EP0282848A2 - Verfahren zur Herstellung von Polyolefinschaumstoffen - Google Patents

Verfahren zur Herstellung von Polyolefinschaumstoffen Download PDF

Info

Publication number
EP0282848A2
EP0282848A2 EP88103425A EP88103425A EP0282848A2 EP 0282848 A2 EP0282848 A2 EP 0282848A2 EP 88103425 A EP88103425 A EP 88103425A EP 88103425 A EP88103425 A EP 88103425A EP 0282848 A2 EP0282848 A2 EP 0282848A2
Authority
EP
European Patent Office
Prior art keywords
pressure
polyolefin
foam
blowing agent
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88103425A
Other languages
English (en)
French (fr)
Other versions
EP0282848A3 (de
EP0282848B1 (de
Inventor
Hermann Tatzel
Ludwig Dr. Zuern
Hans Dieter Zettler
Wolfberg Dr. Schneider
Gerhard Dr. Dembek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0282848A2 publication Critical patent/EP0282848A2/de
Publication of EP0282848A3 publication Critical patent/EP0282848A3/de
Application granted granted Critical
Publication of EP0282848B1 publication Critical patent/EP0282848B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment

Definitions

  • the invention relates to a process for the production of higher density polyolefin foams which predominantly have bulging, closed cells and which do not shrink in an undesirable manner.
  • the object of the present invention was to develop a process for the production of polyolefin foams which have a density between 30 and 300 g / l, which do not shrink in an undesirable manner and which have predominantly bulky, closed cells.
  • this object is achieved in that the polyolefin excipient gel is initially only partially relaxed before relaxing to atmospheric pressure and the foam is kept at elevated pressure until it has solidified under cooling.
  • the invention thus relates to a process for producing polyolefin foams having a density of 30 to 300 g / l by relaxing a homogeneous mixture of a polyolefin and 10 to 50% by weight, based on the polyolefin, of a volatile blowing agent and, if appropriate, of conventional additives, which has a temperature which is 10 ° C to 50 ° C below the DSC maximum of the polyolefin, and is at a pressure which is higher than the vapor pressure of the blowing agent at this temperature, which is characterized in that before the relaxation relaxed to atmospheric pressure first to a pressure of 0.1 to 10 bar overpressure and keeps the foam obtained under this pressure until it has cooled to a temperature which is at least 20 ° C. below the foaming temperature.
  • polyolefins are crystalline olefin polymers whose X-ray crystallinity is above 25% at 25 ° C.
  • Low, medium and high density polyethylenes are suitable for the process, for example the density 0.916 to 0.965, preferably 0.920 to 0.935 g / cm 3, as are produced by high, low and medium pressure processes, polypropylene and ethylene and propylene copolymers which are at least Contain 50 mol% of ethylene and / or propylene units.
  • Suitable comonomers are, for example, ⁇ -alkenes having up to 12 carbon atoms, such as propylene, butene, pentene, hexene, octene, and also vinyl esters, such as vinyl acetate, esters of acrylic acid, methacrylic acid, maleic acid or fumaric acid of alcohols which contain 1 to 8 carbon atoms .
  • the polyolefins generally have a melt index between 0.3 and 8, preferably between 1 and 3 and a melting range between 100 ° C and 170 ° C, and a shear viscosity between 1 ⁇ 103 and 1 ⁇ 106, measured in a rotary viscometer at 150 ° C and an angular frequency range from 10 -2 to 102s-1. Mixtures of different polyolefins can also be used. Ethylene homopolymers and copolymers which carry 1 to 5 side chains per 100 carbon atoms in the polymer chain, such as commercially available LDPE, LLDPE and HDPE types, are preferably used.
  • the volatile blowing agents used are hydrocarbons and halogenated hydrocarbons, the boiling point of which is between -40 and 80 ° C. at normal pressure. Suitable are branched and unbranched aliphatic and alicyclic hydrocarbons such as propane, propene, butane, butene, pentane, pentene, hexane, hexene, heptane, cyclobutane, cyclopentane, cyclohexane, as well as halogenated hydrocarbons such as trichlorofluoromethane, dichlorodifluoromethane, monochlorodifluoromethane, monochlorodifluoromethane, monochlorodifloromethane, monochlorodifluoromethane, monochlorodifluoromethane, Methylene chloride, ethyl chloride and ethylene chloride. Blowing agent mixtures can also be used. The blowing agent is used in an
  • the mixture of polyolefin and blowing agent to be released can optionally contain conventional additives in conventional amounts, such as pigments, dyes, fillers, flame retardants, antistatic agents, stabilizers, lubricants, plasticizers and nucleating agents.
  • the cell size can be regulated by using nucleating agents. Suitable nucleating agents are known from the prior art. Talc, calcium carbonate, calcium sulfate, diatomaceous earth, magnesium carbonate, magnesium hydroxide, magnesium sulfate, alumina and barium sulfate are suitable, for example.
  • the nucleating agent is generally used in amounts of 0.05 to 5% by weight, preferably 0.5 to 2% by weight, based on the polyolefin.
  • the blowing agent should be present in the polyolefin in dissolved or finely dispersed form.
  • the mixture is generally prepared in a conventional mixing device, e.g. in an extruder. However, it can also be done by impregnating the polyolefin with the blowing agent in a conventional pressure vessel.
  • the foaming temperature i.e. the temperature of the polyolefin blowing agent mixture immediately before the expansion is 10 ° C to 50 ° C, preferably 20 to 30 ° C below the DSC maximum of the polyolefin. As is known, the melting point of the polyolefin is lowered by the blowing agent dissolved in it. The foaming temperature must therefore also be above the softening point of the mixture. The optimum temperature for each mixture can easily be determined by preliminary tests.
  • the blowing agent-polymer mixture is under a pressure which is higher than the vapor pressure of the blowing agent at the foaming temperature.
  • the pressure is, for example, 10 to 100 bar, in particular 30 to 70 bar, excess pressure.
  • the polyolefin blowing agent gel is first depressurized to 0.1 to 10, preferably 0.5 to 5, in particular 0.5 to 2 bar overpressure before the expansion to atmospheric pressure and the foam obtained under this pressure for so long is held until it has cooled to a temperature which is at least 20 ° C., preferably at least 30 ° C., below the foaming temperature.
  • the foam solidifies.
  • the optimal temperature and residence time can easily be determined by preliminary tests. If the temperature is too high when relaxing to normal pressure, the foam continues to inflate and then shrinks during storage so that it does not have any bulging cells has more, or the foam tears open with inflation. It is important that the interior of the foam is sufficiently cooled and solidified.
  • the process control according to the invention largely prevents the foam from shrinking during storage. Due to the higher density of the foam, its strength is sufficiently high to withstand the external pressure even in the phase in which a vacuum in the cells, due to a higher permeation speed of the blowing agent compared to air or nitrogen, can be withstood.
  • the foam density can be adjusted by varying the pressure in the first relaxation phase.
  • blowing agent which is gaseous under the pressure and temperature conditions in the pressure relaxation chamber.
  • the pressure in the chamber is advantageously kept constant or largely constant. The blowing agent escaping from the foam can thus be easily recovered and reused.
  • the residence time in the pressure relief zone can vary within wide limits, for example between 0.5 and 60 minutes.
  • the foam obtained has a density between 30 and 300 g / l, preferably between 35 and 100, in particular 40 to 80 g / l.
  • a suitable choice of nozzles during extrusion can be used to produce any foam profiles, such as sheets, plates and round profiles.
  • the method is advantageously suitable for the production of foam particles, for example with a diameter of 1 to 50, in particular 5 to 20 mm.
  • the strand leaving the extrusion device is comminuted into particles by a conventional knock-off device before or after foaming.
  • the foam particles obtained can then be sintered in a conventional manner in a non-gas-tight mold by heating in a known manner to give moldings.
  • the particles can be crosslinked in the usual way by high-energy radiation before being welded into shaped bodies. Surprisingly, however, it is possible to produce moldings which are dimensionally stable and have a smooth surface, even with uncrosslinked foam particles produced in accordance with the invention.
  • the foams obtained have bulging cells with a diameter of between approximately 0.01 and 1 mm, depending on the type and amount of the nucleating agent that may be used. Higher density foams generally have smaller cells than low density foams.
  • an ethylene homopolymer (100 parts by weight), which was produced by the high pressure process and has a density of 0.920, is mixed with 1 part by weight of talc and 30 parts by weight of dichlorotetrafluoroethane under pressure.
  • the polyolefin blowing agent gel is cooled in the extruder to approx. 87 ° C. (approx. 20 ° C. below the DSC maximum (107 ° C.) of the polyolefin) and into a through a perforated nozzle in front of which a rotating knife star is arranged Chamber, which is under 4 bar overpressure, relaxes.
  • foam particles with a density of 25 g / l are obtained which shrink very strongly and have no bulging cells.
  • the resulting foam has a density of 52 g / l, has a smooth surface and is dimensionally stable.
  • blowing agent-containing melt is expanded to atmospheric pressure in the usual way immediately after leaving the nozzle, a foam with a density of 23 g / dm3 is obtained, which already has a volume change of approximately 50% and a folded surface after one day of storage.
  • the foam particles according to the invention can be processed in a conventional manner and without radiation crosslinking to give moldings with a density of 65 g / l.
  • the polyolefin / blowing agent mixture which is under a pressure of 60 bar, is expanded through a multi-hole nozzle into a chamber with 0.8 bar overpressure and, with a knife star located directly to the nozzle, into foam particles with a diameter of 9 mm and an L / D chopped off by 1.
  • the plump foam particles with a density of 40 g / dm3 are transferred under a filling pressure of 0.6 bar into a closed mold consisting of two half-shells, acted upon with 1.5 bar steam for 3.5 seconds and connected in a punctiform manner. After the steam has been released, the foam beads seal completely. After intensive cooling for 70 seconds, the foam body is removed from the mold. A foam with a density of 55 g / dm3 is obtained, which is used, for example, as edge protection in the packaging sector and is distinguished by excellent cushioning behavior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

Polyolefinschaumstoffe der Dichte 30 bis 300 g/l, die nicht nachschrumpfen und pralle Zellen aufweisen, werden durch Entspannen eines Polyolefin-Treibmittel-Gels hergestellt, wobei man zunächst auf 0,1 bis 10 bar Überdruck entspannt und den Schaumstoff unter diesem Druck so lange hält, bis er auf mindestens 20°C unter der Verschäumungstemperatur abgekühlt ist.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Polyolefinschaumstoffen höherer Dichte, die überwiegend pralle, geschlossene Zellen aufweisen und die nicht in unerwünschter Weise nachschrumpfen.
  • Es ist bekannt, Polyolefinschaumstoffe durch Entspannen eines erhitzten, unter Druck befindlichen homogenen Gemisches aus einem Polyolefin und einem flüchtigen Treibmittel herzustellen. In der Regel arbeitet man dabei in einer kontinuierlichen Mischvorrichtung unter Auspressen des Polyolefin-Treibmittel-Gels. Beim Entspannen in die Atmosphäre verdampft das Treibmittel unter Bildung eines weitgehend geschlossenzelligen Schaumstoffs. Nach diesem Verfahren, wie es beispielsweise in der DE-B 25 24 196 beschrieben wird, können nur Schaumstoffe im Dichtebereich unter 30 g/l erhalten werden, die anschließend in beträchtlichem Maße schrumpfen. Versucht man durch Erniedrigung des Treibmittelgehalts des Gels die Schaumstoffdichte zu erhöhen, so reicht die Verdampfungswärme des Treibmittels beim Entspannen nicht aus, um das Polyolefin so stark abzukühlen, daß es sich verfestigt. Der Schaumstoff kollabiert daher.
  • Aufgabe der vorliegenden Erfindung war es, ein Verfahren zur Herstellung von Polyolefinschaumstoffen zu entwickeln, die eine Dichte zwischen 30 und 300 g/l besitzen, die nicht in unerwünschter Weise nachschrumpfen und die überwiegend pralle, geschlossene Zellen aufweisen.
  • Gemäß der Erfindung wird diese Aufgabe dadurch gelöst, daß man das Polyolefin-Treimittel-Gel vor dem Entspannen auf Atmosphärendruck zunächst nur partiell entspannt und den Schaumstoff solange auf erhöhtem Druck hält, bis er sich unter Abkühlung verfestigt hat.
  • Gegenstand der Erfindung ist somit ein Verfahren zur Herstellung von Polyolefinschaumnstoffen der Dichte 30 bis 300 g/l durch Entspannen eines homogenen Gemisches aus einem Polyolefin und 10 bis 50 Gew.-%, bezogen auf das Polyolefin, eines flüchtigen Treibmittels und ggf. üblicher Zusatzstoffe, das eine Temperatur aufweist, die 10°C bis 50°C unterhalb des DSC-Maximums des Polyolefins liegt, und unter einem Druck steht, der höher ist als der Dampfdruck des Treibmittels bei dieser Temperatur, das dadurch gekennzeichnet ist, daß man vor dem Entspannen auf Atmosphärendruck zunächst auf einen Druck von 0,1 bis 10 bar Überdruck entspannt und den dabei erhaltenen Schaumstoff solange unter diesem Druck hält, bis er auf eine Temperatur abgekühlt ist, die mindestens 20°C unterhalb der Verschäumungstemperatur liegt.
  • Polyolefine im Sinne der Erfindung sind kristalline Olefinpolymerisate, deren Röntgenkrisallinität bei 25°C über 25 % liegt. Für das Verfahren eignen sich Polyethylene niedriger, mittlerer und hoher Dichte, beispielsweise der Dichte 0,916 bis 0,965, vorzugsweise 0,920 bis 0,935 g/cm³, wie sie nach Hoch-, Nieder- und Mitteldruckverfahren hergestellt werden, Polypropylen sowie Ethylen- und Propylencopolymere, die mindestens 50 Mol-% Ethylen-und/oder Propylen-Einheiten enthalten. Geeignete Comonomere sind beispielsweise α-Alkene mit bis zu 12 Kohlenstoffatomen, wie Propylen, Buten, Penten, Hexen, Octen, ferner Vinylester, wie Vinylacetat, Ester der Acrylsäure, Methacrylsäure, Maleinsäure oder Fumarsäure von Alkoholen, die 1 bis 8 C-Atome enthalten. Die Polyolefine besitzen im allgemeinen einen Schmelzindex zwischen 0,3 und 8, vorzugsweise zwischen 1 und 3 und einen Schmelzbereich zwischen 100°C und 170°C, sowie eine Scherviskosität zwischen 1 × 10³ und 1 × 10⁶, gemessen in einem Rotationsviskosimeter bei 150°C und einem Kreisfrequenzbereich von 10-² bis 10²s-¹. Auch Mischungen verschiedener Polyolefine können verwendet werden. Bevorzugt eingesetzt werden Ethylenhomo- und Copolymere, die in der Polymerkette pro 100 C-Atome 1 bis 5 Seitenketten tragen, wie handelsübliche LDPE-, LLDPE- und HDPE-Typen.
  • Auch alle anderen gemäß dem Stand der Technik für die Schaumstoffherstellung generell geeigneten Olefinpolymerisate sind für das vorliegende Verfahren verwendbar.
  • Als flüchtige Treibmittel werden Kohlenwasserstoffe und Halogenkohlenwasserstoffe verwendet, deren Siedepunkt bei Normaldruck zwischen -40 und 80°C liegt. Geeignet sind verzweigte und unverzweigte aliphatische und alicyclische Kohlenwasserstoffe wie Propan, Propen, Butan, Buten, Pentan, Penten, Hexan, Hexen, Heptan, Cyclobutan, Cyclopentan, Cyclohexan, sowie Halogenkohlenwasserstoffe, wie Trichlorfluormethan, Dichlordifluormethan, Monochlordifluormethan, Trichlortrifluorethan, Dichlortetrafluorethan, Methylchlorid, Methylenchlorid, Ethylchlorid und Ethylenchlorid. Auch Treibmittelgemische können verwendet werden. Das Treibmittel wird in einer Menge von 10 bis 50, beispielsweise 15 bis 45, vorzugsweise 20 bis 40 Gew.-%, bezogen auf das Polyolefin, verwendet.
  • Das zu entspannende Gemisch aus Polyolefin und Treibmittel kann ggf. übliche Zusatzstoffe in üblichen Mengen enthalten, wie Pigmente, Farbstoffe, Füllstoffe, Flammschutzmittel, Antistatika, Stabilisatoren, Gleitmittel, Weichmacher und Keimbildner.
  • Durch die Mitverwendung von Keimbildnern kann die Zellgröße reguliert werden. Geeignete Keimbildner sind aus dem Stand der Technik bekannt. Geeignet sind beispielsweise Talkum, Calciumcarbonat, Calciumsulfat, Diatomeenerde, Magnesiumcarbonat, Magnesiumhydroxid, Magnesiumsulfat, Tonerde und Bariumsulfat.
  • Man benutzt den Keimbildner im allgemeinen in Mengen von 0,05 bis 5, vorzugsweise 0,5 bis 2 Gew.-%, bezogen auf das Polyolefin.
  • Zur Herstellung des Schaumstoffs geht man von einem homogenen Gemisch aus Polyolefin, Treibmittel und ggf. Zusatzstoffen aus. Das Treibmittel soll dabei im Polyolefin in gelöster oder feinst dispergierter Form vorliegen. Die Herstellung des Gemisches erfolgt im allgemeinen in einer üblichen Mischvorrichtung, z.B. in einem Extruder. Sie kann aber auch durch Imprägnieren des Polyolefins mit dem Treibmittel in einem üblichen Druckgefäß erfolgen.
  • Die Verschäumungstemperatur, d.h. die Temperatur des Polyolefin-Treib­mittel-Gemisches unmittelbar vor dem Entspannen, liegt 10°C bis 50°C , vorzugsweise 20 bis 30°C unterhalb des DSC-Maximums des Polyolefins. Bekanntlich wird der Schmelzpunkt des Polyolefins durch das darin gelöste Treibmittel erniedrigt. Die Verschäumungstemperatur muß daher auch oberhalb des Erweichungspunkts des Gemisches liegen. Die optimale Temperatur läßt sich für jedes Gemisch leicht durch Vorversuche ermitteln.
  • Vor dem Entspannen steht das Treibmittel-Polymer-Gemisch unter einem Druck, der höher ist als der Dampfdruck des Treibmittels bei der Verschäumungstemperatur. Der Druck liegt beispielsweise bei 10 bis 100 bar, insbesondere 30 bis 70 bar Überdruck.
  • Erfindungswesentlich ist es, daß das Polyolefin-Treibmittel-Gel vor dem Entspannen auf Atmosphärendruck zunächst auf 0,1 bis 10, vorzugsweise 0,5 bis 5, insbesondere 0,5 bis 2 bar Überdruck entspannt wird und der erhaltene Schaumstoff so lange unter diesem Druck gehalten wird, bis er auf eine Temperatur abgekühlt ist, die mindestens 20°C, vorzugsweise mindestens 30°C, unterhalb der Verschäumungstemperatur liegt. Der Schaumstoff verfestigt sich dabei. Die optimale Temperatur und Verweilzeit läßt sich leicht durch Vorversuche ermitteln. Liegt die Temperatur beim Entspannen auf Normaldruck zu hoch, so bläht der Schaumstoff weiter auf und schrumpft anschließend beim Lagern, so daß er keine prallen Zellen mehr aufweist, oder aber der Schaumstoff reißt unter Nachblähen auf. Wichtig ist dabei, daß auch das Innere des Schaumstoffs genügend abgekühlt und verfestigt ist.
  • Die Zellen des Schaumstoffs stehen nach dem Entspannen auf Normaldruck unter einem erhöhten Treibgasdruck. Das Gas permeiert anschließend langsam in die Atmosphäre, während gleichzeitig Luft bzw. das Umgebungsgas in die Zellen eindringt. Durch die erfindungsgemäße Verfahrensführung wird überraschenderweise ein Schrumpfen des Schaumstoffs während des Lagerns weitgehend verhindert. Bedingt durch die höhere Dichte des Schaumstoffs ist seine Festigkeit genügend hoch, um auch in der Phase, in der zwischenzeitlich, bedingt durch eine höhere Permeationsgeschwindigkeit des Treibmittels im Vergleich zu Luft oder Stickstoff ein Unterdruck in den Zellen entsteht, dem Außendruck zu widerstehen.
  • Durch die Variation des Drucks in der ersten Entspannungsphase läßt sich die Schaumstoffdichte einstellen. Je höher der Druck, desto höher ist die Dichte. So lassen sich alle Bereiche von 30 bis 300 g/l verwirklichen.
  • Zweckmäßig legt man in der Druckentspannungskammer eine Luft- oder Stickstoffatmosphäre vor. Bedingt durch die Permeation des Treibmittels, reichert sich das Treibgas dann in der Druckkammer an. Man kann aber auch das unter den Druck- und Temperaturbedingungen in der Druckentspannungskammer gasförmige Treibmittel vorlegen. Der Druck in der Kammer wird vorteilhaft konstant oder weitgehend konstant gehalten. Das aus dem Schaumstoff entweichende Treibmittel kann dadurch leicht zurückgewonnen und wiederverwendet werden.
  • Es ist vorteilhaft, den Schaumstoff in der ersten Entspannungsphase relativ langsam abzukühlen, zweckmäßig mit einem Temperaturgradienten von 0,5 bis 5°C/Min.. Dadurch werden gleichzeitig Spannungen in den Zellwänden abgebaut und der Schaumstoff erhält eine verbesserte Temperaturbeständigkeit. Die Verweilzeit in der Druckentspannungszone kann in weiten Grenzen, etwa zwischen 0,5 und 60 Min. schwanken.
  • Beim anschließenden Entspannen auf Atmosphärendruck, zweckmäßig in eine Luft- oder Stickstoffatmosphäre, tritt keine oder allenfalls eine geringfügige Nachexpansion auf, die weniger als 10 Vol.-% beträgt und die weitgehend reversibel ist, d.h. beim Lagern sich zurückbildet. Der erhaltene Schaumstoff hat eine Dichte zwischen 30 und 300 g/l, vorzugsweise zwischen 35 und 100, insbesondere 40 bis 80 g/l. Durch geeignete Düsenwahl bei der Extrusion lassen sich beliebige Schaumstoffprofile herstellen, z.B. Bahnen, Platten und Rundprofile.
  • Das Verfahren ist vorteilhaft geeignet zur Herstellung von Schaumstoffpartikeln, beispielsweise mit einem Durchmesser von 1 bis 50, insbesondere 5 bis 20 mm. Dazu wird der die Extrusionsvorrichtung verlassende Strang nach dem Düsenaustritt durch eine übliche Abschlagvorrichtung vor oder nach dem Aufschäumen zu Partikeln zerkleinert. Die erhaltenen Schaumstoffpartikel können anschließend in üblicher Weise in einer nicht gasdicht schließenden Formn durch Erhitzen in bekannter Weise zu Formkörpern versintert werden. Die Partikel können vor dem Verschweißen zu Formkörpern in üblicher Weise durch energiereiche Strahlen vernetzt werden. Überraschenderweise gelingt aber die Herstellung von Formkörpern, die dimensionsstabil sind und eine glatte Oberfläche aufweisen, auch mit unvernetzten gemäß der Erfindung hergestellten Schaumstoffpartikeln.
  • Die erhaltenen Schaumstoffe haben pralle Zellen mit einem Durchmesser etwa zwischen 0,01 und 1 mm, je nach Art und Menge des ggf. mitverwendeten Keimbildners. Schaumstoffe höherer Dichte weisen dabei in der Regel kleinere Zellen auf als Schaumstoffe niederer Dichte.
  • Beispiel 1
  • In einem Doppelschneckenextruder (L/D = 40) wird ein Ethylenhomopolymerisat (100 Gewichtsteile), das nach dem Hochdruckverfahren hergestellt wurde und eine Dichte von 0,920 besitzt, mit 1 Gew.-Teil Talkum und 30 Gew.-Teilen Dichlortetrafluorethan unter Druck gemischt. Das Polyolefin-Treibmittel-Gel wird im Extruder auf ca. 87°C (ca. 20°C unter dem DSC-Maximum (107°C) des Polyolefins) abgekühlt und durch eine Lochdüse, vor der ein rotierender Messerstern angeordnet ist, in eine Kammer, die unter 4 bar Überdruck steht, entspannt. Nach einer Abkühlzeit von 10 min, während der sich der Schaumstoff auf 50°C abgekühlt hat, wird auf Atmosphärendruck entspannt. Es werden äußerst pralle nicht schrumpfende Schaumstoffteilchen (Durchmesser 12 mm, Zellgröße 0,2 mm) erhalten, die eine Dichte von 120 g/l aufweisen.
  • Erfolgt der Aufschäumvorgang unter Atmosphärendruck, so erhält man Schaumstoffteilchen der Dichte 25 g/l, die sehr stark schrumpfen und keine prallen Zellen aufweisen.
  • Beispiel 2
  • Man verfährt, wie im Beispiel 1 angegeben, setzt jedoch als Treibmittel statt Dichlortetrafluorethan 40 Gew.-Teile Dichlordifluormethan ein und preßt die treibmittelhaltige Schmelze durch eine Mehrlochdüse in einen Raum mit 2 bar Überdruck, läßt den Schaumstoff dort 6 min verweilen, bis er auf 50°C abgekühlt ist, und entspannt dann auf Normaldruck.
  • Der dabei resultierende Schaumstoff hat eine Dichte von 52 g/l, besitzt eine glatte Oberfläche und ist dimensionsstabil.
  • Wird die treibmittelhaltige Schmelze unmittelbar nach Verlassen der Düse in der üblichen Weise auf Atmosphärendruck entspannt, so wird ein Schaum mit einer Dichte von 23 g/dm³ erhalten, der bereits nach einem Tag Lagerung eine Volumenänderung von annähernd 50 % und eine gefaltete Oberfläche aufweist.
  • Die erfindungsgemäßen Schaumstoffteilchen können in üblicher Weise und zwar ohne Strahlenvernetzung zu Formteilen der Dichte 65 g/l verarbeitet werden.
  • Beispiel 3
  • In einem Einschneckenextruder (L/D = 20), dem ein zweiter Einwellenextruder nachgeschaltet ist, werden 100 Teile eines LLDPE mit breiter Molmassenverteilung und einer Dichte von 0,922 g/cm³, einem Melt Index (190/2,16) von 1,2 g/10 min, einer mittleren Molmasse von 115 000, einer Kristallinität von 45 %, einem Comonomerengehalt von 8,3 Gew.-% Buten-1, einem DSC-Maximum von 126°C, zwei Seitenverzweigungen pro 100 C-Atome und einer Viskosität von 4 × 10³ Pa.s gemessen bei 190°C und einer Schergeschwindigkeit von 10 s-¹, mit 0,3 Teile Talkum als Zellenregulator und 35 Teilen Difluordichlormethan, das unter einem Druck von 60 bar zudosiert wird, homogen bei 185°C vermischt und im 2. Extruder auf 100°C abgekühlt. Das unter einem Druck von 60 bar stehende Polyolefin-Treibmittel-Gemisch wird durch eine Mehrlochdüse in eine Kammer mit 0,8 bar Überdruck entspannt und dabei mit einem unmittelbar zu der Düse befindlichen Messerstern zu Schaumpartikeln mit einem Durchmesser von 9 mm und einem L/D von 1 abgehackt.
  • Nach einer Verweilzeit in der Überdruckkammer von 5 min, während der die Schaumpartikeln von 86°C (Temperatur nach der Verschäumung) auf 70°C abkühlen, wird auf Atmosphärendruck entspannt. Dabei werden pralle Schaumpellets mit einer Dichte von 40 g/dm³ erhalten
  • Erfolgt vergleichsweise dazu der Aufschäumvorgang unter Atmosphärendruck, so werden Schaumteilchen mit 26 g/dm³ erhalten, die jedoch stark nachschrumpfen.
  • Die prallen Schaumpartikeln mit einer Dichte von 40 g/dm³ werden unter einem Fülldruck von 0,6 bar in eine aus zwei Halbschalen bestehende geschlossene Form überführt, mit 1,5 bar Dampf 3,5 sec. beaufschlagt und dabei punktförmig verbunden. Nach dem Entspannen des Dampfes verschweißen die Schaumperlen vollends. Nach intensiver Kühlung von 70 sec. wird der Schaumkörper aus der Form entnommen. Man erhält einen Schaum mit einer Dichte von 55 g/dm³, der beispielsweise als Kantenschutz im Verpackungssektor Verwendung findet und sich durch hervorragendes Polsterverhalten auszeichnet.

Claims (6)

1. Verfahren zur Herstellung von Polyolefinschaumstoffen der Dichte 30 bis 300 g/l durch Entspannen eines homogenen Gemisches aus einem Polyolefin und 10 bis 50 Gew.-%, bezogen auf das Polyolefin, eines flüchtigen Treibmittels und gegebenenfalls üblicher Zusatzstoffe, das eine Temperatur aufweist, die 10°C bis 50°C unterhalb des DSC-Maximums des Polyolefins liegt, und unter einem Druck steht, der höher ist als der Dampfdruck des Treibmittels bei dieser Temperatur, dadurch gekennzeichnet, daß man vor dem Entspannen auf Atmosphärendruck zunächst auf einen Druck von 0,1 bis 10 bar Überdruck entspannt und den dabei erhaltenen Schaumstoff solange unter diesem Druck hält, bis er auf eine Temperatur abgekühlt ist, die mindestens 20°C unterhalb der Verschäumungstemperatur liegt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Entspannung des Gemisches durch Extrusion durch eine Düse erfolgt.
3. Verfahren nach Anspruch 1 bis 2, dadurch gekennzeichnet, daß die Entspannung in einer Atmosphäre aus Luft oder Stickstoff erfolgt.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß man zunächst auf einen Druck von 0,5 bis 5 bar Überdruck entspannt.
5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß man durch Mitverwendung eines Keimbildners die Zellgröße des Schaumstoffs auf 0,01 bis 1 mm reguliert.
6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß man Schaumstoffpartikel mit einem mittleren Durchmesser von 1 bis 50 mm herstellt.
EP88103425A 1987-03-14 1988-03-05 Verfahren zur Herstellung von Polyolefinschaumstoffen Expired - Lifetime EP0282848B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873708291 DE3708291A1 (de) 1987-03-14 1987-03-14 Verfahren zur herstellung von polyolefinschaumstoffen
DE3708291 1987-03-14

Publications (3)

Publication Number Publication Date
EP0282848A2 true EP0282848A2 (de) 1988-09-21
EP0282848A3 EP0282848A3 (de) 1991-09-11
EP0282848B1 EP0282848B1 (de) 1994-09-14

Family

ID=6323056

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88103425A Expired - Lifetime EP0282848B1 (de) 1987-03-14 1988-03-05 Verfahren zur Herstellung von Polyolefinschaumstoffen

Country Status (4)

Country Link
US (1) US4894191A (de)
EP (1) EP0282848B1 (de)
JP (1) JPS63236629A (de)
DE (2) DE3708291A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0476798A2 (de) * 1990-09-17 1992-03-25 The Furukawa Electric Co., Ltd. Verfahren und Vorrichtung zur Herstellung eines vernetzten thermoplastischen Kunstoffschaums

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246976A (en) * 1991-04-23 1993-09-21 Astro-Valcour, Inc. Apparatus for producing foamed, molded thermoplastic articles and articles produced thereby
US5202069A (en) * 1991-04-23 1993-04-13 Astro-Valcour, Inc. Method for producing foamed, molded thermoplastic articles
US5234963A (en) * 1992-05-13 1993-08-10 Gaia Research Production of encapsulated chemical foaming concentrates
DE19512059A1 (de) * 1995-03-31 1996-10-02 Huels Chemische Werke Ag Verfahren zur Herstellung von Formkörpern aus geschäumten Polyolefinen
US6773739B2 (en) * 2002-08-30 2004-08-10 Wenger Manufacturing, Inc Method and apparatus for extrusion of food products including back pressure valve/diverter
WO2007107584A2 (de) * 2006-03-22 2007-09-27 Basf Se Verfahren zur granulierung von leichtsiederhaltigen polymerschmelzen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2387730A (en) * 1942-04-07 1945-10-30 Du Pont Process for obtaining cork-like products from polymers of ethylene
US3194854A (en) * 1963-09-03 1965-07-13 Dow Chemical Co Process for producing thermoplastic foams
GB1059426A (en) * 1964-11-04 1967-02-22 Dow Chemical Co Foamed olefin copolymer blends
DE1504324A1 (de) * 1965-07-13 1969-09-04 Hans Grothoff Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Schaumstoffhalbzeugen aus thermoplastischen Kunststoffen
EP0095109A1 (de) * 1982-05-13 1983-11-30 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Verfahren zur Herstellung expandierter Polyolefinharzkörner
CH646096A5 (en) * 1980-01-24 1984-11-15 Schweizerische Viscose Foamed spheres of thermoplastic polymer and process for the production thereof
EP0126459A2 (de) * 1983-05-19 1984-11-28 Montedison S.p.A. Verfahren zur Herstellung von expandierbaren Granulaten aus thermoplastischen Polymeren und Vorrichtung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812225A (en) * 1967-01-23 1974-05-21 Furukawa Electric Co Ltd Method of manufacturing foamed crosslinked polyolefin slabs involving multiple expansion techniques and direct gas pressure
DE2524196C3 (de) * 1975-05-31 1979-04-26 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von Schaumstoff-Formkörpern aus Olefinpolymerisaten
JPS5645928A (en) * 1979-09-21 1981-04-25 Teijin Ltd Production of polyester extruded expanded article
US4271107A (en) * 1979-11-05 1981-06-02 Condec Corporation Foam extrusion apparatus and method
JPS5962122A (ja) * 1982-10-02 1984-04-09 Kanegafuchi Chem Ind Co Ltd 合成樹脂発泡体の製造方法及び装置
JPS60166442A (ja) * 1984-02-10 1985-08-29 Kanegafuchi Chem Ind Co Ltd ポリオレフイン発泡成形体の養生法
US4704239A (en) * 1984-04-28 1987-11-03 Japan Styrene Paper Corp. Process for the production of expanded particles of a polymeric material
US4676939A (en) * 1984-06-14 1987-06-30 Japan Styrene Paper Corporation Process for the production of expanded particles of a polypropylene resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2387730A (en) * 1942-04-07 1945-10-30 Du Pont Process for obtaining cork-like products from polymers of ethylene
US3194854A (en) * 1963-09-03 1965-07-13 Dow Chemical Co Process for producing thermoplastic foams
GB1059426A (en) * 1964-11-04 1967-02-22 Dow Chemical Co Foamed olefin copolymer blends
DE1504324A1 (de) * 1965-07-13 1969-09-04 Hans Grothoff Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Schaumstoffhalbzeugen aus thermoplastischen Kunststoffen
CH646096A5 (en) * 1980-01-24 1984-11-15 Schweizerische Viscose Foamed spheres of thermoplastic polymer and process for the production thereof
EP0095109A1 (de) * 1982-05-13 1983-11-30 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Verfahren zur Herstellung expandierter Polyolefinharzkörner
EP0126459A2 (de) * 1983-05-19 1984-11-28 Montedison S.p.A. Verfahren zur Herstellung von expandierbaren Granulaten aus thermoplastischen Polymeren und Vorrichtung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0476798A2 (de) * 1990-09-17 1992-03-25 The Furukawa Electric Co., Ltd. Verfahren und Vorrichtung zur Herstellung eines vernetzten thermoplastischen Kunstoffschaums
EP0476798A3 (en) * 1990-09-17 1992-04-15 The Furukawa Electric Co., Ltd. Method and apparatus for manufacturing a cross-linked thermoplastic resin foam

Also Published As

Publication number Publication date
JPS63236629A (ja) 1988-10-03
EP0282848A3 (de) 1991-09-11
EP0282848B1 (de) 1994-09-14
DE3851454D1 (de) 1994-10-20
DE3708291A1 (de) 1988-09-22
US4894191A (en) 1990-01-16

Similar Documents

Publication Publication Date Title
DE69721232T2 (de) Verfahren zur schnellen herstellung von extrudierten geschlossenzelligen schäumen niedriger dichte aus polypropylen
DE69630454T2 (de) Mikrozellschaum
DE602004004650T3 (de) Hochtemperaturbeständige polypropylenweichschäume niedriger dichte
DE1907114A1 (de) Verfahren zum Extrudieren von Polyolefinschaeumen
DE3741095A1 (de) Verfahren zur herstellung von schaumstoffen mit hoher druckfestigkeit
DE3882546T2 (de) Verfahren zur Herstellung von Schaumstoffkörpern aus linearem Polyäthylen mit niedriger Dichte.
DE3413083C2 (de)
EP0415744A2 (de) Verfahren zur Herstellung von expandierbaren Polyolefinschaumpartikeln
EP0282848B1 (de) Verfahren zur Herstellung von Polyolefinschaumstoffen
DE69922060T2 (de) Verfahren zur Herstellung von Schaumteilen aus Propylenpolymermaterialen mit hoher Schmelzfestigkeit
EP0530486B1 (de) Schaumstoffe auf Basis eines Impact-Copolymeren
EP0646619B1 (de) Verfahren zur Herstellung von Schaumperlen
EP0778310B1 (de) Verfahren zur Herstellung von Polyolefin-Schaumstoffpartikeln
DE10024756A1 (de) Vorexpandierte Teilchen aus Polypropylenharz, Verfahren zur Herstellung derselben und Verfahren zur Herstellung von in der Form geschäumten Gegenständen daraus
DE69230045T2 (de) Extrudierter polypropylenschaum mit geschlossenen zellen
DE69931138T2 (de) Vorexpandierte Polypropylenharzteilchen und Verfahren zur Herstellung eines Formkörpers daraus durch Schäumen in der Form
DE4200559A1 (de) Polyolefin-schaumstoffe mit homogener zellstruktur
DE1778373C3 (de) Verfahren zur Herstellung von im wesentlichen geschlossenzelligen, geformten Schaumstoffprodukten aus Olefinpolymeren
DE3853870T2 (de) Verfahren zur Herstellung von Propylenschaumstoff-Formkörpern.
EP0630935B1 (de) Verfahren zur Herstellung vorgeschäumter Polyolefin-Partikel
EP0828781B1 (de) Verfahren zur herstellung von expandierten polyolefin-partikeln
DE2126812A1 (de) Verfahren zur Herstellung von Schaumstoffen aus hochmolekularen Olefinpolymerisaten
EP0687709A1 (de) Polyolefin-Partikelschaum
EP0831115B1 (de) Verfahren zur Herstellung von expandierten Polyolefinpartikeln
DE2033007A1 (de) Verfahren zur Herstellung offenzelli ger Schaume aus Athylencopolymerisaten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19901227

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT NL

17Q First examination report despatched

Effective date: 19930114

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940921

REF Corresponds to:

Ref document number: 3851454

Country of ref document: DE

Date of ref document: 19941020

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010228

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010301

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020305

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20021001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070301

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070514

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070625

Year of fee payment: 20

BE20 Be: patent expired

Owner name: *BASF A.G.

Effective date: 20080305

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070308

Year of fee payment: 20