugeben;
    dadurch gekennzeichnet, daß die Vorrichtung ferner folgendes aufweist:
    - eine Öffnungswert-Speichereinrichtung (27), um eine Vielzahl von Öffnungswerten zu speichern, wobei jeder Öffnungswert jeweils durch ein vorbestimmtes Frequenzband, das mit einem vorbestimmten Schritt inkrementiert wird, ausgelesen wird;
    - eine Meßfrequenzeinstelleinrichtung (29), um eine gewünschte Meßfrequenz einzustellen;
    - eine erste Steuereinrichtung (28), um einen Öffnungswert von der Öffnungswert-Speichereinrichtung (27) und die gewünschte Meßfrequenz von der Meßfrequenzeinstelleinrichtung (29) zu empfangen und um zu bewirken, daß die Überlagerungsoszillatoreinrichtung (22) Signale mit ersten und zweiten Frequenzen überlagert, wobei die Signale durch den Öffnungswert im Bereich der gewünschten Meßfrequenz voneinander getrennt sind;
    - eine Recheneinrichtung (25), die mit der A/D-Wandlereinrichtung (24) und der Öffnungswert-Speichereinrichtung (27) gekoppelt ist, um eine Gruppenlaufzeit des zu messenden Signals in Abhängigkeit von dem Öffnungswert und von zwei Digitalwerten, die den jeweiligen Phasendetektierausgangssignalen entsprechen, die von der Phasendetektoreinrichtung (23) geliefert werden, zu berechnen, wenn die Überlagerungsoszillatoreinrichtung (22) die Signale mit den ersten und zweiten Frequenzen überlagert;
    - eine Bestimmungseinrichtung (26), um zu bestimmen, ob ein Ausgangssignal von der Recheneinrichtung (25) bezüglich der Gruppenlaufzeit größer als ein vorbestimmter Referenzwert ist; und
    - eine zweite Steuereinrichtung (26, 32), die mit der Meßfrequenzeinstelleinrichtung (29) und der Bestimmungseinrichtung (26) gekoppelt ist, um zu bewirken, daß die Öffnungswert-Speichereinrichtung (27) mit dem Lesen und Inkrementieren des Öffnungswerts in Abhängigkeit von der gewünschten Meßfrequenz zum Zeitpunkt der Initialisierung und wenn bestimmt worden ist, daß das Ausgangssignal bezüglich der Gruppenlaufzeit kleiner als der Referenzwert ist, beginnt, und um zu bewirken, daß die Öffnungswert-Speichereinrichtung (27) mit dem Lesen und Inkrementieren des Öffnungswerts aufhört, wenn bestimmt worden ist, daß das Ausgangssignal bezüglich der Gruppenlaufzeit größer als der Referenzwert ist.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    daß die Recheneinrichtung (25), die mit der A/D-Wandlereinrichtung (24) gekoppelt ist, eine Phasendifferenz in Abhängigkeit von zwei Digitalwerten berechnet, die den jeweiligen Phasendetektierausgangssignalen entsprechen, die von der Phasendetektoreinrichtung (23) geliefert werden, wenn die Überlagerungsoszillatoreinrichtung (22) die Signale mit den ersten und zweiten Frequenzen überlagert;
    daß die Bestimmungseinrichtung (26) bestimmt, ob ein Absolutwert des Phasendifferenzausgangssignals von der Recheneinrichtung (25) größer als π ist; und
    daß die zweite Steuereinrichtung (26, 32), die mit der Meßfrequenzeinstelleinrichtung (29) und der Bestimmungseinrichtung (26) gekoppelt ist, bewirkt, daß die Öffnungswert-Speichereinrichtung (27) mit dem Lesen und Inkrementieren des Öffnungswerts nach Maßgabe der gewünschten Meßfrequenz zum Zeitpunkt der Initialisierung und wenn bestimmt worden ist, daß ein Bestimmungsergebnis bezüglich der Phasendifferenz kleiner als π ist, beginnt, und bewirkt, daß die Öffnungswert-Speichereinrichtung (27) mit dem Lesen und Inkrementieren des Öffnungswerts aufhört, wenn bestimmt worden ist, daß ein Bestimmungsergebnis bezüglich der Phasendifferenz größer als π ist.
  3. Vorrichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    daß der vorbestimmte Referenzwert so ausgewählt ist, daß die Phasendifferenz zwischen den beiden Digitalwerten ein Maximalwert ist, der ± π nicht überschreitet.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    daß der Öffnungswert, der in der Öffnungswert-Speichereinrichtung (27) gespeichert ist, als eine Exponentialfunktion von 2 inkrementiert wird.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    daß die zweite Steuereinrichtung (26, 32) einen Wiederholungszähler (32) aufweist, der bei Initialisierung auf Null gesetzt und sequentiell inkrementiert wird.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    daß die Vorrichtung ferner folgendes aufweist:
    - eine Datenverarbeitungseinrichtung (30), um ein Ausgangssignal von der Recheneinrichtung (25) zu empfangen und eine vorbestimmte Verarbeitung durchzuführen; und
    - eine Anzeigeeinrichtung (31), um ein Ausgangssignal von der Datenverarbeitungseinrichtung (30) anzuzeigen.
  7. Vorrichtung nach Anspruch 6,
    dadurch gekennzeichnet,
    daß die gewünschte Meßfrequenz, die von der Meßfrequenzeinstelleinrichtung (29) eingestellt ist, durch Einstellen eines Frequenzlese-Markierungspunkts auf einen Spitzenwert einer Kurve erhalten wird, die auf der Anzeigeeinrichtung (31) angezeigt wird und das Meßsignal darstellt.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    daß die ersten und zweiten Frequenzen, die von der Überlagerungsoszillatoreinrichtung (22) überlagert werden, f₀ - ΔF/2
    Figure imgb0039
    bzw. f₀ + ΔF/2
    Figure imgb0040
    sind, wobei f₀ = die Meßfrequenz und ΔF = der Öffnungswert.
  9. Vorrichtung nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    daß der Öffnungswert die Werte von 1, 2, 4, 10, 20, 40, 100, 200 und 400 Hz; 1, 2, 4, 10, 20, 40, 100, 200 und 400 kHz; und 1, 2 und 4 MHz umfaßt.
EP88108819A 1987-06-02 1988-06-01 Gruppenlaufzeitmessvorrichtung mit automatischer Einstellung des Öffnungswertes Expired - Lifetime EP0293883B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13772987 1987-06-02
JP137729/87 1987-06-02

Publications (2)

Publication Number Publication Date
EP0293883A1 EP0293883A1 (de) 1988-12-07
EP0293883B1 true EP0293883B1 (de) 1992-12-09

Family

ID=15205467

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88108819A Expired - Lifetime EP0293883B1 (de) 1987-06-02 1988-06-01 Gruppenlaufzeitmessvorrichtung mit automatischer Einstellung des Öffnungswertes

Country Status (3)

Country Link
US (1) US4845691A (de)
EP (1) EP0293883B1 (de)
DE (1) DE3876500T2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4995019A (en) * 1990-06-06 1991-02-19 Magnetek Controls Time period measuring apparatus with adaptive averaging
US5210483A (en) * 1990-09-29 1993-05-11 Anritsu Corporation Burst signal spectrum measuring system with stepwise sweeping
JP3160428B2 (ja) * 1993-07-12 2001-04-25 株式会社東芝 濃度計
AU2002218798A1 (en) * 2000-07-10 2002-01-21 Silicon Laboratories, Inc. Digital phase detector circuit and method therefor
JP4829571B2 (ja) * 2005-09-09 2011-12-07 株式会社日立製作所 受信装置および測位測距システム
WO2010081725A2 (de) * 2009-01-15 2010-07-22 Rohde & Schwarz Gmbh & Co. Kg Verfahren und netzwerkanalysator zur messung der gruppenlaufzeit in einem messobjekt
US8063649B2 (en) * 2009-04-03 2011-11-22 Ut-Battelle, Llc Broadband high impedance pickoff circuit
US10454600B2 (en) * 2017-04-13 2019-10-22 Rohde & Schwarz Gmbh & Co. Kg Method for measuring group delay on a device under test, measurement device as well as measurement system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244024A (en) * 1978-08-10 1981-01-06 Hewlett-Packard Company Spectrum analyzer having enterable offsets and automatic display zoom
US4274047A (en) * 1979-12-07 1981-06-16 Bell Telephone Laboratories, Incorporated Analyzer for nonlinear networks
DE8119559U1 (de) * 1981-07-04 1981-10-29 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar Einrichtung zur kontrolle der lichtquellenjustierung in auflichtmikroskopen
JPS59157574A (ja) * 1983-02-27 1984-09-06 Anritsu Corp スペクトラムアナライザ
US4669051A (en) * 1984-01-09 1987-05-26 Hewlett-Packard Company Vector network analyzer with integral processor

Also Published As

Publication number Publication date
EP0293883A1 (de) 1988-12-07
DE3876500D1 (de) 1993-01-21
DE3876500T2 (de) 1993-07-08
US4845691A (en) 1989-07-04

Similar Documents

Publication Publication Date Title
EP0297590B1 (de) Signalanalysator mit automatischer Frequenzmesseinrichtung
EP0167505B1 (de) Verfahren und Vorrichtung zur Pegelmessung mit Mikrowellen
US4651089A (en) Frequency counting arrangement
US4700129A (en) Phase measurement apparatus with automatic calibration
EP0293883B1 (de) Gruppenlaufzeitmessvorrichtung mit automatischer Einstellung des Öffnungswertes
JPH0783964A (ja) 正弦波信号の振幅および周波数を推定する方法、信号の特性の表示を得る方法、および電子回路において複数個のアナログ信号の状態をモニタするためのシステム
US4447782A (en) Apparatus for automatic measurement of equivalent circuit parameters of piezoelectric resonators
EP0321963A1 (de) Impedanzmessgerät
US6232760B1 (en) Method for determining and compensating the transmission function of a measurement apparatus, in particular of a spectrum analyzer
US5668317A (en) Device and method for measuring an angular speed
US4534004A (en) Apparatus and method for determining signal parameters of periodic square wave signals
JP3078305B2 (ja) 高調波次数決定方法
EP1026509B1 (de) Verfahren und Vorrichtung zum Feststellen von Oberwellen in einem elektrischen Netz
EP0137317B1 (de) Ultraschallgerät zur Blutströmungsmessung
US4667198A (en) Apparatus for measuring quantity of AC electricity
JP2909688B2 (ja) 波形解析装置
JP2896401B2 (ja) 広帯域電力計
JPH04232477A (ja) 小さい位相差の測定のための方法および回路装置
JPH0651004A (ja) 回路素子の定数測定装置
JP2940010B2 (ja) 広帯域電力計
US4263558A (en) Phase-selective amplifier
US6480073B2 (en) Method of evaluating quality of crystal unit
SU884159A1 (ru) Способ контрол искажений сигналов фазовой и относительной фазовой манипул ции и устройство дл его осуществлени
JP3099562B2 (ja) 電力系統における高調波成分の分析方法
JPH0771048B2 (ja) 周波数シフト量測定方法およびその装置並びに受信装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880601

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 19910618

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 3876500

Country of ref document: DE

Date of ref document: 19930121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930521

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930730

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950301