EP0285666B1 - Feuerfeste zusammensetzung und feuerfeste beschichtungstechnik - Google Patents
Feuerfeste zusammensetzung und feuerfeste beschichtungstechnik Download PDFInfo
- Publication number
- EP0285666B1 EP0285666B1 EP87906598A EP87906598A EP0285666B1 EP 0285666 B1 EP0285666 B1 EP 0285666B1 EP 87906598 A EP87906598 A EP 87906598A EP 87906598 A EP87906598 A EP 87906598A EP 0285666 B1 EP0285666 B1 EP 0285666B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- parts
- refractory coating
- refractory
- coating composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 75
- 238000000576 coating method Methods 0.000 title claims description 72
- 239000011248 coating agent Substances 0.000 title description 58
- 238000000034 method Methods 0.000 title description 57
- 229920005989 resin Polymers 0.000 claims abstract description 21
- 239000011347 resin Substances 0.000 claims abstract description 21
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 15
- 239000000843 powder Substances 0.000 claims abstract description 13
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000011396 hydraulic cement Substances 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims description 95
- 229910000831 Steel Inorganic materials 0.000 claims description 84
- 239000010959 steel Substances 0.000 claims description 84
- 239000008199 coating composition Substances 0.000 claims description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 230000007797 corrosion Effects 0.000 claims description 17
- 238000005260 corrosion Methods 0.000 claims description 17
- 239000000839 emulsion Substances 0.000 claims description 15
- 239000003112 inhibitor Substances 0.000 claims description 15
- 238000004898 kneading Methods 0.000 claims description 6
- 239000010451 perlite Substances 0.000 claims description 6
- 235000019362 perlite Nutrition 0.000 claims description 6
- 239000010455 vermiculite Substances 0.000 claims description 6
- 229910052902 vermiculite Inorganic materials 0.000 claims description 6
- 235000019354 vermiculite Nutrition 0.000 claims description 6
- 229920002554 vinyl polymer Polymers 0.000 claims description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 3
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 claims description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 2
- 229920001577 copolymer Polymers 0.000 claims 2
- 238000004945 emulsification Methods 0.000 abstract 1
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 14
- 239000004568 cement Substances 0.000 description 14
- 238000005507 spraying Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 10
- 239000010425 asbestos Substances 0.000 description 9
- 239000004570 mortar (masonry) Substances 0.000 description 9
- 229910052895 riebeckite Inorganic materials 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 8
- 239000011490 mineral wool Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 229910000019 calcium carbonate Inorganic materials 0.000 description 7
- ZFAKTZXUUNBLEB-UHFFFAOYSA-N dicyclohexylazanium;nitrite Chemical compound [O-]N=O.C1CCCCC1[NH2+]C1CCCCC1 ZFAKTZXUUNBLEB-UHFFFAOYSA-N 0.000 description 7
- 239000004744 fabric Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000009970 fire resistant effect Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- -1 refractory oxides Substances 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- 239000004745 nonwoven fabric Substances 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000004567 concrete Substances 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 239000010440 gypsum Substances 0.000 description 4
- 229910052602 gypsum Inorganic materials 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 229920000915 polyvinyl chloride Polymers 0.000 description 4
- 239000004800 polyvinyl chloride Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 3
- 239000000378 calcium silicate Substances 0.000 description 3
- 229910052918 calcium silicate Inorganic materials 0.000 description 3
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000009415 formwork Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000036571 hydration Effects 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 210000001503 joint Anatomy 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- PDDANVVLWYOEPS-UHFFFAOYSA-N nitrous acid;n-propan-2-ylpropan-2-amine Chemical compound [O-]N=O.CC(C)[NH2+]C(C)C PDDANVVLWYOEPS-UHFFFAOYSA-N 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- GTLQZNKUEFUUIS-UHFFFAOYSA-N carbonic acid;cyclohexanamine Chemical compound OC(O)=O.NC1CCCCC1 GTLQZNKUEFUUIS-UHFFFAOYSA-N 0.000 description 2
- 239000011083 cement mortar Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000011381 foam concrete Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910001679 gibbsite Inorganic materials 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 208000037805 labour Diseases 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 235000014380 magnesium carbonate Nutrition 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- OAOABCKPVCUNKO-UHFFFAOYSA-N 8-methyl Nonanoic acid Chemical compound CC(C)CCCCCCC(O)=O OAOABCKPVCUNKO-UHFFFAOYSA-N 0.000 description 1
- 229910000809 Alumel Inorganic materials 0.000 description 1
- 238000004131 Bayer process Methods 0.000 description 1
- 229910021532 Calcite Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- SQSPRWMERUQXNE-UHFFFAOYSA-N Guanylurea Chemical compound NC(=N)NC(N)=O SQSPRWMERUQXNE-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 241000208202 Linaceae Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 229920000914 Metallic fiber Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical class [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- BHYTYRNNCQSTCG-UHFFFAOYSA-N cyclohexanamine;dodecanoic acid Chemical compound NC1CCCCC1.CCCCCCCCCCCC(O)=O BHYTYRNNCQSTCG-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001648 diaspore Inorganic materials 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- XOCPFOARSHYLBQ-UHFFFAOYSA-N dodecanoic acid;morpholine Chemical compound C1COCCN1.CCCCCCCCCCCC(O)=O XOCPFOARSHYLBQ-UHFFFAOYSA-N 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 239000011404 masonry cement Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- HFNYKMJSBDPKSF-UHFFFAOYSA-N n-cyclohexylcyclohexanamine;octanoic acid Chemical compound CCCCCCCC(O)=O.C1CCCCC1NC1CCCCC1 HFNYKMJSBDPKSF-UHFFFAOYSA-N 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 229910021646 siderite Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 229910009112 xH2O Inorganic materials 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/66—Monolithic refractories or refractory mortars, including those whether or not containing clay
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/92—Protection against other undesired influences or dangers
- E04B1/94—Protection against other undesired influences or dangers against fire
- E04B1/941—Building elements specially adapted therefor
- E04B1/943—Building elements specially adapted therefor elongated
- E04B1/944—Building elements specially adapted therefor elongated covered with fire-proofing material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/06—Oxides, Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/08—Acids or salts thereof
- C04B22/10—Acids or salts thereof containing carbon in the anion
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/08—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00482—Coating or impregnation materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S106/00—Compositions: coating or plastic
- Y10S106/02—Perlite
Definitions
- This invention relates to refractory coating compositions outstanding in fire resistance and to refractory coating methods.
- Refractory coating compositions useful in constructing buildings of steel frame structure, plants or the like are required to have specific fire resistance.
- the Ministry of Construction set a standard of fire resistance required in refractory structures.
- a method for fire resistance test is specifically defined in "Specified method for fire-resistant structures" in Notification No. 2999 (May 31, 1969) of Ministry of Construction.
- the testing conditions shown in the notification include, for example, the requirements for steel columns to be tested that the coated steel columns shall be heated in a furnace at about 1000°C for predetermined time, e.g., 1 hour in a 1-hour fire resistance test and that the temperature of the steel frame shall not exceed 350°C on the average.
- a variety of refractory coating compositions including those for spraying and those to be made into boards have been heretofore accredited as meeting the requirements.
- the refractory coating methods are roughly classified into two methods. One of them is called a dry method which comprises adhering to steel frame boards of calcium silicate, gypsum boards, asbestos cement slates or the like.
- the other method is a wet method which comprises coating steel frame with a mixture of coating material and water by spraying, troweling or concrete-placing or other means on a building site.
- the dry method is to stick dried boards to steel frame on a building site, eliminating the need of in-situ drying procedure unlike the wet method involving the use of water and thus can advantageously proceed to subsequent operation on completion of the procedure.
- dry boards With a smooth surface, dry boards can provide a surface to be decorated.
- the dry method has the drawbacks of involving cumbersome labors such as cutting the dry board in conformity with various shapes of substrate, fixing a joint between the boards in a complicated connection which tend to form gaps and repairing the damaged portions of boards generally prone to break and crack.
- the dry method is time-consuming in lifting boards to a higher position on a building site in contrast to the wet method capable of pumping up the coating material relatively easily to higher locations.
- the wet method particularly spraying method, is employed because of ease of operation instead of the dry method with these drawbacks.
- a formwork is set around a steel member and then concrete, lightweight concrete, cellular concrete or the like is placed into a space between the formwork and the steel member.
- mortar or lightweight mortar is applied with a trowel onto a lath base affixed to a steel member.
- the cured coat of these materials acts as a refractory material, utilizing the property of retarding the transfer of heat to steel members due to its large thermal capacity to an extent corresponding to the amount of externally applied heat consumed in heating the coating material.
- the coat requires a 30 mm or 40 mm thickness to achieve fire resistance for 1 hour, and is heavy in terms of the weight per unit area.
- Asbestos, rock wool or like flocculent materials containing a large amount of fine air serve to retard the transfer of heat due to their heat insulation properties. These materials are more lightweight than the materials described above in (1) but are applied thickly because the coat formed needs a thickness of about 30 mm to achieve 1-hour fire resistance.
- a mixture of inorganic powders such as asbestos, rock wool, cement and the like may be supplied through a hose as dispersed in air under pressure to the forward end of the hose to get mixed with water. Yet these powders, insufficiently mixed with water, may be strewn and throw dust into the atmosphere, causing the likelihood of significantly smearing the work environment.
- Vermiculite materials as well as the materials stated above in (1) and (2) are usable but have the shortcomings of involving great coat thickness as in the refractory coating materials (2) and tending to form, because of poor strength, coats which readily peel, separate or break.
- rock wool or other spray coating materials produce coats which can not withstand, owing to low adhesion, the jolt during transport and assembly operation, thus giving rise to peeling and separation.
- the operator can not stand on the coated steel members because of low strength. Further these coating materials can not be used in rain since the coat separates on exposure to rain.
- cement concrete type materials suffer the problem of making inconvenient the transport and the lift of coated steel members owing to extremely heavy weight per unit area.
- Dry boards such as boards of calcium silicate are susceptible to damage by rainfall tending to significantly diminish the strength of board on wetting with water and may require replacement of a partially broken board with a new board, involving time-consuming labor.
- refractory coating compositions of the invention are intended to find applications also in the precoat method to which known refractory coating materials have not been suitable.
- the present inventor has made various investigations to provide refractory coating materials with improved fire resistance.
- the inventor proposed in Japanese Patent Application No. 199118/1984 the preparation of a refractory composition with high fire resistance comprising specific amounts of a lightweight cement aggregate and a substance having a high degree of hydration.
- the inventor developed a highly refractory composition capable of forming coats with great adhesion, high weatherability, lightweight properties and amenability to small thickness.
- the term "lightweight” used herein refers to a bulk density of 1.0 or less, and the term “thin coat” to a coat which is 20 mm or less in terms of the thickness required for a steel beam to achieve 1-hour fire resistance according to the notification of the Ministry of Construction.
- composition capable of forming a refractory coat improved in fire resistance and outstanding in adhesion and weatherability can be prepared by adding, to a mixture of a hydraulic cement and a re-emulsion type powdery resin, specific amounts of a powdery aluminum hydroxide, a carbonate substance decomposable at 300 to 1000°C and a lightweight aggregate having open cells at a ratio of at least 50%.
- This refractory coating material can reduce the weight load to be supported by a steel frame structure and can be applied thinner. Further because of high adhesion to steel frame, the coat formed from this coating material is unlikely to peel or separate and is consequently high in durability and weatherability.
- the coating material if colored white, can produce coats having aesthetic properties in themselves and also decorative finishing properties of providing a coating surface with a colored finish, for example, when applied by a flat paint of inorganic polymer or the like. Such material is unknown.
- the components of the composition are all supplied in granular form and can be provided for use by being merely mixed by dry blending, packed in a bag, transported to the construction site and kneaded with water.
- This feature not only affords an advantage of high work efficiency but can obviate the problem of unstable properties of composition due to uneven mixing of components on a building site, the problem being frequently attendant on compositions of field mix-type such as 2-pot or 3-pot type.
- An additional advantage is given if the coating material is supplied in a bag made of, e.g., moisture-proof paper with which waste materials can be conveniently disposed of.
- the refractory composition When the refractory composition is applied to steel members in the form of a mass prepared by mixing and kneading with water the components, the refractory composition because of its particularly high adhesion can be applied to a steel member, for example, before transport to a building site. In that case, some in-situ coating procedures can be saved except application of the composition to, e.g., joints between steel members, connections therebetween and broken portions, whereby the term of works on a building site can be significantly shortened.
- refractory composition of the invention When used conjointly with sheet materials, further improvements can be achieved in terms of properties including the property of protecting the coating surface, aesthetic properties and durability.
- the refractory composition of the invention which is self-curable and self-adhesive, can eliminate the need to use a specific adhesive when the sheet materials are affixed to the surface of coat not cured.
- the formation of rust in the interior of steel members can be inhibited for a prolonged period of time by applying a gas-impervious sheet materials among said examples of sheet materials to the coating surface and incorporating a volatile corrosion inhibitor into the refractory composition. While a corrosion resistant paint in general is frequently applied to steel members, this method permits refractory coating directly over steel members, consequently simplifying the coating process.
- dry boards may be arranged with a predetermined space between the surface of a steel member and the boards.
- the refractory composition of the invention is placed into the space and cured to unite integrally the boards and the steel member, whereby the steel member is covered with a refractory coat which is firm and outstanding in surface smoothness.
- the refractory composition of the invention is not only used for application to steel frame but effectively usable as a material in a wet troweling method for priming a lightweight steel member.
- a wet troweling method for priming a lightweight steel member.
- boards or laths are adhered to light gauge steel studs held erect and then the refractory coating composition is applied to the surface of boards or laths by spraying or with a trowel.
- the refractory composition of the invention as kneaded with water exhibits high adhesion to the substrate and high strength so that the coat formed from the composition can retain the strength required of walls.
- the refractory composition of the invention capable of forming a coat with great surface strength and surface smoothness permits application of a paint or pasting of wall paper sheets both directly to the coating surface, hence excellent in aesthetic properties.
- the refractory composition of the invention has various advantages of, e.g. reducing the weight of the wall and markedly mitigating the weight load to be supported by
- hydraulic cements useful in the invention include those generally known such as portland cement, alumina cement, cement as mixed with lime, blast furnace cement, silica cement, fly ash cement, masonry cement, high-sulphate slag cement, etc. These cements impart strength to refractory coating materials.
- re-emulsion type powdery resin is used herein to include a powdery or granular resin prepared by drying the emulsion of synthetic resin obtained by emulsion polymerization and a powdery or granular resin prepared by drying the emulsion of synthetic resin obtained by post-emulsion. These resins can be easily emulsified with water.
- an emulsion of vinyl type synthetic resin is made into this form. Typical examples thereof are an ester of acrylic acid, ester of versatic acid, styrene, vinyl chloride, vinyl acetate, etc.
- ethylene-vinyl acetate type and vinyl acetate-vinyl versatate type are most preferred in view of high miscibility with hydraulic cement, coating efficiency in actual application of refractory material or ease of availability as an industrial product.
- particle size of the granule to be used is not specifically limited, but usually -60-mesh granules are used.
- the re-emulsion type powdery resin according to the invention affords various advantages of, e.g., preventing the lightweight aggregate from being strewn during coating operation, enhancing the coating efficiency, increasing the adhesion, precluding peeling of the coat on exposure to heat of relatively low temperature and retaining the finish stability of decorative finishing material for a long term.
- aluminum hydroxide used herein is intended to denote a substance represented by a chemical formula Al2O3 ⁇ xH2O.
- the value x of hydration degree varies with the circumstances of occurrence or producing process.
- useful aluminum hydroxides are natural minerals such as boehmite, gibbsite, diaspore and the like. etc.
- synthetic aluminum hydoxide prepared, e.g., by Bayer process. It is preferred to use aluminum hydroxide having a high hydration degree such as gibbsite.
- the particle size of aluminum hydroxide particles is not limited specifically although critically up to 1 mm. Usually used are aluminum hydroxide particles of 0.3 mm or less particle size.
- carbonate materials decomposable at 300 to 1000°C are heavy calcium carbonate obtained from natural minerals such as lime stone, calcite, marble or the like, industrially synthesized light calcium carbonate, magnesite, siderite, rhodochrosite, dolomite or the like among which heavy calcium carbonate is advantageously inexpensive and easily available.
- the desired particle size thereof is not specifically limitative if in the range of up to 1 mm.
- the ratio of aluminum hydroxide powder to carbonate material must be 15-85: 85-15, preferably 20-80: 80-20 in 100 parts by weight of a mixture of aluminum hydroxide powder and carbonate material. If aluminum hydroxide powder or carbonate material is used singly, it is impossible to achieve the object of the invention of forming a lightweight, thin, fully fire resistant coat. The object of the invention can be accomplished only when using the aluminum hydroxide powder and carbonate material in the above-specified ratio.
- the combined weight of aluminum hydroxide powder and carbonate material must be 50 to 600 parts by weight per 100 parts by weight of a hydraulic cement. If less than 50 parts by weight thereof is used, the contemplated fire resistance can not be afforded. If more than 600 parts by weight thereof is used, the hydraulic cement and re-emulsion type powdery resin serving as binders account for relatively smaller proportions of the composition, and the composition is imparted reduced strength, becoming unsuitable for practical use.
- the lightweight aggregate having open cells at a ratio of 50% or more used as the characteristic component according to the present invention is intended to include those prepared by foaming or expanding natural mineral or synthetic material and having a particle density of 1.2 kg/l or less.
- the particle size of the aggregate particles is not specifically limited but desirably about 10 mm or less in view of spray coating in which this range is sufficient to prevent clogging in a spray nozzle.
- Specific examples of useful lightweight aggregates are expanded perlite, expanded shale, expanded vermiculite, pumice, foamed silica gel, granulated or foamed clay and the like in which at least 50% of the total cells are open cells.
- Preferred lightweight aggregates are those having a great number of open cells and a small bulk specific gravity (particle bulk density of 0.3 kg/l or less), such as expanded perlite and expanded vermiculite. Also usable is an aggregate produced from closed cell aggregate by shattering or crushing and having open cells at an apparent ratio of at least 50%,
- the amount of lightweight aggregate having open cells at a ratio of 50% or more is 20 to 300 parts by weight per 100 parts by weight of a hydraulic cement. Less than 20 parts by weight of aggregate used fails to provide a coat with lightweight properties which is included in the object of the invention. More than 300 parts by weight thereof used diminishes the mechanical strength of resulting coat and leads to peeling and breaking due to poor adhesion, low surface strength or the like, hence undesirable.
- the composition of the invention may contain, when required, extenders such as powders of refractory clay, refractory oxides, quartz sand or lime; fibrous materials serving to prevent a crack from developing in the cured coat such as glass fibers, rock wool or pulp fibers; cellulose-type water-soluble resin powders as viscosity modifiers; surfactants as fluidity modifiers; pigments as coloring agents; or the like, all in a suitable amount which will not result in impairment of fire resistance nor in the reduction of mechanical strength or adhesion.
- extenders such as powders of refractory clay, refractory oxides, quartz sand or lime
- fibrous materials serving to prevent a crack from developing in the cured coat such as glass fibers, rock wool or pulp fibers
- cellulose-type water-soluble resin powders as viscosity modifiers
- surfactants as fluidity modifiers
- pigments as coloring agents
- the composition of the invention comprising the foregoing components is mixed with water and kneaded.
- the amount of water can be varied with the proportions of the components, the method used and other factors, but usually is about 60 to about 180 parts by weight per 100 parts by weight of the composition of the invention.
- water is added in an amount larger by 5 to 20% by weight than in the troweling method or spraying method.
- the kneaded mass is pumped up through a hose and is forced out as dispersed in air from the head of a spray nozzle to form a coat of specific thickness.
- troweling may be carried out. Generally these operations are conducted on a building site after assembling of steel members. Thereafter the composition thus applied is cured and dried, giving a refractory coat.
- Substantially the same coating methods as above are employable in the precoat method intended to shorten the term of works on a building site which method obviates the need of in-situ spray application by transporting directly to a building site steel members spray-covered with a refractory coating material at a steel working factory or elsewhere.
- sheets of polyethylene or the like are used, of course, to cover the portions which should not be coated at this stage such as the joints of steel members and connections in the deck.
- the application of coating material to the required portions is performed as a repair work on a building site after assembling of steel members.
- a method using sheet materials is very useful in protecting the surface more securely and giving aesthetic properties to the surface. This method is classified into the following two methods.
- a first method comprises adhering the sheet materials, by pressing, to an uncured coat formed from the kneaded mass of the invention over a steel member as shown in Fig. 1. Care should be taken to affix the sheet materials to the coat remaining soft. The sheet materials can not be fixed to the coat which has nearly cured. In this case, the sheet materials, even if seemingly held to the coat, actually keep feeble hold thereto with poor adhesion, involving the risk of separating later. It is desirable to adhere the sheet materials to the coat usually within about 1 hour after application of the composition, although depending on the proportions of the components.
- a second method comprises applying the kneaded mass onto sheet materials providing a top surface to a specific thickness sufficient to meet the fire resistance requirement, pressing the coated sheet materials before curing to a steel member with the coating surface directed to the steel member for integral union and curing the coat at ambient temperature.
- Such method can be used because the refractory coating composition of the invention is highly adhesive as mixed with water. Unlike the method spraying over a steel member of complicated shape, this method has the advantages of making easy the thickness control because of coating on the smooth surface of sheet materials and reducing the loss of composition arising from scattering.
- sheet material used herein is intended to include inorganic materials such as cloths, nonwoven fabrics or nets of glass fibers, ceramic fibers, carbon fibers or metallic fibers, metallic foils of aluminum, iron or stainless steel and organic materials such as paper sheets, films or sheets of polyvinyl chloride, polystyrene, polypropyrene or polyvinylidene chloride, fabrics or nonwoven fabrics of nylon, polyester or like synthetic fibers, cotton, flax, wool, silk or like natural fibers, etc.
- refractory coating composition per se is fully satisfactory in fire resistance
- useful sheet materials for providing a surface can be any of organic and inorganic materials among which incombustible or flame resistant materials are rather preferable.
- the method using sheet materials may provide a structure, for example, as shown in Fig. 5, with a space defined by the surrounding layer of refractory coating composition.
- the surface of steel member facing the space is in contact not with the layer of alkaline composition but with a highly humid atmosphere and is accordingly more prone to corrosion than the surface of steel member in intimate contact with the layer of alkaline composition.
- a method can be practiced using gas-impervious sheet materials as selected from the above-exemplified materials in combination with a volatile corrosion inhibitor.
- gas-impervious sheet materials are wax paper sheets, polyvinyl chloride films, polyethylene films, aluminum foils and the like which are at least 100 m2 ⁇ hr ⁇ mmHg/g in resistance to moisture penetration. These materials can be used singly or in laminated form.
- volatile corrosion inhibitor used herein refers to agents volatile at ambient temperature and capable of inhibiting the corrosion of metals. Volatile corrosion inhibitors effective against iron include, for example, nitrites, chromates or carbonates of amines, ester of carboxylic acid, mixtures thereof, etc.
- inhibitors are dicyclohexyl ammonium nitrite (DICHAN), dicyclohexylammonium caprylate, cyclohexylammonium carbonate (CHC), cyclohexylammonium laurate, diisopropylammonium nitrite (DIPAN), nitronaphthalinammonium nitrite (NITAN), a mixture of DICHAN (80%) and DIPAN (20%), mixture of monooctanolamine benzoate, urea and sodium nitrite, dicyandiamidine nitrite, morpholine laurate, etc. These inhibitors are all suitable to achieve the object of the invention.
- DICHAN type having a low vapor pressure is more preferable.
- the inhibitor is added in the form of powder or aqueous solution to the composition of the invention.
- a preferred amount of inhibitor is 0.05 to 5.0 parts by weight per 100 parts by weight of refractory coating composition as solids. Less than 0.05 part by weight of inhibitor is unlikely to produce a long-term anticorrosive effect, whereas more than the above range is disadvantageous in costs and unable to increase the effect.
- a refractory coating method which gives a structure as shown in Fig. 6.
- panels f are arranged around a steel member a to provide a specific space therebetween, and the refractory composition of the invention b is placed into the space.
- backers d are adhered to the steel member a.
- the backers d When the steel member a is not of wide-flange section but of square tubular section, the backers d, of course, need not be used.
- spacers e are affixed with an adhesive to the surface of the steel member a with specific spacing therebetween.
- the thickness of coat to be formed can be determined by the spacers e.
- the panels f are joined to the spacers e with the adhesive to form an enclosure the four corners of which are fixed with corner beads g.
- the kneaded mass of refractory composition is placed into the space by a concrete-placing method or the like and left to stand for curing.
- Useful materials for the backers d include an extensive range of materials conventionally used such as wire nettings, gypsum boards, asbestos cement slates, cemented excelsior boards, pulp cement flat boards, hard boards, etc.
- The-size of the backers d is suitably determined according to the wide-flange section steel member.
- the adhesive is not specifically limited and can be any of organic and inorganic adhesives, examples of the former being epoxy resins and examples of the latter being water-glass type and phosphate type adhesives.
- the spacers e serve as supports for forming a space between the steel member a and the panels f, and are preferably those made of inorganic, relatively fire resistant heat-insulating materials such as calcium silicate boards, lightweight foamed concrete boards, mortar boards, gypsum boards, etc.
- the spacers to be used measure usually about 20 mm ⁇ about 20 mm, and their thickness is varied according to the thickness of refractory composition layer, e.g., about 10 to about 40 mm.
- the panels f not only serve as a formwork to be filled with the refractory coating composition but provide a finish surface on the coat.
- Panel materials are properly selected and used according to the coat thickness. For example, if the refractory coating material can produce a coat having a thickness sufficient to meet fully the fire resistance requirement, the panel material is adequately selected over a wide range of materials without heed to the fire resistance of material. Examples thereof are gypsum boards, asbestos cement slates, cemented excelsior boards, pulp cement flat boards, plywoods, particle boards, hard boards, etc.
- Corner beads g are used to cover and reinforce the corners at the butt joint of panels f and are preferably made of stainless steel, aluminum or the like.
- this method can also use a volatile corrosion inhibitor as in the method employing sheet materials.
- This invention can achieve the following results.
- Powdery components were each weighed and mixed together by dry kneading in a mortar mixer into uniformly mixed powders. Water was added to the mixture in an amount suitable for spraying or troweling and the mixture was kneaded in a mortar mixer to give a pasty mixture.
- the paste was partly placed into a mold (40 mm ⁇ 40 mm ⁇ 160 mm) as defined in JIS R 5201 to determine the bulk density and the compressive strength thereof, and cured in a curing chamber at a temperature of 20°C and at a humidity of 65% for 2 days. Thereafter the mass was withdrawn from the mold and cured again in the same manner as above for 26 days (cured for 28 days in total), giving a specimen.
- Specimens for fire resistance test were each prepared by applying the refractory coating material to a wide-flange section steel member measuring 300 mm ⁇ 300 mm ⁇ 9 mm ⁇ 14 mm ⁇ 300 mm (length) to each of six different thicknesses (10, 15, 20, 25, 30 and 35 mm) and curing the coat at a temperature of 20°C and at a humidity of 65% for 28 days.
- Specimens for adhesion test were prepared by applying the refractory coating material to a hot rolled steel plate (75 mm ⁇ 150 mm ⁇ 3 mm) to a thickness of 10 mm and curing the coat in the same manner as above.
- the specimen prepared above in (1) was made into a panel measuring 40 mm ⁇ 40 mm. Pressure was applied to the specimen at a rate of 1 to 2 kg/sec as a rule.
- the specimen prepared above in (1) was set in a furnace using propane gas and heated according to the standard heating curve in JIS A 1304.
- the elevation of temperature, shown as a curve, of steel member was determined with a thermocouple (chromel-alumel thermocouple) embedded in a bore of the steel member in respect of specimens with varied thicknesses. Also determined was the heating time (min) taken until the steel member reached a temperature of 350°C which is the acceptable standard in the fire resistance test.
- Fig. 7 shows the results.
- the required weight per unit area was calculated in accordance with the following equation in which M is the coat thickness (mm) corresponding to 1-hour fire resistance and C is the bulk specific gravity: C ⁇ M (mm) ⁇ (1/10) ⁇ (100 ⁇ 100) ⁇ (1/1000) (kg/m2)
- Adhesion (F) Maximum load (P) 16 (kgf/cm2)
- Table 1 shows the components used in Examples to follow, and Table 2 the amounts thereof and the properties of the specimens in the Examples, and Tables 3 and 4 those in Comparison Examples.
- the properties of specimen prepared from the composition shown in Table 2 were determined.
- the specimen was found to be a highly fire resistant coating composition capable of forming a coat which was as thin as 16 mm in terms of the thickness corresponding to 1-hour fire resistance, as lightweight as 12.8 kg/m2 in the weight per unit area and as high as 2.2 kgf/cm2 in adhesion.
- a refractory coating composition as excellent as that of Example 1 was produced from the same components as used in Example 1 with the exception of using expanded vermiculite in place of the open-cell expanded perlite.
- a refractory coating composition was prepared using a resin powder in a larger amount of 30 parts, and aluminum hydroxide and calcium carbonate in reduced amounts.
- a refractory composition was prepared using magnesium carbonate in place of the calcium carbonate.
- a resin powder was used in an increased amount of 40 parts, and a mixture of expanded vermiculite and open-cell expanded perlite was used.
- the refractory coating compositions prepared in Examples 3, 4 and 5 were all excellent in properties and suitable to achieve the object of the invention.
- a refractory coating composition was prepared from the same components as used in Example 1 with the exception of not using the lightweight aggregate.
- the coat formed from this composition was as thin as 18 mm in terms of the thickness corresponding to the 1-hour fire resistance, but involved a great load to be supported by the structure in view of its high density and heavy weight of 28.8 kg/m2 per unit area.
- a refractory coating composition was prepared from the same components as used in Example 1 with the exception of using closed cell expanded perlite as lightweight aggregate.
- the coat formed from the composition was not great in respect of the thickness corresponding to 1-hour fire resistance.
- a refractory coating composition was prepared using aluminum hydroxide without use of carbonate material, and gave a coat similarly great in terms of the thickness corresponding to the 1-hour fire resistance.
- a refractory coating composition was prepared using calcium carbonate but without aluminum hydroxide, and gave a coat also great in terms of the thickness corresponding to the 1-hour fire resistance as in Comparison Example 3.
- composition prepared without resin powder gave a coat with an extremely reduced adhesion.
- composition prepared using an excess amount of resin powder formed a coat having a diminished fire resistance and great in the required thickness. Smoke was given off to a slight extent by application of heat.
- rock wool and cement mortar were each used.
- the rock wool-containing composition produced a coat greatest in the required fire resistance and the cement mortar-containing composition was the heaviest in the weight per unit area.
- Fig. 9 is a graph showing the relationship between the bulk density (g/cm2) and the thickness (mm) corresponding to 1-hour fire resistance plotted therein.
- Example 2 The same composition as used in Example 1 was kneaded with water by a mortar mixer. The resulting mass was sprayed with use of a mortar pump over a wide-flange section steel member measuring 200 mm ⁇ 400 mm ⁇ 7mm ⁇ 10 mm ⁇ 3 m (length) to an average thickness of 16 mm. Immediately thereafter a piece of nonwoven fabric of glass fiber with a mass of 300 g/m2 having glass chopped strands bonded to a 1.5 m length of the piece with epoxy resin was adhered by pressing directly to the uncured coat and the coat was cured for 2 weeks, whereby a coated steel member having 1-hour fire resistance was produced. The coated steel member was loaded onto a truck and carried away over a distance of about 50 km to check the peeling of the coat. The test revealed no release of coat.
- Example 2 The same composition as in Example 1 was kneaded with water in a mortar mixer and spread with a trowel over a glass cloth piece having a mass of 200 g/m2 and a thickness of about 0.18 mm to form a coat of 16 mm thickness. Thereupon the coated glass cloth piece was pressed with the hands and adhered onto the surface of a steel member identical in size with that used in Example 6, and the coat was cured spontaneously. The steel member covered with the glass cloth was found to have remarkable aesthetic properties and 1-hour fire resistance.
- the glass cloth-covered steel member was subjected to the same peel test and impact test as in Example 6, and was found to involve no release on the coating surface nor peeling on the surface of steel member.
- a refractory coating composition containing 0.5 part of DICHAN per 100 parts of the same components as used in Example 1 was sprayed in the same manner as in Example 6 over the entire circumferential surface of 1.5 m length of a steel member dimensionally identical with that used in Example 6. Onto the coat was immediately pressed and adhered a 0.5 mm-thick sheet of polyvinyl chloride laminated on its underside with a glass cloth piece to cover the entire coating surface therewith.
- a refractory coating composition free of DICHAN was applied onto the surface of remaining 1.5 m length thereof and the entire surface of the coat was covered with the same sheet as above.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Architecture (AREA)
- Inorganic Chemistry (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Building Environments (AREA)
- Paints Or Removers (AREA)
Claims (12)
Kneten der Mischung und Aufbringen der Masse auf die Oberfläche eines Stahlteils.
Kneten der Mischung, Aufbringen der Masse auf die Oberfläche eines Stahlteils und Anheften von Verkleidungsmaterialien an die Oberfläche des beschichteten Stahlteils vor der Härtung.
Kneten der Mischung, Aufbringen der Masse auf die Oberfläche von Verkleidungsmaterialien und Anheften der beschichteten Verkleidungsmaterialien an die Oberfläche eines Stahlteils vor der Härtung.
Befestigen von Platten rings um ein Stahlteil, um einen bestimmten Raum zwischen den Platten und der Oberfläche des Stahlteils zu schaffen, Einbringen einer Masse, die durch das Kneten einer feuerfesten Überzugs-Zusammensetzung, umfassend die folgenden Komponenten (i) bis (iv), mit Wasser hergestellt wurde, in diesen Raum und, Härten der Masse in diesem Raum:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP238703/86 | 1986-10-07 | ||
JP23870386 | 1986-10-07 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0285666A1 EP0285666A1 (de) | 1988-10-12 |
EP0285666A4 EP0285666A4 (de) | 1989-01-12 |
EP0285666B1 true EP0285666B1 (de) | 1991-05-08 |
Family
ID=17034032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87906598A Expired - Lifetime EP0285666B1 (de) | 1986-10-07 | 1987-10-07 | Feuerfeste zusammensetzung und feuerfeste beschichtungstechnik |
Country Status (5)
Country | Link |
---|---|
US (2) | US4956013A (de) |
EP (1) | EP0285666B1 (de) |
KR (1) | KR920003227B1 (de) |
AU (1) | AU590990B2 (de) |
WO (1) | WO1988002740A1 (de) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2722390B2 (ja) * | 1989-05-24 | 1998-03-04 | 日本セメント株式会社 | 耐火被覆材 |
US5336348A (en) * | 1992-12-16 | 1994-08-09 | W. R. Grace & Co.-Conn. | Method for forming a vermiculite film |
US5395442A (en) * | 1993-04-14 | 1995-03-07 | Boral Concrete Products, Inc. | Lightweight concrete roof tiles |
JP3439217B2 (ja) * | 1993-10-15 | 2003-08-25 | 品川白煉瓦株式会社 | 耐火物用パッキング材 |
US5945168A (en) * | 1997-02-27 | 1999-08-31 | Bogan; Jeffrey E. | Set modifying admixtures for refractory shotcreting |
US6537366B1 (en) | 2000-12-26 | 2003-03-25 | Color & Chemical Technologies, Inc. | Concrete admixture with improved durability and efflorescence control containing a highly resilient colorant |
FR2846732B1 (fr) * | 2002-11-04 | 2005-12-30 | Espa | Gaine de ventilation notamment pour systeme de conditionnement d'air |
US20050214493A1 (en) * | 2004-03-29 | 2005-09-29 | Cheng-Chung Yu | Refractory building structure formed by regeneration product made of waste material |
JP4751086B2 (ja) * | 2004-04-02 | 2011-08-17 | エスケー化研株式会社 | 発泡性耐火塗料 |
CN1315959C (zh) * | 2005-04-26 | 2007-05-16 | 四川大学 | 一种环保膨胀型饰面防火涂料 |
US20070294843A1 (en) * | 2006-06-23 | 2007-12-27 | Supplee William W | Integral or shake-on colorant admixture with improved color durability in concrete and other cementitious systems using highly resilient colorants organic or oxide in nature |
EA018727B1 (ru) * | 2008-03-04 | 2013-10-30 | Роквул Интернэшнл А/С | Противопожарная защита конструктивного элемента |
KR101142170B1 (ko) * | 2010-03-05 | 2012-05-03 | 주식회사 경동세라텍 | 닫힌셀의 팽창 퍼라이트를 이용한 보온재 |
GB201007259D0 (en) * | 2010-04-30 | 2010-06-16 | Woolstencroft David | Fire protection for buildings |
FR3035669B1 (fr) * | 2015-04-30 | 2018-11-23 | Saint Gobain Isover | Element de construction et dispositif de renforcement associe |
JP6772079B2 (ja) * | 2016-02-18 | 2020-10-21 | 黒崎播磨株式会社 | 耐火モルタル |
RU2669839C1 (ru) * | 2016-09-05 | 2018-10-16 | Цзянсу Алмайн Нью Материалс Сток Ко., Лтд | Огнеупорная бобина и способ ее изготовления |
JP6936630B2 (ja) * | 2017-06-09 | 2021-09-22 | 株式会社竹中工務店 | 耐火被覆梁 |
JP7219577B2 (ja) * | 2018-10-05 | 2023-02-08 | 黒崎播磨株式会社 | 熱間設置用定形目地材 |
KR102021458B1 (ko) * | 2019-05-28 | 2019-09-16 | 이방섭 | 공간부를 갖는 이중 내화 클레딩 조립체 |
KR102041780B1 (ko) * | 2019-05-28 | 2019-11-07 | 이방섭 | 내화 클레딩 조립체 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB757592A (en) * | 1953-04-22 | 1956-09-19 | V G London Ltd | Forming anti-corrosive surface coatings on metals |
FR2314904A1 (fr) * | 1975-06-20 | 1977-01-14 | Fritz Ullrich | Produit d'addition au mortier et au beton pour l'acceleration du debut de la prise |
JPS53128624A (en) * | 1977-04-16 | 1978-11-09 | Idemitsu Kosan Co | Gypsum compound |
FR2458519A1 (fr) * | 1979-06-05 | 1981-01-02 | Daussan & Co | Revetement pour proteger les constructions, notamment contre le feu et la chaleur |
FR2473474A1 (fr) * | 1980-01-14 | 1981-07-17 | Dussud Jean Benoit | Installation de manutention par table a billes |
JPS5710065A (en) * | 1980-06-19 | 1982-01-19 | Ebara Mfg | Absorption type heat pump |
-
1987
- 1987-10-07 US US07/221,830 patent/US4956013A/en not_active Expired - Lifetime
- 1987-10-07 AU AU80362/87A patent/AU590990B2/en not_active Ceased
- 1987-10-07 EP EP87906598A patent/EP0285666B1/de not_active Expired - Lifetime
- 1987-10-07 KR KR1019880700641A patent/KR920003227B1/ko not_active IP Right Cessation
- 1987-10-07 WO PCT/JP1987/000755 patent/WO1988002740A1/ja active IP Right Grant
-
1990
- 1990-06-29 US US07/545,792 patent/US5098504A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US4956013A (en) | 1990-09-11 |
KR920003227B1 (ko) | 1992-04-24 |
EP0285666A1 (de) | 1988-10-12 |
WO1988002740A1 (en) | 1988-04-21 |
US5098504A (en) | 1992-03-24 |
AU8036287A (en) | 1988-05-06 |
EP0285666A4 (de) | 1989-01-12 |
AU590990B2 (en) | 1989-11-23 |
KR880701694A (ko) | 1988-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0285666B1 (de) | Feuerfeste zusammensetzung und feuerfeste beschichtungstechnik | |
US4683019A (en) | Method of forming refractory coating on steel frame | |
EP0695796B1 (de) | Feuerfeste Zusammensetzung, Platte und Aussenwand für verschiedene Gebäude | |
US4229225A (en) | Cement-based powdered water-repellent composition, and its applications | |
US2993016A (en) | Dry plaster mix comprising aggregate, clay, cellulose derivative and amine aldehyde resin | |
CZ20021203A3 (cs) | Stavební materiál z laminátového kompozitu vláknitého cementu a sádry | |
JPH08232442A (ja) | 建築物の外部仕上げシステム | |
WO2001005591A1 (en) | High temperature heat transfer barrier and vapor barrier and methods | |
US5916392A (en) | Method of application and composition of coating for building surfaces | |
CA1291678C (en) | Fireproofed metal structural members and method of fabricating same | |
EP1186577A2 (de) | Flexible abbindende Fugenzusammensetzung | |
JP2686833B2 (ja) | 鉄に対する付着力の優れた耐火被覆組成物 | |
JPH11116311A (ja) | 壁塗り用モルタル組成物 | |
US4503109A (en) | Bonded aggregate structures and production thereof | |
JP2728131B2 (ja) | 防水工法 | |
JP3849981B2 (ja) | 建物用吹付材 | |
EP0147390B1 (de) | Gebundene aggregatstrukturen und deren herstellung | |
WO1985000586A1 (en) | Bonded aggregate structures and production thereof | |
JPH0119339B2 (de) | ||
JP2003155786A (ja) | 吸放湿性防火建材 | |
US20080245276A1 (en) | Lining mortar | |
JPS6141895Y2 (de) | ||
JP2502527B2 (ja) | 断熱施工法 | |
JPH0225849Y2 (de) | ||
RU2153562C2 (ru) | Конструкция из бетонного элемента с по меньшей мере одной облицовочной стеклянной плитой и способ ее изготовления (варианты) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19880606 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB IT NL SE |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19890112 |
|
17Q | First examination report despatched |
Effective date: 19900910 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 3769978 Country of ref document: DE Date of ref document: 19910613 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 87906598.5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19970926 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19970930 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19971002 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19971006 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19971030 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19971031 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981008 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981031 |
|
BERE | Be: lapsed |
Owner name: SHIKOKU KAKEN KOGYO CO. LTD Effective date: 19981031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19981007 |
|
EUG | Se: european patent has lapsed |
Ref document number: 87906598.5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990630 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19990501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051007 |