EP0282409B1 - Procédé de fabrication d'alcools par hydrogénolyse d'esters d'acides carboxyliques en présence d'un catalyseur contenant du ruthénium et de l'étain, du germanium ou du plomb - Google Patents

Procédé de fabrication d'alcools par hydrogénolyse d'esters d'acides carboxyliques en présence d'un catalyseur contenant du ruthénium et de l'étain, du germanium ou du plomb Download PDF

Info

Publication number
EP0282409B1
EP0282409B1 EP88400544A EP88400544A EP0282409B1 EP 0282409 B1 EP0282409 B1 EP 0282409B1 EP 88400544 A EP88400544 A EP 88400544A EP 88400544 A EP88400544 A EP 88400544A EP 0282409 B1 EP0282409 B1 EP 0282409B1
Authority
EP
European Patent Office
Prior art keywords
tin
germanium
lead
support
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88400544A
Other languages
German (de)
English (en)
Other versions
EP0282409A1 (fr
Inventor
Pierrick Louessard
Jean-Pierre Candy
Gil Mabilon
Jean-Paul Bournonville
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0282409A1 publication Critical patent/EP0282409A1/fr
Application granted granted Critical
Publication of EP0282409B1 publication Critical patent/EP0282409B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a catalytic process for the production of alcohols by hydrogenolysis of carboxylic acid esters.
  • This nickel-containing catalyst meets the concern of availability and cost of active metals.
  • the use of these catalysts to obtain high conversions often requires the use of relatively high temperatures. It is then observed that when the temperature increases, an increase in the activity of the catalyst is effectively obtained, but this gain is accompanied by a relatively large reduction in the selectivity for alcohols.
  • the selectivity for alcohol can be maintained at a relatively high level when the temperature increases if a catalyst is used comprising on a support ruthenium and at least one second metal chosen from the group consisting of tin, germanium and lead.
  • esters of carboxylic acids which can be converted into alcohols are advantageously chosen from the group of esters of monocarboxylic acids, for example esters of acetic, propionic, butyric, valeric, caproic, oleic or palmitic, or polycarboxylic acids in particular.
  • dicarboxylic acids such as for example the esters of oxalic, malonic or adipic acids, with linear or branched alkyl alcohols such as for example methanol or ethanol, or aralkylic alcohols such as for example benzyl alcohol, or aromatic hydroxy compounds for example phenol or polyols such as for example ethylene glycol.
  • R1 usually represents a hydrocarbyl radical, saturated or unsaturated, from 1 to 30 carbon atoms, for example an alkyl radical from C1 to C20, an aryl radical from C6 to C22 or an aralkyl radical from C7 to C30
  • R2 usually represents a hydrocarbyl radical from C1 to C30, for example an aryl radical from C6 to C22, an aralkyl radical from C7 to C30, or an alkyl radical from C1 to C20, and preferably R2 represents an alkyl radical from C1 to C10 and a particularly preferably methyl or ethyl.
  • a continuous or discontinuous reactor under a total pressure usually of about 10 to 100 bars (1 to 10 megapascals) and preferably about 30 to 80 bars (3 to 8 MPa), although can operate without disadvantage at higher pressures, for example up to 300 bar, at a temperature usually of about 180 to 330 ° C and preferably of about 200 to 280 ° C and with a hydrogen to ester molar ratio usually from approximately 2: 1 to 50: 1 and more advantageously from approximately 2: 1 to 10: 1, in the presence of a supported metal catalyst containing the following elements: ruthenium, the weight percentage of which is usually approximately 0, 1 to 5% and preferably about 0.5 to 3% and at least one element chosen from the group consisting of germanium, tin and lead and whose weight percentage is usually about 0.1 to 20% and more particularly around 1 to 12% and very advantageously approximately 2 to 5%.
  • ruthenium the weight percentage of which is usually approximately 0, 1 to 5% and preferably about 0.5 to 3% and at least one element chosen from the group consisting of germanium,
  • the support can be chosen from the group consisting of silica, the different types of alumina, the silica-aluminas, the aluminates of the elements of groups I A , II A or II B of the periodic table of the elements (Hanbook of Chemistry and Physics 66th edition 1985-86) such as for example aluminates of Na, K, Ca, Mg, Ba, Zn, Cd, mixed aluminates, and carbon.
  • a support chosen from the group consisting of silica, alkali and / or alkaline earth metal and / or zinc and / or cadmium aluminates and mixed aluminates.
  • the catalyst can be prepared by different procedures for impregnating the support and the invention is not limited to a specific procedure.
  • the impregnation operation consists, for example, in bringing the preformed support into contact with an aqueous or organic solution of a compound of the metal or metals chosen, the volume of solution preferably being in excess relative to the media retention volume or equal to this volume.
  • the ruthenium and the additional metal can be introduced simultaneously or successively.
  • the impregnated support is filtered, washed with distilled water, dried and calcined in air, usually between 110 and 600 ° C and preferably between 110 and 500 ° C.
  • the catalyst is reduced in hydrogen usually between 200 and 600 ° C and preferably between 300 and 500 ° C, this reduction can be carried out immediately after calcination, or later, at the user.
  • the element chosen from the group consisting of tin, germanium and lead can be introduced in aqueous solution or in hydrocarbon solution depending on the nature of the precursor used.
  • the catalyst is obtained by impregnation of the support using an aqueous or organic solution of at least one ruthenium compound, the volume of solution preferably being in excess relative to the volume of retention of the support. or equal to this volume.
  • the impregnated support is then filtered, optionally washed with distilled water then dried and calcined in air usually between about 110 ° C and about 600 ° C, and preferably between about 110 ° C and about 500 ° C, then reduced under hydrogen at a temperature usually between about 200 ° C and about 600 ° C and preferably between about 300 ° C and about 500 ° C; the product obtained is then impregnated with an aqueous or organic solution of a germanium, tin and / or lead compound in a particularly advantageous manner a solution of at least one hydrocarbyl germanium, one hydrocarbyl tin is used or a hydrocarbyl lead in a saturated hydrocarbon.
  • the use of a solvent is not essential when the germanium, tin and / or lead compound is itself liquid, as is for example the case for tetrabutyltin.
  • the product After having allowed contact between the support impregnated with ruthenium and the solution containing at least one germanium, tin or lead compound for several hours, the product is filtered, optionally washed using the solvent used to deposit the germanium, the tin and / or lead, dried and possibly calcined in air usually between about 110 ° C and about 600 ° C, preferably between about 110 ° C and 500 ° C. Before use, the catalyst is reduced under hydrogen, usually between approximately 200 ° C. and approximately 600 ° C. and preferably between approximately 300 ° C. and approximately 500 ° C. .
  • Another method is to knead the wet support powder with the catalyst precursors and then shape and dry.
  • metal precursors which can be used in the preparation of the catalyst are the following:
  • ruthenium it is possible to use compounds such as, for example, chlorides and salts of organic acids which are soluble in the impregnating solvent.
  • Organometallic ruthenium compounds can also be used in solution in an organic solvent, for example in a hydrocarbon.
  • hydrocarbons include saturated paraffinic hydrocarbons whose hydrocarbon chain contains from 6 to 12 carbon atoms, naphthenic hydrocarbons which contain from 6 to 12 carbon atoms in their molecule or even aromatic hydrocarbons containing from 6 to 11 carbon atoms in their molecule.
  • organometallic compounds of ruthenium By way of example of organometallic compounds of ruthenium, mention may be made of: triruthenium dodecacarbonyl, diruthenium ermacarboxyl, chlorocarbonyl compounds of ruthenium and ruthenium triacetylacetonate.
  • the element chosen from the group consisting of tin, germanium and lead can be introduced via compounds such as chlorides, bromides and tin nitrate, halides, lead nitrate and acetate, germanium chloride and oxalate in aqueous or organic solution or, preferably in the form of hydrocarbyl metals such as alkyls or arylmetals of tin, germanium and lead for example: tetraethyltin, tetramethyl- tin, tetrapropyl germanium, tetraethyl lead, diphenyl tin, diphenyl germanium, tetraphenyl lead advantageously in hydrocarbon solution.
  • compounds such as chlorides, bromides and tin nitrate, halides, lead nitrate and acetate, germanium chloride and oxalate in aqueous or organic solution or, preferably in the form of hydrocarbyl metals such as alkyls or
  • the support can be varied in nature, as already mentioned above.
  • a particularly suitable support has specific characteristics such as a specific surface, determined by the BET method, between 10 and 500 square meters per gram and preferably between 50 and 500 square meters per gram and a total pore volume of 0.2 to 1.3 cm3 / g of support and preferably 0 , 5 to 1.1 cm3 / g of support.
  • the catalyst advantageously undergoes an activation treatment under hydrogen at high temperature, for example 300-500 ° C., in order to obtain an active metallic phase.
  • the procedure for this treatment under hydrogen consists, for example, of a slow rise in temperature under a stream of hydrogen up to the maximum reduction temperature, for example between 300 and 500 ° C. and preferably between 350 and 450 ° C., followed by holding for for example 1 to 6 hours at this temperature.
  • the catalyst is then loaded into a tubular reactor and then reduced for 4 hours at 300 ° C. under a stream of hydrogen.
  • the bimetallic ruthenium-tin catalyst deposited on silica is incomparably more selective for the production of alcohol.
  • the alcohol selectivity obtained with the bimetallic catalyst varies relatively little when the temperature increases.
  • the catalytic properties are compared, at different temperatures, with respect to the hydrogenolysis of ethyl acetate of a catalyst comprising 0.58% by weight of nickel and 3% by weight of tin on the silica of the Example 1.
  • This catalyst is obtained by following the procedure described in Example 1, replacing the ruthenium compound with nickel acetate. All the other conditions are identical to those of Example 1. The results are shown in Table 3 below.
  • Example 2 It is proposed to manufacture ethanol from ethyl acetate under conditions identical to those adopted in Example 1.
  • the catalyst is based on ruthenium (1%) deposited on the silica of Example 1 and of a second element from the group of tin, germanium and lead.
  • the germanium and the lead are impregnated in hydrocarbon solution (normal-heptane) respectively in the form of tetraethyl-germanium and tetraethyl-lead.
  • hydrocarbon solution normal-heptane
  • the tin catalyst was described in Example 1.
  • the catalysts, thus prepared, are used in the same way as in Example 1 (T: 250 ° C, P: 50 bars, PPH: 4, H2 / ester molar ratio: 5).
  • Tin can therefore be replaced by germanium and lead without significant alteration of the catalytic properties of the active mass.
  • Catalysts based on ruthenium and tin are prepared according to the method described in Example 1 on supports based on aluminates of alkali metals, alkaline earth metals, zinc or cadmium. These supports have specific surfaces between 80 and 150 square meters per gram and pore volumes between 50 and 100 cm3 per 100 grams. The respective percentages of ruthenium and tin are given in Table 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • L'invention concerne un procédé catalytique de production d'alcools par hydrogénolyse d'esters d'acides carboxyliques.
  • La production d'alcools, et en particulier d'alcools gras, présente un intérêt considérable pour l'industrie.
  • L'hydrogénolyse catalytique des esters d'acides carboxyliques représente une voie intéressante de production de ces alcools mais elle s'est trouvée freinée jusqu'à présent par les inconvénients des catalyseurs connus:
    • les catalyseurs à base d'oxydes mixtes de cuivre et de chrome, dopés ou non, nécessitent de travailler sous pression élevée, dans la quasi totalité des cas supérieure à 20 MPa, et à une température comprise entre 250 et 350°C,
    • les catalyseurs à base de métaux de transition déposés sur un support obligent en général à travailler à une température moins élevée, inférieure à 250°C et de préférence à 200°C, pour limiter la dégradation de l'alcool formé en hydrocarbures; ce qui impose des pressions opératoires supérieures à 10 MPa pour obtenir de bonnes sélectivités à un niveau de conversion acceptable.
  • Récemment on a proposé, dans le brevet US-A-4 456 775 un catalyseur formé par une association de rhodium avec, par exemple de l'étain, déposé sur un support comme par exemple la silice ou l'alumine. Ce catalyseur permet d'obtenir dans des conditions opératoires relativement douces (température inférieure à environ 280°C et pression inférieure à environ 8 MPa) de bons rendements en alcools. Néanmoins, le coût élevé et la disponibilité limitée du rhodium sont des inconvénients importants dont il faut tenir compte et qui ont conduit la demanderesse à poursuivre des recherches dans le but de trouver un catalyseur fournissant de bons rendements en alcools, permettant de travailler dans des conditions relativement douces et ne présentant pas les inconvénients liés à l'emploi du rhodium.
  • Postérieurement, dans le brevet US-A-4 628 130 on a décrit l'hydrogénation d'un ester en alcool en présence d'un catalyseur contenant du nickel et au moins un second élément choisi dans le groupe constitué de l'étain, du germanium et du plomb, résultant de l'incorporation d'au moins un composé d'au moins un métal du groupe Sn, Ge et Pb à un support contenant du nickel ou à du nickel de Raney.
  • Ce catalyseur contenant du nickel répond au souci de disponibilité et de coût des métaux actifs. Néanmoins l'utilisation de ces catalyseurs pour obtenir des conversions élevées nécessite souvent d'employer des températures relativement élevées. On constate alors que lorsque la température croit on obtient effectivement une augmentation de l'activité du catalyseur, mais ce gain s'accompagne d'une diminution relativement importante de la sélectivité en alcools.
  • Il a été découvert, de façon surprenante, que la sélectivité en alcool peut être maintenue a un niveau relativement élevé quand la température augmente si l' on utilise un catalyseur comprenant sur un support du ruthénium et au moins un second métal choisi dans le groupe constitué de l'étain, du germanium et du plomb.
  • Les esters d'acides carboxyliques qui peuvent être transformés en alcools sont avantageusement choisis dans le groupe des esters d'acides monocarboxyliques, par exemple les esters d'acides acétique, propionique, butyrique, valérique, caproïque, oléïque ou palmitique, ou polycarboxyliques en particulier dicarboxyliques comme par exemple les esters des acides oxalique, malonique ou adipique, avec des alcools alkyliques linéaires ou branchés tels que par exemple le méthanol ou l'éthanol, ou des alcools aralkyliques tels que par exemple l'alcool benzylique, ou des composés hydroxylés aromatiques par exemple le phénol ou des polyols tels que par exemple l'éthylène glycol. Il est également possible d'hydrogéner des polyesters ou des esters cycliques, en particulier les lactones, par exemple la valérolactone ou la caprolactone. L'hydrogénation d'un ester d'un monoacide carboxylique avec un monoalcool, sans modification de la structure de la chaine hydrocarbonée, est représentée par le schéma suivant:
    Figure imgb0001

    où R₁ représente habituellement un radical hydrocarbyl, saturé ou insaturé, de 1 à 30 atomes de carbone, par exemple un radical alkyl de C₁ à C₂₀, un radical aryl de C₆ à C₂₂ ou un radical aralkyl de C₇ à C₃₀ et R₂ représente habituellement un radical hydrocarbyl de C₁ à C₃₀, par exemple un radical aryl de C₆ à C₂₂, un radical aralkyl de C₇ à C₃₀, ou un radical alkyl de C₁ à C₂₀, et de préférence R₂ représente un radical alkyl de C₁ à C₁₀ et d'une façon particulièrement préférée méthyl ou éthyl.
  • On opère de préférence dans un réacteur continu ou discontinu sous une pression totale habituellement d'environ 10 à 100 bars (1 à 10 mégapascals) et de préférence d'environ 30 à 80 bars (3 à 8 MPa), bien que l'on puisse opérer sans inconvénient à des pressions plus élevées, par exemple jusqu'à 300 bars, à une température habituellement d'environ 180 à 330°C et de préférence d'environ 200 à 280°C et avec un rapport molaire hydrogène sur ester habituellement d'environ 2: 1 à 50: 1 et plus avantageusement d'environ 2: 1 à 10: 1, en présence d'un catalyseur métallique supporté renfermant les éléments suivants: le ruthénium dont le pourcentage pondéral est habituellement d'environ 0,1 à 5% et de préférence d'environ 0,5 à 3% et au moins un élément choisi dans le groupe constitué par le germanium, l'étain et le plomb et dont le pourcentage pondéral est habituellement d'environ 0,1 à 20% et plus particulièrement d'environ 1 à 12% et très avantageusement d'environ 2 à 5%. On peut avantageusement utiliser à la fois deux des métaux du groupe ci-dessus ou même les trois métaux de ce groupe; le support peut être choisi dans le groupe constitué par la silice, les différents types d'alumine, les silices-alumines, les aluminates des éléments des groupes IA, IIA ou IIB de la classification périodique des éléments (Hanbook of Chemistry and Physics 66ième edition 1985-86) comme par exemple les aluminates de Na, K, Ca, Mg, Ba, Zn, Cd, les aluminates mixtes, et le charbon. On emploie de préférence un support choisi dans le groupe constitué par la silice, les aluminates de métaux alcalins et/ou alcalino-terreux et/ou de zinc et/ou de cadmium et les aluminates mixtes.
  • Le catalyseur peut être préparé par différentes procédures d'imprégnation du support et l'invention n'est pas limitée à une procédure déterminée. L'opération d'imprégnation consiste, par exemple, à mettre en contact le support préformé et une solution aqueuse ou organique d'un composé du métal ou des métaux choisi(s), le volume de solution étant de préférence en excès par rapport au volume de rétention du support ou égal à ce volume. On peut introduire le ruthénium et le métal additionnel simultanément ou successivement. Après avoir laissé le contact entre le support et la solution pendant plusieurs heures, le support imprégné est filtré, lavé à l'eau distillée, séché et calciné sous air habituellement entre 110 et 600°C et de préférence entre 110 et 500°C. Avant utilisation, on réduit le catalyseur sous hydrogène habituellement entre 200 et 600°C et de préférence entre 300 et 500°C, cette réduction pouvant être effectuée aussitôt après calcination, ou plus tard, chez l'utilisateur.
  • L'élément choisi dans le groupe constitué par l'étain, le germanium et le plomb peut être introduit en solution aqueuse ou en solution hydrocarbonée selon la nature du précurseur utilisé.
  • D'une manière préférée le catalyseur est obtenu par imprégnation du support à l'aide d'une solution aqueuse ou organique d'au moins un composé de ruthénium, le volume de solution étant de préférence en excès par rapport au volume de rétention du support ou égal à ce volume. Le support imprégné est ensuite filtré, éventuellement lavé à l'eau distillée puis séché et calciné sous air habituellement entre environ 110°C et environ 600°C, et de préférence entre environ 110°C et environ 500°C, puis ensuite réduit sous hydrogène à une température habituellement comprise entre environ 200°C et environ 600°C et de préférence entre environ 300°C et environ 500°C; le produit obtenu est alors imprégné par une solution aqueuse ou organique d'un composé de germanium, d'étain et/ou de plomb d'une manière particulièrement avantageuse on utilise une solution d'au moins un hydrocarbyl-germanium, un hydrocarbyl-étain ou un hydrocarbyl-plomb dans un hydrocarbure saturé.
  • Parmi les solvants organiques utilisables dans le cadre de l'invention on peut citer à titre d'exemples non limitatifs les hydrocarbures, les hydrocarbures halogénés, les cétones et les éthers. L'emploi d'un solvant n'est pas indispensable lorsque le composé de germanium, d'étain et/ou de plomb est lui-même liquide comme cela est par exemple le cas pour le tétrabutylétain.
  • Après avoir laissé le contact entre le support imprégné de ruthénium et la solution contenant au moins un composé de germanium, étain ou plomb pendant plusieurs heures, le produit est filtré, éventuellement lavé à l'aide du solvant employé pour déposer le germanium, l'étain et/ou le plomb, séché et éventuellement calciné sous air habituellement entre environ 110°C et environ 600°C, de préférence entre environ 110°C et 500°C. Avant utilisation on réduit le catalyseur sous hydrogène habituellement entre environ 200°C et environ 600°C et de préférence entre environ 300°C et environ 500°C, cette réduction pouvant être effectuée aussitôt après la calcination, ou plus tard chez l'utilisateur.
  • Une autre méthode consiste à malaxer la poudre humide de support avec les précurseurs du catalyseur et à mettre ensuite en forme et sécher.
  • Les exemples des précurseurs métalliques utilisables dans la préparation du catalyseur sont les suivants:
  • Pour le ruthénium, on peut employer des composés tels que par exemple les chlorures et les sels d'acides organiques solubles dans le solvant d'imprégnation.
  • A titre d'exemple non limitatif on peut citer: les chlorures de ruthénium, le chlororuthénate d'ammonium, le trichlorure de ruthénium hexammine, le dichlorure de ruthénium chloropentammine, l'acétate de ruthénium III, et le trioxalate de ruthénium III. On peut encore utiliser des composés organométalliques de ruthénium en solution dans un solvant organique, par exemple dans un hydrocarbure. Comme exemples d'hydrocarbures on peut citer les hydrocarbures paraffiniques saturés dont la chaîne hydrocarbonée renferme de 6 à 12 atomes de carbone, les hydrocarbures naphténiques qui renferment de 6 à 12 atomes de carbone dans leur molécule ou encore les hydrocarbures aromatiques renfermant de 6 à 11 atomes de carbone dans leur molécule.
  • A titre d'exemple de composés organométalliques de ruthénium on peut citer: le triruthénium dodécacarbonyle, le diruthénium erméacarboxyle, les composés chlorocarbonyles du ruthénium et le triacétylacétonate de ruthénium.
  • L'élément choisi dans le groupe constitué de l'étain, du germanium et du plomb peut être introduit par l'intermédiaire de composés tels que les chlorures, les bromures et le nitrate d'étain, les halogénures, nitrate et acétate de plomb, le chlorure et l'oxalate de germanium en solution aqueuse ou organique ou, de préférence sous forme d'hydrocarbyl métaux tels que des alkyls ou des arylmétaux d'étain, de germanium et de plomb par exemple: le tétraéthyl-étain, le tétraméthyl-étain, le tétrapropyl-germanium, le tétraéthyl-plomb, le diphényl-étain, le diphényl-germanium, le tétraphényl-plomb avantageusement en solution hydrocarbonée.
  • Le support peut être de nature variée, comme déjà mentionné plus haut. Un support particulièrement adapté possède des caractéristiques spécifiques telles qu'une surface spécifique, déterminée par la méthode B.E.T., comprise entre 10 et 500 mètres carrés par gramme et de préférence comprise entre 50 et 500 mètres carrés par gramme et un volume poreux total de 0,2 à 1,3 cm³/g de support et de préférence de 0,5 à 1,1 cm³/g de support.
  • Une fois les métaux fixés sur le support, le catalyseur subit avantageusement un traitement d'activation sous hydrogène à haute température, par exemple 300-500°C, afin d'obtenir une phase métallique active. La procédure de ce traitement sous hydrogène consiste par exemple en une montée lente de la température sous courant d'hydrogène jusqu'à la température maximale de réduction, comprise par exemple entre 300 et 500°C et de préférence entre 350 et 450°C, suivie d'un maintien pendant par exemple 1 à 6 heures à cette température.
  • Les exemples suivants, non limitatifs, illustrent l'invention.
  • EXEMPLE 1:
  • La préparation du catalyseur se fait en deux étapes:
    • fixation du ruthénium par imprégnation de chlorure de ruthénium chloropentammine en solution ammoniacale sur une silice dont la surface spécifique est égale à 280 m² par gramme et le volume poreux total est égal à 80 cm³ pour 100 grammes, suivies d'une filtration, d'un séchage à 110°C, d'une calcination sous air à 450°C et d'une réduction sous hydrogène à 450°C,
    • fixation de l'étain sur le support préimprégné par le ruthénium calciné et réduit, sous forme de tétraéthyl-étain en solution dans le normal-heptane. Après avoir laissé en contact pendant 4 heures le support préimprégné par le ruthénium et la solution de tétraéthylétain au reflux de l'heptane, le catalyseur est lavé par l'heptane puis séché.
  • Le catalyseur est ensuite chargé dans un réacteur tubulaire puis réduit pendant 4 heures à 300°C sous courant d'hydrogène.
  • Les conditions opératoires pour l'hydrogénolyse de l'acétate d'éthyle sont les suivantes:
    • pression: 50 bars (5,0 MPa)
    • PPH: 4 kg/kg de catalyseur/h
    • rapport molaire H₂/ester: 5.
  • Dans cette première série d'essais on a fait varier la teneur en étain des catalyseurs en partant d'un catalyseur de base contenant 1% en poids de ruthénium. La température de travail a été fixée à 250°C. Les résultats sont donnés dans le tableau 1 ci-après:
    Figure imgb0002
  • EXEMPLE 2:
  • On compare, à différentes températures, les propriétés catalytiques, vis-à-vis de l'hydrogénolyse de l'acétate d'éthyle, de deux catalyseurs: l'un à base de 1,0% de ruthénium sur la silice de l'exemple 1, l'autre à base de 1% de ruthénium et 3,0% d'étain sur le même support de silice. Toutes les autres conditions sont identiques à celles de l'exemple 1. Les résultats figurent dans le tableau 2 ci-après.
    Figure imgb0003
  • Dans tout l'intervalle de température considéré, on observe que le catalyseur bimétallique ruthénium-étain déposé sur silice est incomparablement plus sélectif pour la production d'alcool. La sélectivité en alcool obtenue avec le catalyseur bimétallique varie relativement peu lorsque la température augmente.
  • EXEMPLE 3 (comparatif)
  • On compare, à différentes températures, les propriétés catalytiques, vis à vis de l'hydrogénolyse de l'acétate d'éthyle d'un catalyseur comprenant 0,58% poids de nickel et 3% poids d'étain sur la silice de l'exemple 1. Ce catalyseur est obtenu en suivant la procédure décrite dans l'exemple 1 en remplaçant le composé de ruthénium par de l'acétate de nickel. Toutes les autres conditions sont identiques à celles de l'exemple 1. Les résultats figurent dans le tableau 3 ci-après.
    Figure imgb0004
  • EXEMPLE 4 (comparatif).
  • On compare à différentes températures, les propriétés catalytiques, vis à vis de l'hydrogénolyse de l'acétate d'éthyle, d'un catalyseur comprenant 1% poids de rhodium et 3% poids d'étain sur la silice de l'exemple 1. Ce catalyseur est obtenu en suivant la procédure décrite dans l'exemple 1 en remplaçant le composé de ruthénium en solution ammoniacale par le trichlorure de rhodium en solution aqueuse. Toutes les autres conditions sont identiques à celles de l'exemple 1. Les résultats figurent dans le tableau 4 ci-après.
    Figure imgb0005
  • EXEMPLE 5:
  • On propose de fabriquer de l'éthanol à partir d'acétate d'éthyle dans des conditions identiques à celles adoptées dans l'exemple 1. Le catalyseur est à base de ruthénium (1%) déposé sur la silice de l'exemple 1 et d'un deuxième élément du groupe de l'étain, du germanium et du plomb.
  • Le germanium et le plomb sont imprégnés en solution hydrocarbonée (normal-heptane) respectivement sous forme de tétraéthyl-germanium et de tétraéthyl-plomb. Le catalyseur à l'étain a été décrit à l'exemple 1.
  • Les catalyseurs, ainsi préparés, sont mis en oeuvre de la même façon que dans l'exemple 1 (T: 250°C, P: 50 bars, PPH: 4, rapport molaire H₂/ester: 5).
  • Les résultats sont donnés dans le tableau 5 ci-après.
    Figure imgb0006
  • L'étain peut donc être remplacé par le germanium et le plomb sans altération significative des propriétés catalytiques de la masse active.
  • EXEMPLE 6:
  • On prépare selon la méthode décrite dans l'exemple 1, des catalyseurs à base de ruthénium et d'étain sur des supports à base d'aluminates de métaux alcalins, alcalino-terreux, de zinc ou de cadmium. Ces supports ont des surfaces spécifiques comprises entre 80 et 150 mètres carré par gramme et des volumes poreux compris entre 50 et 100 cm³ pour 100 grammes. Les pourcentages respectifs de ruthénium et d'étain sont donnés dans le tableau 6.
  • L'hydrogénolyse de l'acétate d'éthyle a été effectuée dans des conditions identiques à celles de l'exemple 1 si ce n'est que la température de réaction est portée à 280°C. Les résultats sont rassemblés dans le tableau 6 ci-après.
    Figure imgb0007
  • On peut donc avantageusement utiliser les aluminates de métaux alcalins, alcalino-terreux et/ou de zinc et/ou de cadmium comme supports de catalyseur.
  • EXEMPLE 7:
  • On se propose de fabriquer différents alcools à partir de divers esters en présence d'un catalyseur à base de ruthénium (1%) et d'étain (3%) déposés sur silice et dans des conditions opératoires identiques à celles de l'exemple 1.
  • Les esters utilisés sont les suivants:
    • acétate de butyle secondaire,
    • acétate d'amyle,
    • acétate d'hexyle,
    • caprate d'éthyle,
    • palmitate de méthyle,
    • oléate de méthyle.
  • Les résultats sont groupés dans le tableau 7 ci-après.
    Figure imgb0008

Claims (10)

1. Procédé de fabrication d'alcools dans lequel un ester d'acide carboxylique est traité par l'hydrogène en présence d'un catalyseur caractérisé en ce que le catalyseur renferme un support, du ruthénium et au moins un élément du groupe formé par l'étain, le germanium et le plomb.
2. Procédé selon la revendication 1 dans lequel le catalyseur renferme de 0,1 à 5% en poids de ruthénium et de 0,1 à 20% en poids d'au moins un élément du groupe formé par l'étain, le germanium et le plomb.
3. Procédé selon la revendication 1 dans lequel le catalyseur renferme de 0,5 à 3% en poids de ruthénium et de 1 à 12% en poids d'au moins un élément du groupe formé par l'étain, le germanium et le plomb.
4. Procédé selon l'une des revendications 1 à 3 dans lequel le support présente une surface de 10 à 500 m² × g⁻¹ et un volume poreux de 0,2 à 1,3 cm³ × g⁻¹.
5. Procédé selon l'une des revendications 1 à 4 dans lequel le support est la silice.
6. Procédé selon l'une des revendications 1 à 4 dans lequel le support est un aluminate d'un élément des groupes IA, IIA ou IIB de la classification périodique des éléments ou un aluminate mixte.
7. Procédé selon l'une des revendications 1 à 6 dans lequel le catalyseur est obtenu par imprégnation du support par une solution aqueuse ou organique d'au moins un composé du ruthénium, séchage du support imprégné suivi d'une calcination sous air à une température de 110°C à 600°C puis réduction sous hydrogène à une température de 200 à 600°C puis introduction d'au moins un élément du groupe formé par l'étain, le germanium et le plomb à l'aide d'au moins un composé dudit élément.
8. Procédé selon la revendication 7 dans lequel l'élément du groupe formé par l'étain, le germanium et le plomb est introduit à l'aide d'une solution dans un solvant organique d'un composé choisi dans le groupe formé par les hydrocarbylétain, les hydrocarbylgermanium et les hydrocarbylplomb.
9. Procédé de fabrication d'alcools selon l'une des revendications 1 à 8 dans lequel la pression est de 1 à 10 MPa et la température de 180 à 330°C.
10. Procédé de fabrication d'alcools selon l'une des revendications 1 à 9 dans lequel le rapport molaire hydrogène/ester est de 2: 1 à 50: 1.
EP88400544A 1987-03-12 1988-03-08 Procédé de fabrication d'alcools par hydrogénolyse d'esters d'acides carboxyliques en présence d'un catalyseur contenant du ruthénium et de l'étain, du germanium ou du plomb Expired - Lifetime EP0282409B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8703525 1987-03-12
FR8703525A FR2612178B1 (fr) 1987-03-12 1987-03-12 Procede de fabrication d'alcools par hydrogenolyse d'esters d'acides carboxyliques en presence d'un catalyseur contenant du ruthenium et de l'etain, du germanium ou du plomb

Publications (2)

Publication Number Publication Date
EP0282409A1 EP0282409A1 (fr) 1988-09-14
EP0282409B1 true EP0282409B1 (fr) 1991-06-19

Family

ID=9348981

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88400544A Expired - Lifetime EP0282409B1 (fr) 1987-03-12 1988-03-08 Procédé de fabrication d'alcools par hydrogénolyse d'esters d'acides carboxyliques en présence d'un catalyseur contenant du ruthénium et de l'étain, du germanium ou du plomb

Country Status (3)

Country Link
EP (1) EP0282409B1 (fr)
DE (1) DE3863300D1 (fr)
FR (1) FR2612178B1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2735770B1 (fr) * 1995-06-20 1997-08-01 Ceca Sa Procede catalytique de production d'alcools insatures par hydrogenation selective d'esters gras insatures sur catalyseur bimetallique cobalt-etain
US5985789A (en) * 1997-03-27 1999-11-16 E. I. Du Pont De Nemours And Company Ru, Sn/oxide catalyst and process for hydrogenation in acidic aqueous solution
US20090088317A1 (en) * 2007-09-28 2009-04-02 Frye Jr John G Multi-metal reduction catalysts and methods of producing reduction catalysts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU177860B (en) * 1979-05-22 1982-01-28 Mta Koezponti Hivatala Method for producing carrier metal catalyzers
FR2527200A1 (fr) * 1982-05-24 1983-11-25 Inst Francais Du Petrole Procede catalytique de production d'alcools par hydrogenolyse d'esters d'acides carboxyliques
FR2545481B1 (fr) * 1983-05-06 1985-07-19 Rhone Poulenc Spec Chim Procede de preparation de perfluoroalcanols
FR2568873B1 (fr) * 1984-08-08 1987-01-09 Inst Francais Du Petrole Procede de production d'alcools par hydrogenolyse d'esters d'acides carboxyliques en presence d'un catalyseur contenant du nickel et de l'etain, du germanium ou du plomb

Also Published As

Publication number Publication date
EP0282409A1 (fr) 1988-09-14
FR2612178A1 (fr) 1988-09-16
DE3863300D1 (de) 1991-07-25
FR2612178B1 (fr) 1989-07-21

Similar Documents

Publication Publication Date Title
EP0172091B1 (fr) Procédé de production d'alcools par hydrogénolyse d'esters d'acides carboxyliques en présence d'un catalyseur contenant du nickel et de l'étain, du germanium ou du plomp
EP0095408B1 (fr) Procédé catalytique de production d'alcools par hydrogénolyse d'esters d'acides carboxyliques
EP0913453B1 (fr) Procédé d'hydrogènation sélective des composés insaturés
EP0135436B1 (fr) Nouveau procédé de fabrication d'oléfine linéaire à partir d'acide gras ou d'ester d'acide gras saturé
EP0800864B1 (fr) Procédé de conversion du gaz de synthèse en présence d'un catalyseur a base de cobalt et de tinane
EP0913198B1 (fr) Procédé de préparation de catalyseurs utilisables dans les réactions de transformation de composés organiques
EP0769323B1 (fr) Catalyseur supporté contenant du rhénium et de l'aluminium, procédé de préparation et application à la métathèse des oléfines
EP0422968A1 (fr) Hydrogénation du citral
EP0494568A1 (fr) Réduction catalytique de composés nitroaromatiques chlorés en anilines chlorées
EP0913378A1 (fr) Procédé de déshydrogénation d'hydrocarbures aliphatiques saturés en hydrocarbures oléfiniques
EP0282409B1 (fr) Procédé de fabrication d'alcools par hydrogénolyse d'esters d'acides carboxyliques en présence d'un catalyseur contenant du ruthénium et de l'étain, du germanium ou du plomb
EP0913451B1 (fr) Procédé d'hydroreformage Catalytique
FR2770518A1 (fr) Procede d'hydrogenation de fonctions organiques
FR2694286A1 (fr) Procédé de production d'alcool aromatique par hydrogénation sélective de cétone aromatique.
FR2677034A1 (fr) Procede de desulfuration de graisses et huiles ou d'esters d'acides gras et application a la production d'alcools.
FR2704773A1 (fr) Procédé de préparation de catalyseurs utilisables en déshydrogénation.
JP3887845B2 (ja) 水素化反応用触媒、その製造法、及び該触媒を用いた水素化反応方法
FR2505819A1 (fr) Procede de fabrication d'alcools par hydrogenation catalytique d'esters d'acides organiques
EP0005388B1 (fr) Catalyseurs à base d'argent pour la production d'oxyde d'éthylène
WO2009074742A2 (fr) Procede de fabrication d'esters alcooliques a partir de triglycerides et d'alcools au moyen de catalyseurs heterogenes a base de solide hybride a matrice mixte organique-inorganique
EP2966056B1 (fr) Composé d'estolide contenant un groupe fonctionnel cétone et son procédé de préparation
EP0599728B1 (fr) Procédé pour l'hydrogénation sélective de composés comportant des insaturations endo et exocycliques
FR2792645A1 (fr) Procede d'hydrogenation selective des composes insatures en presence d'un catalyseur comprenant un metal du groupe viii et un metal additionnel iv introduit sous la forme d'un compose organometallique hydrosoluble
FR2534575A1 (fr) Procede de preparation d'esters lineaires par carbonylation de composes monoolefiniques
WO2011124578A1 (fr) Procede de preparation d'une lactone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB IT NL

17P Request for examination filed

Effective date: 19881215

17Q First examination report despatched

Effective date: 19900711

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB IT NL

REF Corresponds to:

Ref document number: 3863300

Country of ref document: DE

Date of ref document: 19910725

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980216

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980327

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980331

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980430

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU PETROLE

Effective date: 19990331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990308

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19991001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050308