EP0438338B1 - Process for making a product from pre-alloyed powders and the product obtained from the said process - Google Patents

Process for making a product from pre-alloyed powders and the product obtained from the said process Download PDF

Info

Publication number
EP0438338B1
EP0438338B1 EP91400064A EP91400064A EP0438338B1 EP 0438338 B1 EP0438338 B1 EP 0438338B1 EP 91400064 A EP91400064 A EP 91400064A EP 91400064 A EP91400064 A EP 91400064A EP 0438338 B1 EP0438338 B1 EP 0438338B1
Authority
EP
European Patent Office
Prior art keywords
alloy
temperature
compaction
low pressure
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91400064A
Other languages
German (de)
French (fr)
Other versions
EP0438338A1 (en
Inventor
James Davidson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECPHY
Original Assignee
TECPHY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECPHY filed Critical TECPHY
Publication of EP0438338A1 publication Critical patent/EP0438338A1/en
Application granted granted Critical
Publication of EP0438338B1 publication Critical patent/EP0438338B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment

Definitions

  • the present invention relates to a process for obtaining a product from pre-alloyed powders, and more particularly to a process for obtaining in which the powders are subjected to a densification treatment.
  • the present invention also relates to the products obtained using said process.
  • powder metallurgy in development for several years, allows in particular the manufacture of parts, from metals, impossible or difficult to implement otherwise, for example in super-refractory alloys. As a result, powder metallurgy has, in particular, important applications in the field of aeronautical manufacturing (parts of turbines).
  • An object of the invention is to provide a process for obtaining products from pre-alloyed powders made of super-refractory alloy which overcomes these drawbacks.
  • the invention proposes a process for obtaining comprising treatments intended to increase the size of the grains, the size powder particles being nevertheless always initially limited by sieving, and the scale of segregations being reduced to dimensions which do not exceed the size of said particles.
  • the Applicant has observed that during the densification steps, for example by hot isostatic compaction or by spinning, the elements segregated on the surface of the powder particles (mainly carbon and oxygen ) precipitated there, thus forming stable networks which cannot be absorbed by further processing.
  • One consequence of this phenomenon is to promote interparticle ruptures and to make it impossible to magnify the grain.
  • the grain is limited to the size of the initial powder particles.
  • the invention proposes a process for obtaining one of which is a treatment making it possible to attenuate the "decoration" of the particles by precipitation of the segregated elements.
  • the solution adopted by the applicant consists in subjecting, before compaction, the powders of the alloy to heat treatments under low pressure (or without pressure) by which the segregated elements precipitate internally, in phases stable at temperature. compaction and no longer during compaction on the surface of the particles.
  • the Applicant has also observed that the grain enlargement treatments by temperature rise were limited by burning phenomena, that is to say the start of local melting, which prevented bring the powder alloy to the desired temperatures.
  • the invention proposes, in combination with the aforementioned non-pressure or low-pressure treatments, to subject the powders or alloys to homogenization treatments, intended to structurally standardize the materials, in order to ascend as much as possible the temperature where these burning phenomena appear.
  • the homogenization treatments according to the invention are heat treatments above the Solvus temperature of the alloy.
  • the subject of the invention is therefore a method of improving the behavior at high temperatures of a product obtained by a hot densification treatment of a pre-alloyed powder, said powder being subjected, in a manner known per se, to a heat treatment carried out, before the densification treatment, under low pressure (or without pressure), so as to allow the precipitation of elements segregated in stable phases.
  • the pre-alloyed powder consists of an alloy with structural hardening and the pretreatment under low pressure is carried out at a temperature allowing the precipitation of segregations in stable phases inside the powder particles and the densification treatment at high temperature and under pressure comprises at least one step of enlarging the metallurgical grains up to a size exceeding the limits of the particles.
  • the temperature at which the pretreatment is carried out under low pressure is between the Solvus temperature of the alloy reduced by approximately 100 ° C. and its melting temperature.
  • the powder is subjected to a heat treatment of homogenization at a temperature higher than the Solvus temperature of the alloy.
  • the densification treatment comprises a step of compaction at low pressure.
  • the densification treatment includes a consolidation step, in particular by hot isostatic compaction or by spinning.
  • Processing densification can include both a low pressure compaction step and a later consolidation step.
  • the heat treatment at a temperature above the Solvus temperature of the alloy is carried out after the densification treatment.
  • the heat treatment at a temperature higher than the Solvus temperature of the alloy is carried out during the pre-treatment without pressure or under low pressure and / or during the densification treatment.
  • the consolidation step can in particular comprise an isostatic compaction at a temperature higher than the Solvus temperature of the alloy.
  • the subject of the invention is also a product of structural hardening alloy obtained from such a process, and more particularly of product of nickel-based super-refractory alloy.
  • yet another object of the invention is the use of products obtained using said process, in critical parts operating at high temperatures, for example above 650 ° C., and more particularly the use of such products for the manufacture of critical parts in the field of aeronautical construction.
  • the process according to the invention was used to obtain a first alloy known under the trade name ASTROLOY® (registered trademark), the weight composition of which is as follows: 0.040% zirconium: 0.023% boron ; 0.020% carbon; 3.5% titanium; 4% aluminum; 5% molybdenum; 15% chromium; 17% cobalt; nickel balance.
  • ASTROLOY® registered trademark
  • This alloy has a Solvius temperature of 1140 ° C.
  • a classic process for obtaining a product based on pre-alloyed powders in the aforementioned weight proportions, consists of a densification treatment at high temperature and under pressure, for example a heat treatment under 100 MPa for six hours.
  • Table A gives, in ASTM standard, the grain sizes obtained as a function of the temperature of this heat treatment, this from powder particles having an average diameter less than 75 micrometers.
  • TABLE A ASTROLOY Treatment (s) Grain sizes in ASTM standard State of the art processes 1120 ° C 6h 100 MPa 10 1160 ° C 6h 100 MPa 7 1200 ° C 6h 100 MPa 6
  • An example of a process for obtaining according to the invention consists, for its part, of a preliminary heat treatment of the powders under low pressure (less than 1 atm) or without pressure for 24 hours, then in a densification heat treatment, a stage is a stage of hot isostatic compaction, under 100 MPa for six hours, at 1160 ° C., this stage of hot isostatic compactin being able to be followed by a treatment, for four hours at a temperature of 1200 ° C.
  • the results on the grain sizes are still very much improved when the obtaining process comprises a final treatment step at 1200 ° C., the metallurgical grain sizes produced being able to go up to a value of 1 in ASTM standard.
  • FIG. 1 represents a micrograph of an ASTROLOY alloy obtained from that of the methods according to the invention cited in table B, which comprises a final processing step at 1200 ° C, it can be seen that the metallurgical grains, the limits of which appear in solid lines, have developed beyond the initial limits of the powder particles, which can be seen in dotted lines on the micrograph, due to the persistence low decorations despite the implementation process.
  • the process according to the invention was also applied to obtain a second alloy known under the trade name N18, the weight composition of which is as follows: 0.030% zirconium; 0.015% boron; 0.015% carbon; 0.25% hafnium; 4.35% titanium; 4.35% aluminum; 6.5% molybdenum; 11.5% chromium; 15.7% cobalt; nickel balance.
  • This alloy has a Solvus temperature of 1195 ° C.
  • Table C gives the grain sizes obtained for this second alloy, from conventional production methods, that is to say by hot isostatic compaction at 100 MPa, for six hours, for different compaction temperatures, the initial powders with an average diameter of less than 75 ”m.
  • Table D gives, for its part, values of grain sizes of alloys produced for initial powders of similar dimensions, from production methods in accordance with the invention. These production methods each include thermal pretreatments under low pressure (less than 1 atm) or without pressure, followed by a densification treatment. Such densification treatment may include a consolidation step by conventional hot isostatic compaction, whether or not followed by a subsequent consolidation step. The densification treatment can also consist of an isostatic compaction step under low pressure, followed by a posterior compaction step.
  • Figures 3 and 4 respectively represent micrographs of an alloy N18 treated according to, on the one hand, the state of the art at 1160 ° C, for 6 hours, under 100 MPa, and, according to, on the other hand, a process in accordance with the invention consisting of a pretreatment at 1170 ° C for 24 hours, followed by isostatic compaction at low pressure at 1170 ° C, for 4 hours at 10 MPa, followed by further compaction after 1200 ° C, for 6 hours at 100 PMa, we see that l 'We clearly see in Figure 4, the limits of the metallurgical grains formed in the alloy by the process of obtaining according to the invention, while these same limits are difficult to distinguish on the micrograph shown in Figure 3, c 'is to say on the alloy obtained by a process according to the state of the art. The grains of the alloys obtained with the process according to the invention are very much higher than those obtained with the process according to the state of the art.
  • Figure 2 is a graph giving the grain size, in ASTM standard, of the alloys obtained using a process according to the invention, as a function of the pre-treatment temperature to which said alloys are subjected for 24 hours, this pretreatment having been followed by a step of hot isostatic compaction at 1120 ° C, for six hours, under 100 MPa, extended by a step of compaction after 1200 ° C for six hours, at 100 MPa, there is a significant increase in the value of the grain sizes when the temperature of the initial pretreatment is above the Solvus temperature of the alloy (1195 ° C.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

La présente invention est relative à un procédé d'obtention de produit à partir de poudres préalliées, et plus particulièrement à un procédé d'obtention dans lequel les poudres sont soumises à un traitement de densification.The present invention relates to a process for obtaining a product from pre-alloyed powders, and more particularly to a process for obtaining in which the powders are subjected to a densification treatment.

La présente invention concerne aussi les produits obtenus à l'aide dudit procédé.The present invention also relates to the products obtained using said process.

On sait que la métallurgie des poudres, en développement depuis plusieurs années, permet notamment la fabrication de pièces, à partir de métaux, impossibles ou difficiles à mettre en oeuvre autrement, par exemple en alliages superréfractaires. De ce fait, la métallurgie des poudres a, en particulier, des applications importantes dans le domaine de la fabrication aéronautique (pièces de turbines).It is known that powder metallurgy, in development for several years, allows in particular the manufacture of parts, from metals, impossible or difficult to implement otherwise, for example in super-refractory alloys. As a result, powder metallurgy has, in particular, important applications in the field of aeronautical manufacturing (parts of turbines).

Cependant, si les matériaux réalisés avec les procédés d'obtention actuels présentent d'excellentes propriétés mécaniques aux moyennes températures, du fait de la finesse des grains, leur comportement à des températures élevées (au-delà de 650°C) n'est pas toujours satisfaisant, notamment en ce qui concerne leur tenue au fluage et leur résistance à la propagation des fissures.However, if the materials produced with the current production methods exhibit excellent mechanical properties at medium temperatures, due to the fineness of the grains, their behavior at high temperatures (above 650 ° C.) is not still satisfactory, in particular with regard to their creep resistance and their resistance to crack propagation.

Un but de l'invention est de proposer un procédé d'obtention de produits à partir de poudres préalliées en alliage superréfractaire permettant de pallier ces inconvénients.An object of the invention is to provide a process for obtaining products from pre-alloyed powders made of super-refractory alloy which overcomes these drawbacks.

De façon surprenante, alors que jusqu'à présent en métallurgie des poudres, les matériaux réalisés étaient caractérisés par un grain métallurgique très fin, l'invention propose un procédé d'obtention comportant des traitements destinés à faire grossir la taille des grains, la taille des particules de poudres étant néanmoins toujours initialement limitée par tamisage, et l'échelle des ségrégations étant réduite à des dimensions qui ne dépassent pas la taille desdites particules.Surprisingly, while until now in powder metallurgy, the materials produced have been characterized by a very fine metallurgical grain, the invention proposes a process for obtaining comprising treatments intended to increase the size of the grains, the size powder particles being nevertheless always initially limited by sieving, and the scale of segregations being reduced to dimensions which do not exceed the size of said particles.

On sait, en métallurgie classique, qu'il est possible de faire grossir la taille des grains d'un alliage en lui faisant subir un traitement thermique. Cependant, dans le cadre de la métallurgie des poudres de tels traitements thermiques s'avèrent en pratique inefficaces, par exemple les grains d'alliage obtenus à partir de poudres de diamètre inférieur à 106 micromètres étant notamment très difficile à grossir au-delà de 7 en norme ASTM.We know, in classical metallurgy, that it is possible enlarging the grain size of an alloy by subjecting it to a heat treatment. However, in the context of powder metallurgy, such heat treatments prove in practice to be ineffective, for example the alloy grains obtained from powders with a diameter of less than 106 micrometers being in particular very difficult to magnify beyond 7 in ASTM standard.

En cherchant à analyser les causes de ces limitations, la demanderesse a observé que lors des étapes de densification, par exemple par compaction isostatique à chaud ou par filage, les éléments ségrégés à la surface des particules de poudre (principalement le carbone et l'oxygène ) y précipitaient, formant ainsi des réseaux stables impossibles à résorber par des traitements ultérieurs. Une conséquence de ce phénomène est de favoriser les ruptures interparticulaires et de rendre impossible le grossissement du grain. De ce fait, le grain se trouve limité à la taille des particules de poudre initiale.In seeking to analyze the causes of these limitations, the Applicant has observed that during the densification steps, for example by hot isostatic compaction or by spinning, the elements segregated on the surface of the powder particles (mainly carbon and oxygen ) precipitated there, thus forming stable networks which cannot be absorbed by further processing. One consequence of this phenomenon is to promote interparticle ruptures and to make it impossible to magnify the grain. As a result, the grain is limited to the size of the initial powder particles.

Dans un de ses aspects principaux, l'invention propose un procédé d'obtention dont une étape est un traitement permettant d'atténuer la "décoration" des particules par précipitation des éléments ségrégés. Plus particulièrement, la solution retenue par la demanderesse consiste à soumettre, avant compaction, les poudres de l'alliage à des traitements thermiques sous faible pression (ou sans pression) par lesquels les éléments ségrégés précipitent de façon interne, en phases stables à la température de compaction et non plus au cours de compaction sur la surface des particules.In one of its main aspects, the invention proposes a process for obtaining one of which is a treatment making it possible to attenuate the "decoration" of the particles by precipitation of the segregated elements. More particularly, the solution adopted by the applicant consists in subjecting, before compaction, the powders of the alloy to heat treatments under low pressure (or without pressure) by which the segregated elements precipitate internally, in phases stable at temperature. compaction and no longer during compaction on the surface of the particles.

Pour améliorer la moulabilité et la résistance de pièces frittées, on a déjà proposé, dans le document JP-A-55.161002, de soumettre la poudre, avant densification, à un traitement thermique permettant de faire précipiter certains éléments présents dans l'alliage tels que le phosphore ou l'étain. Cependant, le procédé antérieur consiste à chauffer la poudre au-dessus du point de fusion de ces éléments pour les faire venir sur la surface des particules de poudre alors que l'invention a pour objet, au contraire, de faire précipiter les éléments ségrégés à l'intérieur des particules pour éviter des précipitations sur la surface.To improve the moldability and resistance of sintered parts, it has already been proposed, in document JP-A-55.161002, to subject the powder, before densification, to a heat treatment making it possible to precipitate certain elements present in the alloy such as phosphorus or tin. However, the previous method consists in heating the powder above the melting point of these elements to bring them onto the surface of the powder particles whereas the object of the invention is, on the contrary, to precipitate the segregated elements inside particles to avoid precipitation on the surface.

Par ailleurs, dans le cadre de son analyse, la demanderesse a encore observé que les traitements de grossissement des grains par élévation de température étaient limités par des phénomènes de brûlure, c'est-à-dire de début de fusion locale, qui empêchaient de porter l'alliage de poudre aux températures souhaîtées.Furthermore, as part of its analysis, the Applicant has also observed that the grain enlargement treatments by temperature rise were limited by burning phenomena, that is to say the start of local melting, which prevented bring the powder alloy to the desired temperatures.

Pour remédier à cette autre limitation, l'invention propose, en combinaison avec les traitements sans pression ou sous faible pression précités, de soumettre les poudres ou alliages à des traitements d'homogénéisation, destinés a uniformiser structurellement les matériaux, afin de remonter autant que possible la température où apparaissent ces phénomènes de brûlure.To overcome this other limitation, the invention proposes, in combination with the aforementioned non-pressure or low-pressure treatments, to subject the powders or alloys to homogenization treatments, intended to structurally standardize the materials, in order to ascend as much as possible the temperature where these burning phenomena appear.

Plus particulièrement, dans le cas d'alliages à durcissement structural, les traitements d'homogénéisation, selon l'invention sont des traitements thermiques au-dessus de la température de Solvus de l'alliage.More particularly, in the case of alloys with structural hardening, the homogenization treatments according to the invention are heat treatments above the Solvus temperature of the alloy.

L'invention a donc pour objet un procédé d'amélioration du comportement aux températures élevées d'un produit obtenu par un traitement de densification à chaud d'une poudre préalliée, ladite poudre étant soumise, de façon connue en soi, à un traitement thermique réalisé, avant le traitement de densification, sous faible pression (ou sans pression), de façon à permettre la précipitation d'éléments ségrégés en phases stables.The subject of the invention is therefore a method of improving the behavior at high temperatures of a product obtained by a hot densification treatment of a pre-alloyed powder, said powder being subjected, in a manner known per se, to a heat treatment carried out, before the densification treatment, under low pressure (or without pressure), so as to allow the precipitation of elements segregated in stable phases.

Conformément à l'invention, la poudre préalliée est constituée en un alliage à durcissement structural et le prétraitement sous faible pression est conduit à une température permettant la précipitation des ségrégations en phases stables à l'intérieur des particules de poudre et le traitement de densification à haute température et sous pression comprend au moins une étape de grossissement des grains métallurgiques jusqu'à une taille dépassant les limites des particules.According to the invention, the pre-alloyed powder consists of an alloy with structural hardening and the pretreatment under low pressure is carried out at a temperature allowing the precipitation of segregations in stable phases inside the powder particles and the densification treatment at high temperature and under pressure comprises at least one step of enlarging the metallurgical grains up to a size exceeding the limits of the particles.

Avantageusement, la température à laquelle est réalisé le prétraitement sous faible pression (ou sans pression) est comprise entre la température de Solvus de l'alliage diminuée de 100°C environ et sa température de fusion.Advantageously, the temperature at which the pretreatment is carried out under low pressure (or without pressure) is between the Solvus temperature of the alloy reduced by approximately 100 ° C. and its melting temperature.

De façon avantageuse encore, la poudre est soumise à un traitement thermique d'homogénéisation à une température supérieure à la température de Solvus de l'alliage.Advantageously still, the powder is subjected to a heat treatment of homogenization at a temperature higher than the Solvus temperature of the alloy.

De préférence, le traitement de densification comporte une étape de compaction à basse pression.Preferably, the densification treatment comprises a step of compaction at low pressure.

De préférence encore, le traitement de densification comporte une étape de consolidation, notamment par compaction isostatique à chaud ou par filage. La traitement de densification peut comporter à la fois une étape de compaction à basse pression et une étape postérieure de consolidation.More preferably, the densification treatment includes a consolidation step, in particular by hot isostatic compaction or by spinning. Processing densification can include both a low pressure compaction step and a later consolidation step.

Dans un mode de mise en oeuvre préférentiel, le traitement thermique à une température supérieure à la température de Solvus de l'alliage est réalisé après le traitement de densification.In a preferred embodiment, the heat treatment at a temperature above the Solvus temperature of the alloy is carried out after the densification treatment.

Dans un autre mode de mise en oeuvre préférentiel, le traitement thermique à une température supérieure à la température de Solvus de l'alliage est réalisé lors du prétraitement sans pression ou sous faible pression et/ou lors du traitement de densification. L'étape de consolidation peut notamment comprendre une compaction isostatique à une température supérieure à la température de Solvus de l'alliage.In another preferred embodiment, the heat treatment at a temperature higher than the Solvus temperature of the alloy is carried out during the pre-treatment without pressure or under low pressure and / or during the densification treatment. The consolidation step can in particular comprise an isostatic compaction at a temperature higher than the Solvus temperature of the alloy.

L'invention a aussi pour objet un produit en alliage à durcissement structural obtenu à partir d'un tel procédé, et plus particulièrement en produit en alliage superréfractaire à base de nickel.The subject of the invention is also a product of structural hardening alloy obtained from such a process, and more particularly of product of nickel-based super-refractory alloy.

Enfin, un autre objet de l'invention encore est l'utilisation de produits obtenus à l'aide dudit procédé, dans des pièces critiques fonctionnant à des températures élevées, par exemple supérieures à 650°C, et plus particulièrement l'utilisation de tels produits pour la fabrication de pièces critiques dans le domaine de la construction aéronautique.Finally, yet another object of the invention is the use of products obtained using said process, in critical parts operating at high temperatures, for example above 650 ° C., and more particularly the use of such products for the manufacture of critical parts in the field of aeronautical construction.

La description qui suit est purement illustrative et non limitative. Elle doit être lue en regard des dessins annexés.The description which follows is purely illustrative and not limiting. It should be read in conjunction with the accompanying drawings.

Sur ces dessins:

  • La Figure 1 représente une micrographie illustrant, pour un premier alliage, la croissance des grains métallurgiques au-delà des limites des particules de poudre initiales, grâce à la mise en oeuvre d'un procédé conforme à l'invention;
  • La Figure 2 est un graphe illustrant la croissance des grains métallurgiques d'un deuxième alliage, grâce à la mise en oeuvre d'un procédé conforme à l'invention;
  • Les Figures 3 et 4 sont des micrographies illustrant respectivement, pour le même deuxième alliage, les différences de tailles de grains métallurgiques de matériaux obtenus, d'une part, avec un procédé d'obtention conforme à l'état de l'art, et, d'autre part, avec un procédé d'obtention conforme à l'invention.
In these drawings:
  • FIG. 1 represents a micrograph illustrating, for a first alloy, the growth of metallurgical grains beyond the limits of the initial powder particles, thanks to the implementation of a process in accordance with the invention;
  • Figure 2 is a graph illustrating the growth of metallurgical grains of a second alloy, thanks to the implementation of a method according to the invention;
  • FIGS. 3 and 4 are micrographs respectively illustrating, for the same second alloy, the differences in size of metallurgical grains of materials obtained, on the one hand, with a process for obtaining conforming to the state of the art, and , on the other hand, with a process for obtaining according to the invention.

Le procédé conforme à l'invention a été mis en oeuvre pour l'obtention d'un premier alliage connu sous la dénomination commerciale ASTROLOY® (Marque déposée), dont la composition pondérale est la suivante: 0,040% de zirconium: 0,023% de bore; 0,020% de carbone; 3,5% de titane; 4% d'aluminium; 5% de molybdène; 15% de chrome; 17% de cobalt; balance de nickel. Cet alliage admet une température de Solvius de 1140°C.The process according to the invention was used to obtain a first alloy known under the trade name ASTROLOY® (registered trademark), the weight composition of which is as follows: 0.040% zirconium: 0.023% boron ; 0.020% carbon; 3.5% titanium; 4% aluminum; 5% molybdenum; 15% chromium; 17% cobalt; nickel balance. This alloy has a Solvius temperature of 1140 ° C.

Un procédé classique d'obtention d'un produit. à base de poudres préalliées dans les proportions pondérales précitées, consiste en un traitement de densification à haute température et sous pression, par exemple en un traitement thermique sous 100 MPa pendant six heures. Le tableau A ci-dessous donne, en norme ASTM, les tailles de grains obtenues en fonction de la température de ce traitement thermique, ce à partir de particules de poudre ayant un diamètre moyen inférieur à 75 micromètres. TABLEAU A ASTROLOY Traitement(s) Tailles de grain en norme ASTM Procédés conformes à l'état de la technique 1120°C 6h 100 MPa 10 1160°C 6h 100 MPa 7 1200°C 6h 100 MPa 6 A classic process for obtaining a product. based on pre-alloyed powders in the aforementioned weight proportions, consists of a densification treatment at high temperature and under pressure, for example a heat treatment under 100 MPa for six hours. Table A below gives, in ASTM standard, the grain sizes obtained as a function of the temperature of this heat treatment, this from powder particles having an average diameter less than 75 micrometers. TABLE A ASTROLOY Treatment (s) Grain sizes in ASTM standard State of the art processes 1120 ° C 6h 100 MPa 10 1160 ° C 6h 100 MPa 7 1200 ° C 6h 100 MPa 6

Un exemple de procédé d'obtention conforme à l'invention consiste, quant à lui, en un traitement thermique préalable des poudres sous faible pression (inférieure à 1 atm) ou sans pression pendant, 24 heures, puis en un traitement thermique de densification dont une étape est une étape de compaction isostatique à chaud, sous 100 MPa pendant six heures, à 1160°C, cette étape de compactin isostatique à chaud pouvant être suivie par un traitement, pendant quatre heures à une température de 1200°C.An example of a process for obtaining according to the invention consists, for its part, of a preliminary heat treatment of the powders under low pressure (less than 1 atm) or without pressure for 24 hours, then in a densification heat treatment, a stage is a stage of hot isostatic compaction, under 100 MPa for six hours, at 1160 ° C., this stage of hot isostatic compactin being able to be followed by a treatment, for four hours at a temperature of 1200 ° C.

Les tailles de grains obtenues à partir de poudres initiales ayant un diamètre moyen inférieur à 75 »m sont données dans le tableau B suivant: TABLEAU B ASTROLOY Traitement(s) Tailles de grain en norme ASTM Procédés 1120°C 24 h + 1160°C 6 h 100 MPa 5 conformes 1160°C 24 h + 1160°C 6 h 100 MPa 3 à l'invention 1160°C 24 h + 1160°C 6 h 100 MPa + 1200°C 4h 1 à 3 The grain sizes obtained from initial powders having an average diameter of less than 75 μm are given in table B below: TABLE B ASTROLOY Treatment (s) Grain sizes in ASTM standard Processes 1120 ° C 24 h + 1160 ° C 6 h 100 MPa 5 conform 1160 ° C 24 h + 1160 ° C 6 h 100 MPa 3 to the invention 1160 ° C 24 h + 1160 ° C 6 h 100 MPa + 1200 ° C 4 h 1 to 3

Il ressort clairement de la comparaison des Tableaux A et B, que la mise en oeuvre d'un prétraitement thermique sous faible pression ou sans pression permet un accroîssement notable des tailles de grain des alliages obtenus.It is clear from the comparison of Tables A and B, that the implementation of a heat pretreatment under low pressure or without pressure allows a significant increase in the grain sizes of the alloys obtained.

On note aussi, à partir du tableau B, que les tailles de grains sont beaucoup plus importantes lorsque le prétraitement est réalisé à 1160°C, c'est-à-dire au-dessus de la température de Solvus de l'alliage, que lorsqu'il est réalisé à 1120°C.It is also noted, from Table B, that the grain sizes are much larger when the pretreatment is carried out at 1160 ° C., that is to say above the Solvus temperature of the alloy, than when performed at 1120 ° C.

En outre, on constate encore, que les résultats sur les tailles de grain sont encore très nettement améliorés lorsque le procédé d'obtention comporte une dernière étape de traitement à 1200°C, les tailles de grain métallurgiques réalisées pouvant aller jusqu'à une valeur de 1 en norme ASTM.In addition, it can also be seen that the results on the grain sizes are still very much improved when the obtaining process comprises a final treatment step at 1200 ° C., the metallurgical grain sizes produced being able to go up to a value of 1 in ASTM standard.

Si l'on réfère, par ailleurs, à la Figure 1, qui représente une micrographie d'un alliage d'ASTROLOY obtenu à partir de celui des procédés conformes à l'invention cités dans le tableau B, qui comporte une dernière étape de traitement à 1200°C, on constate que les grains métallurgiques, dont les limites apparaîssent en trait continu, se sont développés au-delà des limites initiales des particules de poudre, que l'on aperçoit en pointillés sur la micrographie, du fait de la persistance de faibles décorations malgré le procédé de mise en oeuvre.If we refer, moreover, to FIG. 1, which represents a micrograph of an ASTROLOY alloy obtained from that of the methods according to the invention cited in table B, which comprises a final processing step at 1200 ° C, it can be seen that the metallurgical grains, the limits of which appear in solid lines, have developed beyond the initial limits of the powder particles, which can be seen in dotted lines on the micrograph, due to the persistence low decorations despite the implementation process.

Le procédé conforme à l'invention a encore été appliqué pour obtenir un deuxième alliage connu sous la dénomination commerciale N18, dont la composition pondérale est la suivante: 0,030% de zirconium; 0,015% de bore; 0,015% de carbone; 0,25% d'hafnium; 4,35% de titane; 4,35% d'aluminium; 6,5% de molybdène; 11,5% de chrome; 15,7% de cobalt; balance de nickel. Cet alliage a une température de Solvus de 1195°C.The process according to the invention was also applied to obtain a second alloy known under the trade name N18, the weight composition of which is as follows: 0.030% zirconium; 0.015% boron; 0.015% carbon; 0.25% hafnium; 4.35% titanium; 4.35% aluminum; 6.5% molybdenum; 11.5% chromium; 15.7% cobalt; nickel balance. This alloy has a Solvus temperature of 1195 ° C.

Le Tableau C donne les tailles de grain obtenues pour ce deuxième alliage, à partir de procédés d'obtention classiques, c'est-à-dire par compaction isostatique à chaud sous 100 MPa, pendant six heures, pour différentes températures de compaction, les poudres initiales ayant un diamètre moyen inférieur à 75 »m. TABLEAU C N 18 Traitement(s) Tailles de grain en norme ASTM Procédés conformes à l'état de la technique 1120°C 6h 100 MPa 10 1160°C 6h 100 MPa 9 1200°C 6h 100 MPa 7 Table C gives the grain sizes obtained for this second alloy, from conventional production methods, that is to say by hot isostatic compaction at 100 MPa, for six hours, for different compaction temperatures, the initial powders with an average diameter of less than 75 ”m. TABLE C N 18 Treatment (s) Grain sizes in ASTM standard State of the art processes 1120 ° C 6h 100 MPa 10 1160 ° C 6h 100 MPa 9 1200 ° C 6h 100 MPa 7

Le Tableau D donne quant à lui, des valeurs de tailles de grain d'alliages réalisés pour des poudres initiales de dimensions similaires, à partir de procédés d'obtention conformes à l'invention. Ces procédés d'obtention comportent chacun des prétraitements thermiques sous faible pression (inférieure a 1 atm) ou sans pression, suivi d'un traitement de densification. Un tel traitement de densification peut comporter une étape de consolidation par compaction isostatique à chaud classique, suivie ou non d'une étape postérieure de consolidation. Le traitement de densification peut aussi consister en une étape de compaction isostatique sous basse pression, suivie d'une étape de compaction postérieure. TABLEAU D N 18 Traitement(s) Tailles de grain en norme ASTM Procédés conformes à l'invention 1160°C 24 h + 1200°C 6 h 100 MPa 5 1160°C 24 h + 1160°C 6 h 100 MPa + 1200°C 4 h 5 1170°C 24 h + 1170°C 4 h 10 MPa+ 1200°C 6 h 100 PMa -1 à -2 1200°C 24h + 1160°C 6 h 100 MPa+1200°C 6 h 100 MPa 4 Table D gives, for its part, values of grain sizes of alloys produced for initial powders of similar dimensions, from production methods in accordance with the invention. These production methods each include thermal pretreatments under low pressure (less than 1 atm) or without pressure, followed by a densification treatment. Such densification treatment may include a consolidation step by conventional hot isostatic compaction, whether or not followed by a subsequent consolidation step. The densification treatment can also consist of an isostatic compaction step under low pressure, followed by a posterior compaction step. TABLE D N 18 Treatment (s) Grain sizes in ASTM standard Processes in accordance with the invention 1160 ° C 24 h + 1200 ° C 6 h 100 MPa 5 1160 ° C 24 h + 1160 ° C 6 h 100 MPa + 1200 ° C 4 h 5 1170 ° C 24 h + 1170 ° C 4 h 10 MPa + 1200 ° C 6 h 100 PMa -1 to 2 1200 ° C 24h + 1160 ° C 6 h 100 MPa + 1200 ° C 6 h 100 MPa 4

Il ressort de la comparaison des Tableaux C et D, que le prétraitement thermique des poudres sous faible pression permet de réaliser des alliages ayant des tailles de grain importantes, notamment ayant une valeur en norme ASTM inférieure ou égale à 5.It appears from the comparison of Tables C and D, that the heat pretreatment of the powders under low pressure makes it possible to produce alloys having large grain sizes, in particular having a value in ASTM standard less than or equal to 5.

Il faut aussi noter que les résultats obtenus sur ces tailles de grain sont d'autant meilleurs, que les températures de prétraitement ou de traitement thermique sont supérieures à la température de Solvus de l'alliage (1195°C).It should also be noted that the results obtained on these grain sizes are all the better, as the pre-treatment or heat treatment temperatures are higher than the Solvus temperature of the alloy (1195 ° C.).

En outre, on notera encore que les résultats obtenus avec une étape de compaction isostatique intermédiaire à basse pression (10 MPa) sont très nettement supérieurs aux autres, les valeurs des tailles de grain atteintes pouvant aller jusqu'a - 2 en norme ASTM.In addition, it will also be noted that the results obtained with an intermediate isostatic compaction step at low pressure (10 MPa) are very clearly superior to the others, the values of the grain sizes reached being able to go up to -2 in ASTM standard.

Si l'on se réfère maintenant aux Figures 3 et 4, qui représentent des micrographies respectivement d'un alliage N18 traité selon, d'une part, l'état de la technique à 1160°C, pendant 6 heures, sous 100 MPa, et, selon, d'autre part, un procédé conforme à l'invention consistant en un prétraitement à 1170°C pendant 24 heures, suivi d'une compaction isostatique sous faible pression à 1170°C, pendant 4 heures sous 10 MPa, suivie encore d'une compaction postérieure à 1200°C, pendant 6 heures sous 100 PMa, on voit que l'on distingue très nettement sur la Figure 4, les limites des grains métallurgiques formés dans l'alliage par le procédé d'obtention conforme à l'invention, alors que ces mêmes limites sont difficilement distinguables sur la micrographie représentée sur la Figure 3, c'est-à-dire sur l'alliage obtenu par un procédé conforme à l'état de la technique. Les grains des alliages obtenus avec le procédé conforme à l'invention sont très nettement supérieurs à ceux obtenus avec le procédé conforme à l'état de la technique.If we now refer to Figures 3 and 4, which respectively represent micrographs of an alloy N18 treated according to, on the one hand, the state of the art at 1160 ° C, for 6 hours, under 100 MPa, and, according to, on the other hand, a process in accordance with the invention consisting of a pretreatment at 1170 ° C for 24 hours, followed by isostatic compaction at low pressure at 1170 ° C, for 4 hours at 10 MPa, followed by further compaction after 1200 ° C, for 6 hours at 100 PMa, we see that l 'We clearly see in Figure 4, the limits of the metallurgical grains formed in the alloy by the process of obtaining according to the invention, while these same limits are difficult to distinguish on the micrograph shown in Figure 3, c 'is to say on the alloy obtained by a process according to the state of the art. The grains of the alloys obtained with the process according to the invention are very much higher than those obtained with the process according to the state of the art.

Si l'on se réfère maintenant à la Figure 2, qui est un graphe donnant la taille des grains, en norme ASTM, des alliages obtenus à l'aide d'un procédé conforme à l'invention, en fonction de la température de prétraitement auxquels lesdits alliages sont soumis pendant 24 heures, ce prétraitement ayant été suivi par une étape de compaction isostatique à chaud à 1120°C, pendant six heures, sous 100 MPa, prolongée par une étape de compaction postérieure à 1200°C pendant six heures, sous 100 MPa, on note un accroîssement sensible de la valeur des tailles des grains lorsque la température du prétraitement initiale est au-delà de la température de Solvus de l'alliage (1195°C).If we now refer to Figure 2, which is a graph giving the grain size, in ASTM standard, of the alloys obtained using a process according to the invention, as a function of the pre-treatment temperature to which said alloys are subjected for 24 hours, this pretreatment having been followed by a step of hot isostatic compaction at 1120 ° C, for six hours, under 100 MPa, extended by a step of compaction after 1200 ° C for six hours, at 100 MPa, there is a significant increase in the value of the grain sizes when the temperature of the initial pretreatment is above the Solvus temperature of the alloy (1195 ° C.).

Claims (12)

  1. A method to improve the behaviour at elevated temperatures of a product obtained by a hot compaction treatment of a prealloyed powder said powder being subjected in a per se known manner to a heat treatment performed before the compaction treatment under low pressure (or without pressure) to allow precipitation of segregated elements according to stable phases,
       characterized in that the prealloyed powder is made of an alloy with structural hardening, in that the low pressure pretreatment is carried out at a temperature allowing precipitation of segregations in stable phases inside the powder particules, and in that the compaction treatment at elevated temperature and under pressure comprises at least a step of enlarging the sizes of metallurgical grains until a size going outer the limits of the particules.
  2. A method according to claim 1, characterized in that the temperature at which is performed the pretreatment under low pressure (or without pressure) is comprised between the solvus temperature of the alloy reduced of about 100°C and its melting temperature.
  3. A method according to any one of claims 1 or 2, characterized in that the powder is subjected to an homogenization heat treatment at a temperature above the solvus temperature of the alloy.
  4. A method according to any one of claims 1 to 3, characterized in that the compaction treatment includes a stage of compaction at low pressure.
  5. A method according to any one of claims 1 to 4, characterized in that the compaction treatment includes a stage of consolidation, in particular by hot isostatic pressing.
  6. A method according to claims 4 and 5 taken in combination, characterized in that the compaction treatment includes a stage of low pressure compaction and a subsequent consolidation stage.
  7. A method according to claim 3 taken in combination with any one of claims 4 to 6, characterized in that the heat treatment at a temperature above the solvus temperature of the alloy is performed after the compaction treatment.
  8. A method according to claim 3 taken in combination with any one of claims 4 to 6, characterized in that the heat treatment at a temperature above the solvus temperature of the alloy is performed during the pretreatment without pressure or under low pressure and/or during the compaction treatment.
  9. A method according to claim 8 taken in combination with one of claims 5 or 6, characterized in that the consolidation stage includes isostatic pressing at a temperature above the solvus temperature of the alloy.
  10. A method according to one of the preceding claims, characterized in that the prealloyed powder is a nickel based super-refractory alloy.
  11. Product comprising a structural hardening alloy obtained from the method according to one of claims 1 to 10.
  12. Use of the alloy according to claim 11 for making critical pieces liable to work at temperatures above 650°C.
EP91400064A 1990-01-16 1991-01-11 Process for making a product from pre-alloyed powders and the product obtained from the said process Expired - Lifetime EP0438338B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9000454A FR2657032A1 (en) 1990-01-16 1990-01-16 PROCESS FOR OBTAINING A PRODUCT FROM PRE-ALLOYED POWDERS AND A PRODUCT OBTAINED FROM SAID PROCESS.
FR9000454 1990-01-16

Publications (2)

Publication Number Publication Date
EP0438338A1 EP0438338A1 (en) 1991-07-24
EP0438338B1 true EP0438338B1 (en) 1995-06-07

Family

ID=9392818

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91400064A Expired - Lifetime EP0438338B1 (en) 1990-01-16 1991-01-11 Process for making a product from pre-alloyed powders and the product obtained from the said process

Country Status (4)

Country Link
US (1) US5395464A (en)
EP (1) EP0438338B1 (en)
DE (1) DE69110139T2 (en)
FR (1) FR2657032A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462808A (en) * 1993-09-03 1995-10-31 Sumitomo Metal Industries, Ltd. Highly rigid composite material and process for its manufacture
FR2935396B1 (en) 2008-08-26 2010-09-24 Aubert & Duval Sa PROCESS FOR THE PREPARATION OF A NICKEL - BASED SUPERALLIATION WORKPIECE AND PIECE THUS OBTAINED
US10245639B2 (en) 2012-07-31 2019-04-02 United Technologies Corporation Powder metallurgy method for making components
US10247480B2 (en) 2017-04-28 2019-04-02 General Electric Company High temperature furnace

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702791A (en) * 1970-04-20 1972-11-14 Nasa Method of forming superalloys
JPS55161002A (en) * 1979-06-01 1980-12-15 Kobe Steel Ltd Steel powder for powder metallurgy
US4732622A (en) * 1985-10-10 1988-03-22 United Kingdom Atomic Energy Authority Processing of high temperature alloys
US5009704A (en) * 1989-06-28 1991-04-23 Allied-Signal Inc. Processing nickel-base superalloy powders for improved thermomechanical working

Also Published As

Publication number Publication date
US5395464A (en) 1995-03-07
DE69110139D1 (en) 1995-07-13
FR2657032B1 (en) 1995-01-27
DE69110139T2 (en) 1996-01-04
FR2657032A1 (en) 1991-07-19
EP0438338A1 (en) 1991-07-24

Similar Documents

Publication Publication Date Title
CA2583140C (en) Nickel-based alloy
EP2066598B1 (en) Method for assembling refractory ceramic parts by means of spark plasma sintering (sps)
EP3914746B1 (en) Method for manufacturing an aluminum alloy part
FR2653449A1 (en) TITANIUM ALLOY PIECE AND PROCESS FOR PRODUCING THE SAME
EP0287486A1 (en) Process for making a titanium alloy component, and component obtained
CN105296806A (en) Gamma prime precipitation strengthened nickel-base superalloy for use in powder based additive manufacturing process
EP2321440A2 (en) Method for preparing a nickel superalloy part, and part thus obtained
FR2941962A1 (en) PROCESS FOR MANUFACTURING A NICKEL-BASED SUPERALLIANCE WORKPIECE, AND A PRODUCT OBTAINED THEREBY
FR2704869A1 (en) Improved Ti-6Al-4V alloy, with ballistic behavior, preparation process and application.
FR2557147A1 (en) PROCESS FOR FORGING HIGH-RESISTANCE NICKEL-BASED SUPERALLIER MATERIALS, ESPECIALLY IN MOLDED FORM
FR2625753A1 (en) METHOD FOR THERMALLY TREATING NICKEL SUPERALLIAGE AND FATIGUE RESISTANT SUPERALLIATION ARTICLE
FR3085967A1 (en) NICKEL-BASED SUPERALLOYS
WO2020165543A1 (en) Process for manufacturing an aluminum alloy part
EP3924123A1 (en) Process for manufacturing an aluminum alloy part
WO2021156583A2 (en) Method for producing an aluminium alloy part
EP0438338B1 (en) Process for making a product from pre-alloyed powders and the product obtained from the said process
EP4149703A2 (en) Method for producing an aluminium alloy part
EP4073283A1 (en) Nickel-based superalloy
CA1106265A (en) Heat treating and tempering of forged workpieces
FR2935395A1 (en) PROCESS FOR THE PREPARATION OF A NICKEL-BASED SUPERALLIATION PIECE AND A PART THUS PREPARED
FR2661922A1 (en) SPINODAL DECOMPOSITION COPPER ALLOYS AND PROCESS FOR OBTAINING THE SAME.
EP1206585B1 (en) High density tungsten material sintered at low temperature
KR100509938B1 (en) Method for fabricating TiAl intermetallic articles by metal injection molding
FR2628349A1 (en) Forging nickel-based superalloy contg. hard gamma prime phase - by deforming at below gamma prime solidus temp. and solidus temp. to control final grain size
WO2023181329A1 (en) Copper alloy powder for additive layer manufacturing, production method and evaluation method therefor, method for producing additive layer-manufactured copper alloy article, and additive layer-manufactured copper alloy article

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB SE

17P Request for examination filed

Effective date: 19910816

17Q First examination report despatched

Effective date: 19930212

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB SE

REF Corresponds to:

Ref document number: 69110139

Country of ref document: DE

Date of ref document: 19950713

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20071219

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080111

Year of fee payment: 18

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100113

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110111