EP0287486B1 - Process for making a titanium alloy component, and component obtained - Google Patents

Process for making a titanium alloy component, and component obtained Download PDF

Info

Publication number
EP0287486B1
EP0287486B1 EP88420121A EP88420121A EP0287486B1 EP 0287486 B1 EP0287486 B1 EP 0287486B1 EP 88420121 A EP88420121 A EP 88420121A EP 88420121 A EP88420121 A EP 88420121A EP 0287486 B1 EP0287486 B1 EP 0287486B1
Authority
EP
European Patent Office
Prior art keywords
real
blank
beta transus
temperature
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88420121A
Other languages
German (de)
French (fr)
Other versions
EP0287486A1 (en
Inventor
Edouard Alheritiere
Bernard Prandi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Europeenne du Zirconium Cezus SA
Original Assignee
Compagnie Europeenne du Zirconium Cezus SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Europeenne du Zirconium Cezus SA filed Critical Compagnie Europeenne du Zirconium Cezus SA
Publication of EP0287486A1 publication Critical patent/EP0287486A1/en
Application granted granted Critical
Publication of EP0287486B1 publication Critical patent/EP0287486B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Definitions

  • the invention relates to a method for manufacturing a titanium alloy part with high characteristics, intended for example for compressor disks for aircraft propulsion systems, as well as the parts obtained.
  • the document FR 2 144 205 (GB 1356734) describes a titanium alloy of composition by weight: AI 3 to 7 - Sn 1 to 3 - Zr 1 to 4 - Mo 2 to 6 - Cr 2 to 6 and up to approximately 0 , 2% 0.6% V, 0.5% Si, Ti complement and impurities.
  • the Applicant has tried to obtain parts of the same alloy having a regular structure and without segregation, and having high mechanical characteristics at 20 ° C (Rm - R p0,2 - K ic ) with sufficient elongation as well as a creep resistance at 400 ° C significantly improved.
  • the above problem is solved by means of new composition limits and a new transformation process, these composition limits and the conditions of hot working and heat treatment then being inseparable.
  • the alphagenic elements AI and Sn respectively give, in combination with the other addition elements, insufficient hardnesses when they are in lower contents than the minimum values chosen, and random or frequent precipitations when they are in higher contents than the maximum values set; they preferably have contents of between 4.5 and 5.4% for AI, and between 1.8 and 2.5% for Sn.
  • the Zr has an important hardening role, and an embrittling effect above 5%, the Zr content is preferably between 3.5 and 4.8% and more preferably between 4.1 and 4.8%.
  • the three elements AI, Sn and Zr do not entail fragility together, and it can be noted that the sum: taken as reference in FR 2 144 205 via with respect to the tendency of the comosed Ti 3 AI to form, is equal to 7 for their maximum contents.
  • Mo slightly hardening, has a significant effect of lowering the temperature of transformation of the alpha-beta structure into a fully beta structure, hereinafter called "transus beta".
  • Mo is preferably between 2.0 and 4.5%.
  • V has substantially the same role as Mo and is hardening beta by precipitation like Cr, it is optionally added, (Cr + V) being maintained between 1.5 and 4.5%.
  • Fe causes a dircitation by precipitation of intermetallic compounds, it is known as lowering the resistance to hot creep at high temperature (about 550 to 600 ° C) because of these precipitates which thus cause a certain brittleness.
  • the Fe content is maintained in all cases below 2%, and is preferably adjusted between 0.7 and 1.5% because it then surprisingly results in a very improved creep resistance at 400 ° C. , which is interesting for example for the parts used in the "medium temperature” stages (typically 350 to less than 500 ° C.) of aeronautical compressors.
  • the increase in the 0 content increases, as is known, the mechanical resistance and slightly decreases the toughness (K ic ), it is therefore limited to a maximum of 0.15% and preferably maintained less than or equal to 0, 13%.
  • a small addition of Si improves the creep resistance at 50 G -550 D C, it is limited to 0.3% maximum in the context of obtaining sufficient ductility.
  • the "S / s" wrought ratio (initial section / final section) of this final wrought is preferably greater than or equal to 2.
  • this solution treatment is usually carried out at a temperature chosen between (“transus beta” -40 ° C) and ("transus beta -10 ° C) with maintenance at a temperature of chosen duration usually between 20 min and 2 h and most often between 30 min and 1 h 30 min and this dissolving is followed by ambient cooling with water or more usually with air. between 550 and 650 ° C, so as to improve the elongation at break A% and the creep resistance at 400 ° C while retaining sufficient mechanical strength and toughness (R m - Rp o , 2 and K 1C ).
  • the durations and tempering temperatures are typically chosen between 6 and 10 h and between 570 and 640 ° C.
  • Each ingot has undergone a first roughing in beta at 1050 ° / 1100 ° C of the initial diameter 0 200 mm squared 80 mm. Then, for a portion of each, a second rough refinement of the structure in alpha-beta by flat forging of 70 x 30 mm, at preheating temperature) equal to 50 ° C less than the estimated transus temperature for each of the six alloys (Table 2). This estimate was made by an internal approach rule taking into account the contents of addition elements.
  • 3rd range (Table 5): a portion of the dishes of 70 x 30 mm obtained in the second range was applied an additional final forgeae at 60 x 30 mm starting from ("transus beta" + 30 ° C) and also ending in alpha-beta (needle structures with alpha phase lines were observed micrographically).
  • the samples of the 1st range have a final forging at a lower temperature than the samples of the 2nd range, and in addition this forging was carried out at a temperature offset variably with respect to the real "transus beta" of the alloy. : for example 110 ° C less than this transus for AI, and 40 ° C less for E1.
  • K is a control centered in the analysis recommended by FR 2 144 205 - H is another control without Sn and without Zr, which in this first series gives insufficient mechanical strength and creep resistance.
  • the comparison of the results of the 1st and 2nd ranges shows the importance of a final forging beginning in beta.
  • the comparison of the results of the 2nd and 3rd ranges shows that the increase in the temperature at the start of this final forging above the "transus beta", resulting here in better homogenization during preheating and a greater proportion of the final working in the beta domain, causes a significant increase in mechanical strength, with consequently the possibility of obtaining a more interesting compromise of characteristics after adjustment of the tempering conditions. This also shows the importance of a precise adjustment of the final forging temperature compared to the real "transus beta" of the alloy.
  • alloys D, J and E appear particularly interesting (mechanical resistance and creep resistance observed for the 2nd range), subject to a setting above 550 ° C of the tempering temperature.
  • the first two contain 2, 1 and 1.9% iron, respectively.
  • Each ingot has first sbi a first roughing in the beta press at 1050 ° C of the initial diameter 0 200 mm squared rb 40 mm.
  • the hot wrought blanks obtained were heat treated: solution for 1 h at ("transus beta" of the alloy -30 ° C) followed by air cooling, then returned to 8 h at temperature (Table 8) chosen by a special procedure.
  • This procedure consisted of processing small samples at staggered temperatures, followed by microhardness measurements H " 30 g and plotting the hardness curve as a function of the triat temperature, the temperature chosen for the income then corresponding to the minimum of hardness + 10%.
  • the KB alloy has a catastrophic A% elongation, which shows the importance of finishing the final forging in alpha-beta (needle structure with alpha edges), to have sufficient ductility. This alloy could be of interest if its final forging had been slowed down so as to end in alpha-beta.
  • FB and GB show the best compromises of the various properties including A% and the creep resistance at 400 ° C.
  • FB which is the better of the two, especially in creep (384 h for 0.5% elongation) contains 5.4% AI -4.2% Zr and 1.1% Fe.
  • AB2 present on micrograph segregation ("beta flecks") linked to its 4.1% Cr content, which means that Cr contents at most equal to 2.5% are preferred, without this condition preventing good properties from being obtained (results from FB).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)

Description

L'invention concerne un procédé de fabrication d'une pièce en alliage de titane à hautes caractéristiques, destinée par exemple à des disques de compresseurs pour systèmes de propulsions d'avions, ainsi que les pièces obtenues.The invention relates to a method for manufacturing a titanium alloy part with high characteristics, intended for example for compressor disks for aircraft propulsion systems, as well as the parts obtained.

Le document FR 2 144 205 (GB 1356734) décrit un alliage de titane de composition en poids: AI 3 à 7 - Sn 1 à 3 ― Zr 1 à 4 ― Mo 2 à 6 - Cr 2 à 6 et jusqu'à environ 0,2% de 0,6% de V, 0,5% de Si, complément Ti et impuretés.The document FR 2 144 205 (GB 1356734) describes a titanium alloy of composition by weight: AI 3 to 7 - Sn 1 to 3 - Zr 1 to 4 - Mo 2 to 6 - Cr 2 to 6 and up to approximately 0 , 2% 0.6% V, 0.5% Si, Ti complement and impurities.

Avec de préférence: AI 4,5 à 5,5-Sn 1,5 à 2,5-Zr 1,5 à 2,5-Mo 3,5 à 4,5-Cr3,5 à 4,5 ― et jusqu'à environ 0,12% d'O. Les pièces forgées correspondantes ont été soumises à un double traitement thermique de la solution solide entre 730 et 870°C puis entre 675 et 815°C, suivi d'un "vieillissement thermique" ou revenu entre 595 et 650°C. L'échantillon "4" (AI 5 - Sn 2 - Zr 2 - Mo 4 - Cr 4 - 0 0,08) a les caractéristiques mécaniques suivantes:

  • charge de rupture = 1204 MPa; limite élastique à 0,2% = 1141 MPa; résistance à la propagation des criques = 88 x 34,8/ V1000 = 96,9 MPa. νm; fluage à 425°C sous 525 MPa = allongement de 0,2% en 7,2 h et de 0,5% en 55 h. L'allongement de rupture n'est pas indiqué. En pratique on a constaté que les pièces obtenues à partir de ce type de composition et de ce procédé présentaient souvent des ségrégations importantes, se traduisant par des pertes de ductilité et de résistance à la propagation des criques (ténacité) et par ailleurs leurs résistances au fluage ont été trouvées insuffisantes. On a déterminé notamment que les ségrégations précédentes correspondaient à des zones enrichies en Cr, causant alors une fragilisation, et qu'un abaissement de Cr conduisait à des propriétés mécaniques trop faibles.
Preferably: AI 4.5 to 5.5-Sn 1.5 to 2.5-Zr 1.5 to 2.5-Mo 3.5 to 4.5-Cr3.5 to 4.5 - and up '' at about 0.12% O. The corresponding forgings were subjected to a double heat treatment of the solid solution between 730 and 870 ° C then between 675 and 815 ° C, followed by "thermal aging" or tempering between 595 and 650 ° C. Sample "4" (AI 5 - Sn 2 - Zr 2 - Mo 4 - Cr 4 - 0 0.08) has the following mechanical characteristics:
  • breaking load = 1204 MPa; 0.2% yield strength = 1141 MPa; resistance to crack propagation = 88 x 34.8 / V1000 = 96.9 MPa. νm; creep at 425 ° C under 525 MPa = 0.2% elongation in 7.2 h and 0.5% in 55 h. The elongation at break is not indicated. In practice, it was found that the parts obtained from this type of composition and from this process often exhibited significant segregation, resulting in losses of ductility and of resistance to the propagation of cracks (toughness) and moreover their resistance to creep were found to be insufficient. It has been determined in particular that the preceding segregations corresponded to zones enriched in Cr, thus causing embrittlement, and that a lowering of Cr leads to mechanical properties which are too weak.

La demanderesse a essayé d'obtenir des pièces du même d'alliage ayant une structure régulière et sans ségrégations, et ayant des caractéristiques mécaniques à 20°C éléves (Rm - Rp0,2 - Kic) avec un allongement suffisant ainsi qu'une tenue au fluage à 400°C nettement améliorée.The Applicant has tried to obtain parts of the same alloy having a regular structure and without segregation, and having high mechanical characteristics at 20 ° C (Rm - R p0,2 - K ic ) with sufficient elongation as well as a creep resistance at 400 ° C significantly improved.

Expose de L'inventionExhibition of the invention

Selon l'invention, le problème précédent est résolu au moyen de nouvelles limites de composition et d'un nouveau procédé de transformation, ces limites de composition et les conditions de corroyage à chaud et de traitement thermique étant alors indissociables.According to the invention, the above problem is solved by means of new composition limits and a new transformation process, these composition limits and the conditions of hot working and heat treatment then being inseparable.

Le premier objet de l'invention est un procédé de fabrication d'un alliage de titane comprenant les étapes suivantes:

  • a) on élabore un lingot de composition (% en masse):
    AI 3,8 à 5,4 - Sn 1,5 à 2,5 ― Zr 2,8 à 4,8-Mo 1,5 à 4,5 ― Cr inférieur ou égal à 2,5 et Cr + V = 1,5 à 4,5 - Fe < 2,0 - Si < 0,3 - O < 0,15 - Ti et impuretés: le solde;
  • b) on effectue un corroyage à chaud du lingot, comprenant un corroyage de dégrossissage de ce lingot donnant une ébauche à chaud, suivi d'un corroyage final d'une portion au moins de cette ébauche précédé d'un préchauffage dans le domaine bêta, ce corroyage final donnant une ébauche de la pièce;
  • c) on effectue un traitement thermique de mise en solution solide de l'ébauche de pièce corroyée à chaud, en la maintenant à une température comprise entre ("transus béta" réel - 40°C) et ("transus béta réel - 10°C) puis en la refroidissant à l'ambiante;
  • d) on effectue ensuite sur l'ébauche de la pièce ou sur la pièce obtenue à partir de cette ébauche un traitement thermique de revenu de 4 à 12 h entre 550 et 650°C.
The first object of the invention is a process for manufacturing a titanium alloy comprising the following steps:
  • a) an ingot of composition (% by mass) is produced:
    AI 3.8 to 5.4 - Sn 1.5 to 2.5 - Zr 2.8 to 4.8-Mo 1.5 to 4.5 - Cr less than or equal to 2.5 and Cr + V = 1 , 5 to 4.5 - Fe <2.0 - Si <0.3 - O <0.15 - Ti and impurities: the balance;
  • b) a hot-working of the ingot is carried out, comprising a roughing-up of roughing of this ingot giving a hot draft, followed by a final working of at least a portion of this blank preceded by preheating in the beta domain, this final working giving a rough outline of the part;
  • c) a heat treatment for dissolving the hot-worked part blank is carried out, keeping it at a temperature between (real "transus beta" - 40 ° C.) and ("real beta transus - 10 ° C) then by cooling it to room temperature;
  • d) is then carried out on the blank of the part or on the part obtained from this blank a heat treatment of income from 4 to 12 h between 550 and 650 ° C.

En ce qui concerne l'étape b) l'expression "corroyage à chaud" (= "hot working" = "Warmverformung") concerne tout(s) opération(s) de déformation à chaud, consistant en ou comprenant par exemple du forgeage, du laminage, du matriçage, ou du filage (extrusion).With regard to step b) the expression "hot working" (= "hot working" = "Warmverformung") relates to any hot deformation operation (s), consisting of or comprising forging for example , rolling, stamping, or spinning (extrusion).

Les limites des teneurs en éléments d'addition ont été ajustées, en fonction des observations effectuées, de façon à fournir les caractéristiques mécaniques élevées désirées, tout en évitant des ségrégations éventuelles sur les pièces transformées. Ces intervalles de teneurs sont commentés ci-après, avec indication d'intervalles préférentiels qui peuvent être utilisés individuellement ou en combinaison quelconque. Ces intervalles préférentiels correspondent à une augmentation des caractéristiques minimalses et dans le cas du fer et de loxygène à une sécurité accrue vis à vis des éventuelles fragilités ou manque de ductilité.The limits of the contents of additives have been adjusted, according to the observations made, so as to provide the desired high mechanical characteristics, while avoiding possible segregation on the transformed parts. These content ranges are discussed below, with an indication of preferred ranges which can be used individually or in any combination. These preferential intervals correspond to an increase in minimum characteristics and in the case of iron and oxygen to increased security with respect to possible brittleness or lack of ductility.

Les éléments alphagènes AI et Sn donnent respectivement, en combinaison avec les autres éléments d'addition, des duretés insuffisantes lorsqu'ils sont en teneurs plus faibles que les valeurs minimales choisies, et des précipitations aléatoires ou fréquentes lorsqu'ils sont en teneurs plus fortes que les valeurs maximales fixées; ils ont des teneurs préférentiellement comprises entre 4,5 et 5,4% pour AI, et entre 1,8 et 2,5% pour Sn.The alphagenic elements AI and Sn respectively give, in combination with the other addition elements, insufficient hardnesses when they are in lower contents than the minimum values chosen, and random or frequent precipitations when they are in higher contents than the maximum values set; they preferably have contents of between 4.5 and 5.4% for AI, and between 1.8 and 2.5% for Sn.

Zr a un rôle durcisseur important, et un effet fragilisant au-dessus de 5%, la teneur en Zr est préférentiellement comprise entre 3,5 et 4,8% et de préférence encore entre 4,1 et 4,8%. Les trois éléments AI, Sn et Zr n'entraînent pas ensemble de fragilité, et on peut remarquer que la somme:

Figure imgb0001
prise comme référencce dans FR 2 144 205 via à vis de la tendance du comosé Ti3AI à se former, est égale à 7 pour leurs teneurs maximales.Zr has an important hardening role, and an embrittling effect above 5%, the Zr content is preferably between 3.5 and 4.8% and more preferably between 4.1 and 4.8%. The three elements AI, Sn and Zr do not entail fragility together, and it can be noted that the sum:
Figure imgb0001
taken as reference in FR 2 144 205 via with respect to the tendency of the comosed Ti 3 AI to form, is equal to 7 for their maximum contents.

Mo, légèrement durcissant, a un effet important d'abaissement de la température de transformation de la structure alpha-béta en une structure entièrement béta, appelée ci-après "transus béta". L'abaissement du "transus béta", par exemple d'environ 40°C grâce à 4% Mo, a une influence sur le corroyage à chaud au voisinage de cette température. Mo est de préférence compris entre 2,0 et 4,5%. V a sensiblement le même rôle que Mo et est durcissant béta par précipitation comme Cr, il est ajouté de façon optionnelle, (Cr + V) étant maintenu entre 1,5 et 4,5%. Cr est limité à 2,5% maximum vis à vis des risques se ségrégation qui, au niveau de Cr = 3,5 à 4,5% préconisé par FR 2 144 205 (par exemple ségrégations appelées "beta flecks" enrichies en Cr + Zr), ont des effets très défavorables sur la tenur en service, et il est maintenu de préférence au-dessus de 1,5% au bénéfice de la dureté.Mo, slightly hardening, has a significant effect of lowering the temperature of transformation of the alpha-beta structure into a fully beta structure, hereinafter called "transus beta". The lowering of the "transus beta", for example by about 40 ° C thanks to 4% Mo, has an influence on the hot working in the vicinity of this temperature. Mo is preferably between 2.0 and 4.5%. V has substantially the same role as Mo and is hardening beta by precipitation like Cr, it is optionally added, (Cr + V) being maintained between 1.5 and 4.5%. Cr is limited to 2.5% maximum with regard to segregation risks which, at the level of Cr = 3.5 to 4.5% recommended by FR 2 144 205 (for example segregations called "beta flecks" enriched in Cr + Zr), have very unfavorable effects on the tenur in service, and it is preferably maintained above 1.5% in favor of hardness.

Fe entraîne un dircissement par précipitation de composés intermétalliques, il est connu comme abaissant le tenue au fluage à chaud à haute température (environ 550 à 600°C) à cause de ces précipités qui entraînent ainsi une certaine fragilité. La teneur en Fe est maintenue dans tous les cas en-dessous de 2%, et est de préférence ajustée entre 0,7 et 1,5% car elle entraîne alors, de façon surprenant, une tenue au fluage à 400°C très améliorée, ce qui est intéressant par exemple pour les pièces utilisées dans les étages "moyenne température" (typiquement 350 à moins de 500°C) des compresseurs aéronautiques.Fe causes a dircitation by precipitation of intermetallic compounds, it is known as lowering the resistance to hot creep at high temperature (about 550 to 600 ° C) because of these precipitates which thus cause a certain brittleness. The Fe content is maintained in all cases below 2%, and is preferably adjusted between 0.7 and 1.5% because it then surprisingly results in a very improved creep resistance at 400 ° C. , which is interesting for example for the parts used in the "medium temperature" stages (typically 350 to less than 500 ° C.) of aeronautical compressors.

L'augmentation de la teneur en 0 augmente comme il est connu la résistance mécanique et diminue légèrement la ténacité (Kic), elle est de ce fait limitée à un maximum de 0,15% et de préférence maintenue inférieure ou égale à 0,13%. Une faible addition de Si améliore la tenue au fluage au niveau de 50G-550DC, on la limite à 0,3% maximum dans le cadre de l'obtention d'une ductilité suffisante.The increase in the 0 content increases, as is known, the mechanical resistance and slightly decreases the toughness (K ic ), it is therefore limited to a maximum of 0.15% and preferably maintained less than or equal to 0, 13%. A small addition of Si improves the creep resistance at 50 G -550 D C, it is limited to 0.3% maximum in the context of obtaining sufficient ductility.

On a trouvé que des propriétés nettement supérieures étaient obtenues en terminant le corroyage à chaud par un corroyage final, par laminage ou le plus souvent par forgeage ou forgeage matriçage, précédé d'un préchauffage dans le domaine béta, c'est-à-dire au moins commencé dans le domaine béta.It has been found that significantly superior properties are obtained by terminating the hot working by a final working, by rolling or more often by forging or forging forging, preceded by preheating in the beta domain, that is to say at least started in beta.

Le rapport de corroyage "S/s" (section initiale/section finale) de ce corroyage final est de préférence supérieur ou égal à 2.The "S / s" wrought ratio (initial section / final section) of this final wrought is preferably greater than or equal to 2.

On a trouvé également, et cela va à l'encontre des habituds, qu'il était préférable de connaître avec une bonne précision, par exemple meilleure que + ou -10 à 15°C, la température de "transus béta" réelle de l'alliage corroyé à chaud. Pour cela, on prélève typiquement des échantillons dans l'ébauche à chaud obtenue par le corroyage de dégrossissage (forgeage ou laminage) et on les porte et maintient à des température différentes échelonnées, puis on les trempe à l'eau et on en examine les structures micrographiquement. Le "transus béta", apprécié éventuellement par intrapolation, est la température à laquelle toute trace de phase alpha disparaît. Le "transus beta" réel propre à l'alliage corroyé à chaud, déterminé ainsi expérimentalement, peut être très différent de la température de transus estimée par un calcul (première série d'essais).We also found, and this goes against the usual, that it was preferable to know with good precision, for example better than + or -10 at 15 ° C, the actual "transus beta" temperature of the hot-wrought alloy. For this, samples are typically taken from the hot preform obtained by roughing up roughing (forging or rolling) and they are brought to and maintained at different staggered temperatures, then they are quenched with water and their structures micrographically. The "transus beta", possibly appreciated by intrapolation, is the temperature at which all traces of the alpha phase disappear. The actual "beta transus" specific to the hot-wrought alloy, thus determined experimentally, can be very different from the transus temperature estimated by a calculation (first series of tests).

Les conséquences de cette connaissance du "transus béta" réel, désignée ainsi ou simplement par "transus béta", sur le choix de la température de corroyage final béta (étape b)) puis sur l'adjustement de la température du traitement de mise en solution solide de l'ébauche de pièce corroyée à chaud (étape d)) sont imporantes: il est en effet fortement préférable pour l'obtention de la structure et des propriétés désirées d'effectuer ce traitement de mise en solution dans le haut domaine de températures alpha-béta, juste en-dessous du "transus béta" déterminé expérimentalement ou tel qu'il pourrait être déterminé par exemple comme ci-dessus ou encore par essais de forgeage successifs suivis de trempe, et d'examens des structures obtenues. Plus précisément, ce traitement de mise en solution est habituellement effectué à une température choisie entre ("transus béta" -40°C) et ("transus bêta -10°C) avec un maintien à température de durée choisie habituellement comprise entre 20 min et 2 h et le plus souvant entre 30 min et 1 h 30 min et cette mise en solution est suivie d'un refroidissement à l'ambiante à l'eau ou plus habituellement à l'air. On fait ensuite un revenu à température choisie entre 550 et 650°C, de façon à améliorer l'allongement de rupture A % et la résistance au fluage à 400°C tout en conservant une résistance mécanique et une ténacité suffisants (Rm - Rpo,2 et K1C).The consequences of this knowledge of the real "transus beta", designated thus or simply by "transus beta", on the choice of the final beta wrought temperature (step b)) then on the adjustment of the temperature of the setting treatment. solid solution of the roughly hot-worked part blank (step d)) are important: it is indeed highly preferable for obtaining the desired structure and properties to carry out this solution treatment in the high range of alpha-beta temperatures, just below the "transus beta" determined experimentally or as it could be determined for example as above or by successive forging tests followed by quenching, and examinations of the structures obtained. More specifically, this solution treatment is usually carried out at a temperature chosen between ("transus beta" -40 ° C) and ("transus beta -10 ° C) with maintenance at a temperature of chosen duration usually between 20 min and 2 h and most often between 30 min and 1 h 30 min and this dissolving is followed by ambient cooling with water or more usually with air. between 550 and 650 ° C, so as to improve the elongation at break A% and the creep resistance at 400 ° C while retaining sufficient mechanical strength and toughness (R m - Rp o , 2 and K 1C ).

Des résultants supérieurs, surtout en ce qui concerne l'allongement A % et la résistance au fluage à 400°C, ont été obtenus de façon suprenante en organisant le corroyage à chaud final, si nécessaire en espaçant davantage ses passes de déformations successives, de façon qu'il commence en béta à température supérieure d'au moins 10°C de ce "transus béta" et se termine en alpha-béta, tout ce travail se faisant à température proche à plus ou moins 60°C dudit "transus béta". En pratique, on préfère commencer le corroyage à température comprise entre ("transus béta" +20°C) et ("transus béta" +40°C), et le terminer à température inférieure à "transus béta" et au moins égale à ("transus béta" -50°C) ou encore mieux à température comprise entre ("transus bêta" -10°C) et ("transus béta" -40°C). On obtient ainsi de façon reproductible une structure fine aiguillée du type alpha béta, correspondant à un état d'homogénéité et de fines précipitations particulier et contribuant à l'obtention de propriétés remarquables.Superior results, especially with regard to the elongation A% and the creep resistance at 400 ° C, were surprisingly obtained by organizing the final hot working, if necessary by further spacing its successive deformation passes, by so that it begins in beta at a temperature at least 10 ° C higher than this "transus beta" and ends in alpha-beta, all this work being done at a temperature close to plus or minus 60 ° C of said "transus beta" ". In practice, it is preferable to start the working at a temperature between ("transus beta" + 20 ° C) and ("transus beta" + 40 ° C), and finish it at a temperature below "transus beta" and at least equal to ("transus beta" -50 ° C) or even better at a temperature between ("transus beta" -10 ° C) and ("transus beta" -40 ° C). A fine needle-like structure of the alpha beta type is thus reproducibly obtained, corresponding to a particular state of homogeneity and fine precipitation and contributing to obtaining remarkable properties.

Il est préférable d'effectuer au moins la fin du corroyage de dégrossissage à chaud du lingot, avant le corroyage à chaid final qui vient d'être décrit, en alpha-bèta entre ("transus béta" -100°C) et ("transus béta" -20°C). On obtient ainsi un meilleur affinage préalable de la microstructure, avec un effet favorable sur la quantité des pièces obtenues en final. La température de fin du corroyage à chaud qui est considérée ici est la température à coeur du produit, appréciée par exemple par étude préalable des microstructures obtenues en faisant varier les conditions de corroyage à chaud final.It is preferable to carry out at least the end of the hot roughing of the ingot, before the final heat treatment which has just been described, in alpha-beta between ("transus beta" -100 ° C.) and (" transus beta "-20 ° C). A better prior refining of the microstructure is thus obtained, with a favorable effect on the quantity of parts obtained in the end. The temperature at the end of the hot working which is considered here is the core temperature of the product, assessed for example by prior study of the microstructures obtained by varying the conditions of final hot working.

Enfin, dans le cas où le corroyage à chaud final est effectué de la façon préférée, les durées et températures de revenu sont typiquement choisies entre 6 et 10 h et entre 570 et 640°C.Finally, in the case where the final hot working is carried out in the preferred manner, the durations and tempering temperatures are typically chosen between 6 and 10 h and between 570 and 640 ° C.

L'invention a pour deuxième objet le procédé de transformation d'une pièce en alliage de titane, typiquement pour emplois à température ne dépassant pas 500°C, correspondant aux conditions préférentielles ci-dessus décrites, avec Fe = 0,7 à 1,5%, Zr = 3,5 à 4,8% et de préférence 4,1 à 4,8%, la fin au moins du corroyage de dégrossissage comprenant un forgeage à température comprise entre ("transus béta" -100°C) et ("transus béta" -20°C), ce forgeage produisant un corroyage d'au moins 1,5 et le revenu étant typiquement de 6 h à 10 h entre 580 et 630°C. L'invention a aussi pour troisième objet les pièces remarquables obtenues avec le procédé précédente, deuxième objet de l'invention, avec Cr = 3,5 à 4,8% et les propriétés mécaniques suivantes:A second object of the invention is the process for transforming a part into a titanium alloy, typically for use at temperatures not exceeding 500 ° C., corresponding to the preferential conditions described above, with Fe = 0.7 to 1, 5%, Zr = 3.5 to 4.8% and preferably 4.1 to 4.8%, at least the end of the roughing-up of roughing comprising forging at a temperature between ("beta transus" -100 ° C) and ("transus beta" -20 ° C), this forging producing a wrought of at least 1.5 and the income being typically from 6 h to 10 h between 580 and 630 ° C. A third object of the invention is also the remarkable parts obtained with the preceding process, the second object of the invention, with Cr = 3.5 to 4.8% and the following mechanical properties:

Rm ≥ 1200 MPa - Rp0,2 ≥ 1100 MPa ― A % ≥ 5 ― ténacité (= résistance à la propagation des criques) Klc à 20°C 5: 45 MPa. Vm - fluage à 400°C sous 600 MPa: 0,5% en plus de 200 h. Les avantages du procédé de l'invention sont les suivants:

  • obention de façon reproductible d'une structure fine aiguillée, sans ségrégations d'aucune sorte;
  • élimination des risques de fragilité;
  • obtention simultanée de toutes les caractéristiques souhaitées: structure et caractéristiques mécaniques précédentes.
Rm ≥ 1200 MPa - R p0.2 ≥ 1100 MPa - A% ≥ 5 - toughness (= resistance to crack propagation) K lc at 20 ° C 5 : 45 MPa. Vm - creep at 400 ° C under 600 MPa: 0.5% in more than 200 h. The advantages of the process of the invention are as follows:
  • reproducibly obtaining a fine needle structure, without segregation of any kind;
  • elimination of the risks of frailty;
  • simultaneous obtaining of all the desired characteristics: structure and previous mechanical characteristics.

EssaisEssays Première série d'essais (Tableaux 1 à 6)First series of tests (Tables 1 to 6)

On a élaboré six lingots A-D-E-H-J-K dans un four à électrode consommable, par double fusion, les compositions obtenues sont données par le Tableau 1.Six ingots A-D-E-H-J-K were produced in a consumable electrode oven, by double fusion, the compositions obtained are given in Table 1.

Chaque lingot a subi unpremier dégrossissage en béta à 1050°/1100°C du diamètre initial 0 200 mm au carré

Figure imgb0002
80 mm. Puis, pour une portion de chacun, un deuxième dégrossissage d'affinage de la structure en alpha-béta par forgeage en méplat de 70 x 30 mm, à température du préchauffage) égale à 50°C de moins que la température de transus estimée pour chacun des six alliages (Tableau 2). Cette estimation était faite par une règle d'approche interne tenant compte des teneurs en éléments d'addition.Each ingot has undergone a first roughing in beta at 1050 ° / 1100 ° C of the initial diameter 0 200 mm squared
Figure imgb0002
80 mm. Then, for a portion of each, a second rough refinement of the structure in alpha-beta by flat forging of 70 x 30 mm, at preheating temperature) equal to 50 ° C less than the estimated transus temperature for each of the six alloys (Table 2). This estimate was made by an internal approach rule taking into account the contents of addition elements.

On a ensuite soumis les échantillons prélevés à ce stade à des chauffages de 30 min à des températures différentes échelonnées de 10 en 10°C, suivis chacun d'une trempe à l'eau, et on en a examiné les structures micrographiques. On a ainsi déterminé pour chaque alliage corroyé à chaud la température de disparition de la phase alpha ou "transus béta" réel (Tableau 2).The samples taken at this stage were then subjected to 30 min heatings at different temperatures staggered by 10 at 10 ° C, each followed by water quenching, and the micrographic structures were examined. The temperature of disappearance of the real alpha phase or "transus beta" was thus determined for each hot-worked alloy (Table 2).

La température de deuxième dégrossissage en alpha-béta allait en fait selon l'alliage de ("transus béta" -170°C) (repère H) à ("transus béta" -40°C) (repère E) ou ("transus béta" -60°C) (repère K).The temperature of second roughing in alpha-beta actually went according to the alloy of ("transus beta" -170 ° C) (mark H) to ("transus beta" -40 ° C) (mark E) or ("transus beta "-60 ° C) (item K).

On a préparé alors trois variantes correspondant à des gammes différentes de transformation et traitement thermique et on en mésuré les caractéristiques mécaniques, selon les directions longitudinale (L) et éventuellement transversale (T):

  • 1° gamme (Tableau 3): après le forgeage alpha-béta précédent constituant alors le forgeage final, mise en solution 1 h à ("transus béta" -50°C) (Tableau 2) et mesure des caractéristiques mécaniques à l'ambiante dans l'état obtenu; essais de fluage en traction sous 600 MPa à 400°C après revenu complémentaire de 8 h à température indiquée pour chaque alliage dans le Tableau 2.
  • 2° gamme (Tableau 4): on a repris des portions des carrés de 80 mm, sauf le carré H, issus de premier dégrossissage en béta, et on leur a appliqué un deuxième dégrossissage en alpha-béta en carré
    Figure imgb0003
    65 mm, à témperature ajustée à 50°C de moins que le "transus béta" réel déterminé précédemment (Tableau 2).
Three variants were then prepared corresponding to different ranges of transformation and heat treatment and the mechanical characteristics were measured, along the longitudinal (L) and possibly transverse (T) directions:
  • 1st range (Table 3): after the previous alpha-beta forging then constituting the final forging, solution for 1 hour at ("beta transus" -50 ° C) (Table 2) and measurement of the mechanical characteristics at ambient in the state obtained; creep tests in tension under 600 MPa at 400 ° C after additional tempering of 8 h at temperature indicated for each alloy in Table 2.
  • 2nd range (Table 4): we took portions of the 80 mm squares, except square H, from the first roughing in beta, and we applied a second roughing in alpha-beta to the square
    Figure imgb0003
    65 mm, with a temperature adjusted to 50 ° C less than the actual "transus beta" determined previously (Table 2).

Puis on a effectué sur ce carré un forgeage final en plat de 70 x 30 mm en partant d'un état préchauffé 30 min à ("transus béta" +10°C) et en terminant en alpha-béta, des structures aiguillées fines alpha-béta étant obtenues. On a ensuite soumis les pièces à une mise en solution 1 h à "transus béta" (Tableau 2) réel -30°C et un revenu de 8 h soit à 550°C (A2), soit à 500°C (D2-E2-J2-K2). Les caractéristiques mécaniques à 20°C et la résistance au fluage à 400°C sont mesurées dans cet état revenu.Then, a final forging of a 70 x 30 mm plate was made on this square, starting from a preheated state for 30 min at ("transus beta" + 10 ° C) and ending in alpha-beta, fine needle point structures -beta being obtained. The parts were then subjected to a solution for 1 h at real "beta transus" (Table 2) real -30 ° C and an income of 8 h either at 550 ° C (A2), or at 500 ° C (D2- E2-J2-K2). The mechanical characteristics at 20 ° C and the creep resistance at 400 ° C are measured in this tempered state.

3° gamme (Tableau 5): on a appliqué à une portion des plats de 70 x 30 mm obtenus dans la deuxième gamme un forgeae final supplèmentaire à 60 x 30 mm en partant de ("transus béta" +30°C) et en terminant aussi en alpha-béta (on a observé micrographiquement des structures aiguillées avec liserés de phase alpha).3rd range (Table 5): a portion of the dishes of 70 x 30 mm obtained in the second range was applied an additional final forgeae at 60 x 30 mm starting from ("transus beta" + 30 ° C) and also ending in alpha-beta (needle structures with alpha phase lines were observed micrographically).

On a ensuite effectué, pour chacun ds aliages, les mêmes traitements thermiques (mise en solution puis revenu) que dans la deuxième gamme.Then, for each of the alloys, the same heat treatments (dissolution then tempering) were carried out as in the second range.

L'étude de ces résultats entraîne les commentaires suivants:

  • les classements des alliages respectivement en résistance mécanique et en tenue au fluage en traction à 400°C sont les suivants, pour les 1° et 2° gammes:
    Figure imgb0004
The study of these results leads to the following comments:
  • the classifications of the alloys respectively in mechanical resistance and creep resistance in tension at 400 ° C are the following, for the 1 ° and 2 ° ranges:
    Figure imgb0004

Ces classements sont très différents pour les deux gammes. Les échantillons de la 1° gamme ont un forgeage final à plus basse température que les échantillons de la 2° gamme, et en outre ce forgeage a été effectué à température décalée de façon vàriable par rapport au "transus béta" réel de l'alliage: par exemple 110°C de moins que ce transus pour AI, et 40°C de moins pour E1.These classifications are very different for the two ranges. The samples of the 1st range have a final forging at a lower temperature than the samples of the 2nd range, and in addition this forging was carried out at a temperature offset variably with respect to the real "transus beta" of the alloy. : for example 110 ° C less than this transus for AI, and 40 ° C less for E1.

K est un témoin centré dans l'analyse préconisée par FR 2 144 205 - H est un autre témoin sans Sn et sans Zr, qui donne dans cette première série une résistance mécanique et une tenue au fluage insuffisantes.K is a control centered in the analysis recommended by FR 2 144 205 - H is another control without Sn and without Zr, which in this first series gives insufficient mechanical strength and creep resistance.

la comparaison des résultats des 1° et 2° gammes montre l'importance d'un forgeage final débutant en béta. La comparaison des résultats des 2° et 3° gammes montre que l'accroissement de la température de début de ce forgeage final au-dessus du "transus béta", entraînant ici une meilleure homogénéisation au préchauffage et une proportion plus grande du corroyage final dans le domaine béta, cause une augmentation notable de la résistance mécanique, avec par conséquent la possibilité d'obtenir un compromis de caractéristiques plus intéressant après ajustement des conditions de revenu. Ceci montre aussi l'importance d'un réglage précis de la température de forgeage final par rapport au "transus béta" réel de l'alliage.the comparison of the results of the 1st and 2nd ranges shows the importance of a final forging beginning in beta. The comparison of the results of the 2nd and 3rd ranges shows that the increase in the temperature at the start of this final forging above the "transus beta", resulting here in better homogenization during preheating and a greater proportion of the final working in the beta domain, causes a significant increase in mechanical strength, with consequently the possibility of obtaining a more interesting compromise of characteristics after adjustment of the tempering conditions. This also shows the importance of a precise adjustment of the final forging temperature compared to the real "transus beta" of the alloy.

les alliages D, J et E paraissent particulièrement intéressants (résistance mécanique et tenue au fluage observées pour la 2° gamme), sous réserve d'un réglage au-dessus de 550°C de la température de revenu. Les deux premiers contiennent respectivement 2, 1 et 1,9% de fer.alloys D, J and E appear particularly interesting (mechanical resistance and creep resistance observed for the 2nd range), subject to a setting above 550 ° C of the tempering temperature. The first two contain 2, 1 and 1.9% iron, respectively.

Deuxième série d'essais (Tableaux 7 à 9)Second series of tests (Tables 7 to 9)

On a élaboré de nouveaux lingots, avec des teneurs en AI proches de 5% et des teneurs en Zr plus élevées que dans la première série d'essais. Les compositions des cinq lingots choisis dans cet exemple sont données par le Tableau 7. Seul un lingot repéré FB contient du fer, à la teneur de 1,1%.New ingots have been developed, with AI contents close to 5% and higher Zr contents than in the first series of tests. The compositions of the five ingots chosen in this example are given in Table 7. Only one ingot marked FB contains iron, with a content of 1.1%.

Chaque lingot a sbi d'abord un premier dégrossissage à la presse en béta à 1050°C du diamètre initial 0 200 mm au carré rb 40 mm.Each ingot has first sbi a first roughing in the beta press at 1050 ° C of the initial diameter 0 200 mm squared rb 40 mm.

On a déterminé les "transus béta" réels des cinqu alliages à ce stade, selon la méthode décrite pour la lère série d'essais.The actual "transus beta" of the fifty alloys were determined at this stage, according to the method described for the first series of tests.

Les carrés de 140 mm ont ensuite été forgés en carrés de 80 mm à patir d'un préchauffage à ("transus béta" -50°C), puis repris en forgeage final en plat de 70 x 30 mm en partant de ("transus béta" réel +30°C).The 140 mm squares were then forged into 80 mm squares from preheating to ("beta transus" -50 ° C), then resumed in final forging in a 70 x 30 mm dish starting from ("transus beta "real + 30 ° C).

D'après les structures obtenues, la fin de ce forgeage était en alpha-béta, à plus de ("transus béta" -80°C), pour tous les alliages sauf pour KB. On a observé en effet en micrographie de KB une structure tout béta, avec contours des grains béta non modifiés.According to the structures obtained, the end of this forging was in alpha-beta, at more than ("transus beta" -80 ° C), for all the alloys except for KB. A fully beta structure was observed in KB micrography, with contours of the unmodified beta grains.

Après le forgeage final, les ébauches corroyées à chaud obtenues ont été traitées thermiquement: mise en solution 1 h à ("transus béta" de l'alliage -30°C) suivie d'un refroidissement à l'air, puis revenu de 8 h à température (Tableau 8) choisie par une procédure spéciale.After the final forging, the hot wrought blanks obtained were heat treated: solution for 1 h at ("transus beta" of the alloy -30 ° C) followed by air cooling, then returned to 8 h at temperature (Table 8) chosen by a special procedure.

Cette procédure consistait en des traitements de petits échantillons à des températures échelonnées, suivis de mesures de microdureté H" 30 g et du tracé de la courbe de dureté en fonction de la température de triatement, la température choisie pour le revenu correspondant alors au minimum de dureté +10%.This procedure consisted of processing small samples at staggered temperatures, followed by microhardness measurements H " 30 g and plotting the hardness curve as a function of the triat temperature, the temperature chosen for the income then corresponding to the minimum of hardness + 10%.

Les températures de forgeage final et des traitements thermiques sont rassemblées dans le Tableau 8. Les résultats des essais mécaniques figurent dans le Tableau 9.The temperatures of final forging and heat treatments are collated in Table 8. The results of the mechanical tests appear in Table 9.

L'alliage KB a un allongement A % catastrophique, ce qui montre l'importance de terminer le forgeage final en alpha-béta (structure aiguillée avec liserés alpha), pour avoir une ductilité suffisante. Cet alliage pourrait présenter de l'intérêt si son forgeage final avait été ralenti de façon à se terminer en alpha-béta.The KB alloy has a catastrophic A% elongation, which shows the importance of finishing the final forging in alpha-beta (needle structure with alpha edges), to have sufficient ductility. This alloy could be of interest if its final forging had been slowed down so as to end in alpha-beta.

Parmi les échantillons obtenus, FB et GB présentent les meilleurs compromis des diverses propriétés y compris A % et la résistance au fluage à 400°C. FB qui est le meilleur des deux, spécialement en fluage (384 h pour 0,5% d'allongement) contient 5,4% d'AI -4,2% de Zr et 1,1% de Fe. AB2 présente sur micrographie des ségrégations ("béta flecks") liées à sa teneur de 4,1% en Cr, ce qui fait préférer des teneurs en Cr au plus égales à 2,5%, sans que cette condition empêche d'obtenir de bonnes propriétés (résultats de FB).

Figure imgb0005
Figure imgb0006
Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
Figure imgb0011
Figure imgb0012
Among the samples obtained, FB and GB show the best compromises of the various properties including A% and the creep resistance at 400 ° C. FB which is the better of the two, especially in creep (384 h for 0.5% elongation) contains 5.4% AI -4.2% Zr and 1.1% Fe. AB2 present on micrograph segregation ("beta flecks") linked to its 4.1% Cr content, which means that Cr contents at most equal to 2.5% are preferred, without this condition preventing good properties from being obtained (results from FB).
Figure imgb0005
Figure imgb0006
Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
Figure imgb0011
Figure imgb0012

Claims (16)

1. Process for the production of a titanium alloy part involving the following stages:
a) the production of an ingot of composition (% by weight): AI 3.8 to 5.4, Sn 1.5 to 2.5, Zr 2.8 to 4.8, Mo 1.5 to 4.5, Cr equal to or below 2.5 and Cr + V = 1.5 to 4.5, Fe < 2.0, Si < 0.3, 0 < 0.15, Ti and impurities constituting the residue;
b) the ingot undergoes hot working, involving a rough-shaping working of said ingot giving a hot blank, followed by the final working of at least a portion of said blank preceded by preheating in the beta range, said final working giving a blank of the part;
c) the hot worked part blank is solid solution heat treated, whilst maintaining it at a temperature between (real "beta transus" -40°C) and (real "beta transus" -10°C), followed by cooling it to ambient temperature;
d) an ageing heat treatment of 4 to 12 h at between 550 and 650°C is then performed on the blank of the part or on the part obtained from said blank.
2. Process according to claim 1, characterized in that, at the latest before stage c), the real "beta transus" of the hot worked alloy is experimentally determined on the basis of samples taken during or after hot working.
3. Process according to claim 1, characterized in that AI = 4.5 to 5.4, Sn = 1.8 to 2.5 and Zr = 3.5 to 4.8.
4. Process according to claim 3, in which Zr = 4.1 to 4.8.
5. Process according to any one of the claims 1, 3 or 4, characterized in that Mo = 2.0 to 4.5 and Cr = 1.5 to 2.5.
6. Process according to claim 1, characterized in that Fe < 1.5.
7. Process according to claim 1, characterized in that 0 = 0.07 to 0.13.
8. Process according to any one of the claims 1 and 3 to 7, characterized in that Fe = 0.7 to 1.5.
9. Process according to any one of the claims 1 to 8, characterized in that the final hot working of the blank or blank portion is started by using a temperature higher by at least 10°C than the real "beta transus" and is ended at a temperature below the "beta transus", all said working taking place at ±60°C of said "beta transus".
10. Process according to claim 9, characterized in that the final hot working of the blank or blank portion is carried out by starting at a temperature between the real "beta transus" +20°C and the real "beta transus" +40°C and is ended at a temperature below said "beta transus" and at least equal to the real "beta transus" -50°C.
11. Process according to claim 10, characterized in that the final hot working is carried out at a temperature between the real "beta transus" -10°C and the real "beta transus" -40°C.
12. Process according to any one of the claims 1 to 11, characterized in that at least the end of the rough-shaping of the ingot takes place at a temperature between the real "beta transus" -100°C and the real "beta transus" -20°C.
13. Process according to claim 11, characterized in that ageing is performed for between 6 and 10 hours at between 570 and 640°C on the blank of the part or on the part obtained from said blank.
14. Process for the production of a titanium alloy part comprising the following stages:
a1) an ingot of the following composition is produced (% by weight):
Al 4.5 to 5.4, Sn 1.8 to 2.5, Zr 3.5 to 4.8, Mo 2.0 to 4.5, Cr 1.5 to 2.5 and Cr + V = 1.5 to 4.5, Fe 0.7 to 1.5,0 0.07 to 0.13 and Ti and impurities constitute the residue;
b1) a rough-shaping of the ingot takes place giving a final hot blank, whereof the end at least comprises forging at a temperature between the real "beta transus" -100°C and the real "beta transus" -20°C, the working ratio of said forging being at a minimum 1.5;
c1) said real "beta transus" temperature of the hot worked alloy is experimentally determined on the basis of samples taken from the forged hot blank;
d1) a final working of said blank takes place by forging and/or die forging, starting at a temperature between the real "beta transus" +20°C and the real "beta transus" +40°C and is ended at a temperature between the real "beta transus" -40°C and the real "beta transus" -10°C;
e1) the blank of the thus obtained hot worked part is solid solution heat treated, the temperature being maintained at between the real "beta transus" -40°C and the real "beta transus" -10°C and then cooling to ambient temperature takes place;
f1) an ageing heat treatment for 6 to 10 hours at a temperature between 580 and 630°C is then performed on the blank of the part or on the part obtained from said blank.
15. Process according to claim 14, characterized in that Zr = 4.1 to 4.8.
16. Titanium alloy part having the mechanical characteristics and structure given below:
A) fine and regular alpha-beta structure;
B) composition (% by weight): AI 4.5 to 5.4, Sn 1.8 to 2.5, Zr 3.5 to 4.8, Mo 2.0 to 4.5, Cr 1.5 to 2.5, Cr + V 1.5 to 4.5, Fe 0.7 to 1.5, 0 0.07 to 0.13, the remainder being Ti and impurities,
C) Rm ≥ 1200 MPa
Rp0,2 ≥ 1000 MPa
A % ≥ 5
Klc at 20°C ≥ 45 MPa·√m
creep at 400°C under 600 MPa: 0.5% in more than 200 h.
EP88420121A 1987-04-16 1988-04-13 Process for making a titanium alloy component, and component obtained Expired - Lifetime EP0287486B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8705786 1987-04-16
FR8705786A FR2614040B1 (en) 1987-04-16 1987-04-16 PROCESS FOR THE MANUFACTURE OF A PART IN A TITANIUM ALLOY AND A PART OBTAINED

Publications (2)

Publication Number Publication Date
EP0287486A1 EP0287486A1 (en) 1988-10-19
EP0287486B1 true EP0287486B1 (en) 1991-02-06

Family

ID=9350427

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88420121A Expired - Lifetime EP0287486B1 (en) 1987-04-16 1988-04-13 Process for making a titanium alloy component, and component obtained

Country Status (11)

Country Link
US (2) US4854977A (en)
EP (1) EP0287486B1 (en)
JP (1) JPH07116577B2 (en)
BR (1) BR8801837A (en)
CA (1) CA1314792C (en)
DD (1) DD281422A5 (en)
DE (1) DE3861736D1 (en)
ES (1) ES2020341B3 (en)
FR (1) FR2614040B1 (en)
IL (1) IL86029A (en)
ZA (1) ZA882635B (en)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118363A (en) * 1988-06-07 1992-06-02 Aluminum Company Of America Processing for high performance TI-6A1-4V forgings
US5173134A (en) * 1988-12-14 1992-12-22 Aluminum Company Of America Processing alpha-beta titanium alloys by beta as well as alpha plus beta forging
US4975125A (en) * 1988-12-14 1990-12-04 Aluminum Company Of America Titanium alpha-beta alloy fabricated material and process for preparation
US5171375A (en) * 1989-09-08 1992-12-15 Seiko Instruments Inc. Treatment of titanium alloy article to a mirror finish
US5026520A (en) * 1989-10-23 1991-06-25 Cooper Industries, Inc. Fine grain titanium forgings and a method for their production
US5032189A (en) * 1990-03-26 1991-07-16 The United States Of America As Represented By The Secretary Of The Air Force Method for refining the microstructure of beta processed ingot metallurgy titanium alloy articles
JPH0436445A (en) * 1990-05-31 1992-02-06 Sumitomo Metal Ind Ltd Production of corrosion resisting seamless titanium alloy tube
US5039356A (en) * 1990-08-24 1991-08-13 The United States Of America As Represented By The Secretary Of The Air Force Method to produce fatigue resistant axisymmetric titanium alloy components
FR2676460B1 (en) * 1991-05-14 1993-07-23 Cezus Co Europ Zirconium PROCESS FOR THE MANUFACTURE OF A TITANIUM ALLOY PIECE INCLUDING A MODIFIED HOT CORROYING AND A PIECE OBTAINED.
US5219521A (en) * 1991-07-29 1993-06-15 Titanium Metals Corporation Alpha-beta titanium-base alloy and method for processing thereof
US5160554A (en) * 1991-08-27 1992-11-03 Titanium Metals Corporation Alpha-beta titanium-base alloy and fastener made therefrom
US5226981A (en) * 1992-01-28 1993-07-13 Sandvik Special Metals, Corp. Method of manufacturing corrosion resistant tubing from welded stock of titanium or titanium base alloy
US5277718A (en) * 1992-06-18 1994-01-11 General Electric Company Titanium article having improved response to ultrasonic inspection, and method therefor
US5294267A (en) * 1992-12-04 1994-03-15 Titanium Metals Corporation Metastable beta titanium-base alloy
FR2707111B1 (en) * 1993-06-30 1995-08-18 Cezus Method for controlling metal chips and / or fragments to eliminate inclusions which are more absorbent by X-rays.
JP3083225B2 (en) * 1993-12-01 2000-09-04 オリエント時計株式会社 Manufacturing method of titanium alloy decorative article and watch exterior part
US5698050A (en) * 1994-11-15 1997-12-16 Rockwell International Corporation Method for processing-microstructure-property optimization of α-β beta titanium alloys to obtain simultaneous improvements in mechanical properties and fracture resistance
US5685924A (en) * 1995-07-24 1997-11-11 Howmet Research Corporation Creep resistant gamma titanium aluminide
US5795413A (en) * 1996-12-24 1998-08-18 General Electric Company Dual-property alpha-beta titanium alloy forgings
JP3959766B2 (en) 1996-12-27 2007-08-15 大同特殊鋼株式会社 Treatment method of Ti alloy with excellent heat resistance
FR2779155B1 (en) * 1998-05-28 2004-10-29 Kobe Steel Ltd TITANIUM ALLOY AND ITS PREPARATION
US6401537B1 (en) 1999-07-02 2002-06-11 General Electric Company Titanium-based alloys having improved inspection characteristics for ultrasonic examination, and related processes
US6550314B2 (en) * 2001-03-19 2003-04-22 Sis-Tech Applications, L.L.P. Apparatus and method for on-line detection of leaky valves
FR2836640B1 (en) * 2002-03-01 2004-09-10 Snecma Moteurs THIN PRODUCTS OF TITANIUM BETA OR QUASI BETA ALLOYS MANUFACTURING BY FORGING
US7008491B2 (en) * 2002-11-12 2006-03-07 General Electric Company Method for fabricating an article of an alpha-beta titanium alloy by forging
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7008489B2 (en) * 2003-05-22 2006-03-07 Ti-Pro Llc High strength titanium alloy
DE10329899B8 (en) * 2003-07-03 2005-05-19 Deutsche Titan Gmbh Beta titanium alloy, process for producing a hot rolled product from such alloy and its uses
US7837812B2 (en) 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
US7449075B2 (en) * 2004-06-28 2008-11-11 General Electric Company Method for producing a beta-processed alpha-beta titanium-alloy article
FR2899241B1 (en) * 2006-03-30 2008-12-05 Snecma Sa METHODS OF THERMAL TREATMENT AND MANUFACTURE OF A THERMOMECHANICAL PART PRODUCED IN A TITANIUM ALLOY, AND THERMOMECHANICAL PART THEREFROM
US7892369B2 (en) * 2006-04-28 2011-02-22 Zimmer, Inc. Method of modifying the microstructure of titanium alloys for manufacturing orthopedic prostheses and the products thereof
CN101804441B (en) * 2008-12-25 2011-11-02 贵州安大航空锻造有限责任公司 Near-isothermal forging method of TC17 biphase titanium alloy disc forge piece
US10053758B2 (en) * 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8499605B2 (en) 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
CN102181747B (en) * 2011-05-06 2012-09-26 中国航空工业集团公司北京航空材料研究院 Alpha+beta type titanium alloy with high cold and hot forming properties
CN102212715B (en) * 2011-05-06 2013-06-05 中国航空工业集团公司北京航空材料研究院 Near beta-type high-strength titanium alloy
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
CN102896267B (en) * 2012-09-28 2015-04-15 中国航空工业集团公司北京航空材料研究院 Isothermal forging method of TC17 titanium alloy disc-shaped forge piece
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
CN106591625B (en) * 2015-10-19 2018-06-26 中国科学院金属研究所 One kind has the matched titanium alloy of high-intensity and high-tenacity and its preparation process
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
CN106521239B (en) * 2016-11-21 2018-07-20 西北有色金属研究院 A kind of used by nuclear reactor high impact toughness low activation titanium alloy
CN108165820B (en) * 2016-12-08 2020-01-10 有研工程技术研究院有限公司 Short-time ultrahigh-strength heat-resistant titanium alloy, alloy plate and preparation method
CN109295342A (en) * 2018-08-22 2019-02-01 北京理工大学 A kind of Ti-Al-Mo-Sn-Zr-Si-V alloy and preparation method thereof
CN109468492B (en) * 2019-01-17 2020-07-07 燕山大学 Titanium alloy plate with high impact toughness and processing technology thereof
CN109852845B (en) * 2019-04-16 2020-11-03 西部钛业有限责任公司 Near-beta type high-strength and high-toughness titanium alloy and preparation method thereof
CN110846536A (en) * 2019-12-14 2020-02-28 西安西工大超晶科技发展有限责任公司 550 ℃ casting titanium alloy material and preparation method thereof
CN114934210A (en) * 2022-06-29 2022-08-23 中国科学院金属研究所 Titanium alloy for repairing aero-engine blisk
CN116005037B (en) * 2023-01-10 2024-06-21 中国船舶重工集团公司第七二五研究所 High-toughness weldable titanium alloy with yield strength of 900MPa and preparation process thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE552544A (en) *
US3482968A (en) * 1967-08-08 1969-12-09 Titanium Metals Corp Titanium base alloys of high strength at atmospheric and elevated temperatures
CH538898A (en) * 1970-11-04 1973-07-15 Alexandrovich Grekov Nikolai Manufacturing process for ring-shaped forgings
IT949979B (en) * 1971-07-01 1973-06-11 Gen Electric ELEMENT IN PERFECTED ALFA BETA TYPE ALLOY WITH TITANIUM BASE
US4053330A (en) * 1976-04-19 1977-10-11 United Technologies Corporation Method for improving fatigue properties of titanium alloy articles
US4309226A (en) * 1978-10-10 1982-01-05 Chen Charlie C Process for preparation of near-alpha titanium alloys
US4543132A (en) * 1983-10-31 1985-09-24 United Technologies Corporation Processing for titanium alloys
US4581077A (en) * 1984-04-27 1986-04-08 Nippon Mining Co., Ltd. Method of manufacturing rolled titanium alloy sheets
JPS60251240A (en) * 1984-05-28 1985-12-11 Natl Res Inst For Metals High strength titanium alloy for superplastic working
US4631092A (en) * 1984-10-18 1986-12-23 The Garrett Corporation Method for heat treating cast titanium articles to improve their mechanical properties

Also Published As

Publication number Publication date
ZA882635B (en) 1988-10-03
US4878966A (en) 1989-11-07
IL86029A0 (en) 1988-09-30
DE3861736D1 (en) 1991-03-14
FR2614040B1 (en) 1989-06-30
CA1314792C (en) 1993-03-23
BR8801837A (en) 1988-11-22
JPS63277745A (en) 1988-11-15
JPH07116577B2 (en) 1995-12-13
ES2020341B3 (en) 1991-08-01
FR2614040A1 (en) 1988-10-21
DD281422A5 (en) 1990-08-08
US4854977A (en) 1989-08-08
IL86029A (en) 1991-09-16
EP0287486A1 (en) 1988-10-19

Similar Documents

Publication Publication Date Title
EP0287486B1 (en) Process for making a titanium alloy component, and component obtained
EP0514293B1 (en) Process for producing a workpiece in titanium alloy comprising a modified hot working stage and workpiece thus produced
US8372220B2 (en) Aluminum alloy forgings and process for production thereof
EP1045043B1 (en) Method of manufacturing shaped articles of a 2024 type aluminium alloy
EP2811042A1 (en) Forged aluminum alloy material and method for producing same
FR2584094A1 (en) HIGH STRENGTH TITANIUM ALLOY MATERIAL HAVING IMPROVED OUVABILITY AND PROCESS FOR PRODUCING THE SAME
JP2001316743A (en) TiAl ALLOY, ITS MANUFACTURING METHOD, AND MOVING BLADE USING IT
FR2853666A1 (en) HIGH-STRENGTH Al-Zn ALLOY, PROCESS FOR PRODUCING PRODUCTS IN SUCH AN ALLOY, AND PRODUCTS OBTAINED ACCORDING TO THIS PROCESS
FR2838135A1 (en) PRODUCTS CORROYED IN A1-Zn-Mg-Cu ALLOYS WITH VERY HIGH MECHANICAL CHARACTERISTICS, AND AIRCRAFT STRUCTURE ELEMENTS
EP2981632B1 (en) Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages
JP7401760B2 (en) Manufacturing method of α+β type titanium alloy bar material
CA2244148C (en) Thick alznmgcu alloy products having improved properties
EP0362086B1 (en) Process for producing items made from an aluminium alloy retaining a good fatigue resistance after a prolonged stay at a high temperature
JP2001059124A (en) Al-Mg-Si ALUMINUM ALLOY COLD FORGED PART EXCELLENT IN APPEARANCE QUALITY AND ITS PRODUCTION
FR2579497A1 (en) POWDER METALLURGY PROCESS AND PRODUCT OBTAINED THEREBY
FR2679257A1 (en) Aluminium and lithium alloy and process for its manufacture
EP0227563A1 (en) Process od desensitization to exfoliating corrosion of lithium-containing aluminium alloys, resulting simultaneously in a high mechanical resistance and in good damage limitation
CA2042457C (en) Method of treatment of metal matrix composites
US4657735A (en) Mo-Hf-C alloy composition
EP0456591A1 (en) Copper-based spinodal alloys and process for their preparation
RU2819677C1 (en) Method of producing deformed semi-finished products from aluminium alloy
EP0438338B1 (en) Process for making a product from pre-alloyed powders and the product obtained from the said process
EP0663018B1 (en) Tool steel compositions
JPH1121648A (en) Aluminum material with brightness characteristic, and its production
RU2256721C1 (en) Method of manufacture of high-alloyed high-temperature nickel alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19881205

17Q First examination report despatched

Effective date: 19900620

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL SE

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3861736

Country of ref document: DE

Date of ref document: 19910314

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910416

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921230

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EAL Se: european patent in force in sweden

Ref document number: 88420121.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970313

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970321

Year of fee payment: 10

Ref country code: DE

Payment date: 19970321

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970430

Year of fee payment: 10

Ref country code: ES

Payment date: 19970430

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980414

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980413

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19981101

EUG Se: european patent has lapsed

Ref document number: 88420121.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050413