EP0599728B1 - Procédé pour l'hydrogénation sélective de composés comportant des insaturations endo et exocycliques - Google Patents

Procédé pour l'hydrogénation sélective de composés comportant des insaturations endo et exocycliques Download PDF

Info

Publication number
EP0599728B1
EP0599728B1 EP93402840A EP93402840A EP0599728B1 EP 0599728 B1 EP0599728 B1 EP 0599728B1 EP 93402840 A EP93402840 A EP 93402840A EP 93402840 A EP93402840 A EP 93402840A EP 0599728 B1 EP0599728 B1 EP 0599728B1
Authority
EP
European Patent Office
Prior art keywords
metal
catalyst
group
process according
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93402840A
Other languages
German (de)
English (en)
Other versions
EP0599728A1 (fr
Inventor
Christine Lucas
Jean-Marie Basset
Jean-Paul Boitiaux
Jean-Pierre Candy
Blaise Didillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0599728A1 publication Critical patent/EP0599728A1/fr
Application granted granted Critical
Publication of EP0599728B1 publication Critical patent/EP0599728B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • C07C5/05Partial hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the invention relates to a process for the hydrogenation of a polyunsaturated cyclic compound, comprising at least one carbon-carbon endocyclic double bond (that is to say in the ring) and at least one carbon-carbon exocyclic double bond (excluding cycle) terminal, the hydrogenation being done selectively on (the) double (s) bond (s) endocyclic (s).
  • the process requires the use of a catalyst based on a group VIII metal and an additional metal belonging to group IVa, family of tin (germanium, tin, lead).
  • the invention applies particularly well to the catalytic hydrogenation of 4-vinylcyclohexene to vinylcyclohexane.
  • 4-vinylcyclohexene (I) is a compound containing two carbon-carbon double bonds, one endocyclic and the other exocyclic.
  • the catalytic hydrogenation of 4-vinylcyclohexene (I) can first lead to vinylcyclohexane (II) or ethyl-cyclohexene (III). These two products can then be hydrogenated to ethyl-cyclohexane (IV).
  • vinylcyclohexane is prepared from 4-vinylcyclohexene by reacting 4-vinylcyclohexene with an organoaluminum (triisobutyl aluminum for example), the compound obtained is hydrogenated in the presence of a catalyst chosen from the group formed by palladium, platinum, Raney nickel. By heating the hydrogenated product to 100-200 ° C in the presence of an olefin having terminal unsaturation (dodecene-1 for example), the vinylcyclohexane is isolated.
  • organoaluminum triisobutyl aluminum for example
  • Document DD-106.343 describes a process for the selective hydrogenation of the endocyclic bonds of 2-vinylbicyclo- [2,2,1] -heptene with a palladium catalyst, and in particular a catalyst consisting of 0.5% Pd and gamma alumina loaded with 15% CaO.
  • One operates in a continuous or discontinuous reactor in the presence of hydrogen under a total pressure of between 1 and 10 MPa and preferably between 1 and 5 MPa and at a temperature between 0 and 100 ° C and preferably between 20 and 50 ° C in the presence of a catalyst containing a support and (a) at least one group VIII metal chosen from the group consisting of iridium, osmium, nickel, palladium, platinum, rhodium (rhodium being the preferred metal) and whose weight percentage is chosen between 0.1 and 5% and preferably between 1 and 3%. and (b) at least one additional metal chosen from group IVa consisting of tin, germanium and lead, the weight percentage of which is chosen between 0.01% and 15%.
  • group VIII metal chosen from the group consisting of iridium, osmium, nickel, palladium, platinum, rhodium (rhodium being the preferred metal) and whose weight percentage is chosen between 0.1 and 5% and preferably between 1 and 3%.
  • the molar ratio element of group VIII, element of group IVa is between 0.3 and 3 and preferably between 0.8 and 2.5.
  • the support can be chosen from refractory oxides in the group consisting of silica, alumina, silica aluminas as well as carbon-based supports and in particular carbon and graphite.
  • the catalyst can be prepared by different procedures for impregnating the support.
  • the impregnation operation consists, for example, in bringing the support into contact with an aqueous or organic solution of a compound of the metal or metals chosen.
  • the group VIII metal (s) and the additional metal (s) can be introduced simultaneously or successively.
  • the impregnated support is filtered, washed with water or with a hydrocarbon, dried and calcined in air between 110 ° C and 600 ° C and preferably between 100 ° C and 500 ° C.
  • the support first undergoes an impregnation, using an aqueous or organic solution of at least one group VIII metal compound.
  • the impregnated support is then filtered, dried optionally washed with water or with an organic solvent and calcined in air usually between 110 ° C and 600 ° C and preferably between 110 ° C and 500 ° C then reduced under hydrogen at a temperature between approximately 200 ° C and 600 ° C and preferably between approximately 300 ° C and 500 ° C; the product obtained is then impregnated with an aqueous or organic solution of a compound of germanium, tin and / or lead.
  • a solution of at least one alkyl or aryl germanium, alkyl or aryl tin, alkyl or aryl lead is used according to the technology described in US-A-4,548,918. of the plaintiff.
  • organic solvents which can be used in the context of the invention, mention may be made, by way of example, of hydrocarbons, halogenated hydrocarbons, ketones, ethers and aromatic derivatives.
  • the germanium compound of tin or lead is liquid or gaseous under the impregnation conditions, the solvent is not essential.
  • the product After having left contact between the support impregnated with group VIII metal or metals and the solution containing at least one group IVa compound taken from germanium, tin or lead for a determined time of between 0.2 and 10 hours at a temperature generally between 20 ° C and 150 ° C, the product is optionally washed using the solvent used to impregnate the compound of group IVa, optionally dried and optionally calcined in air at a temperature between 90 ° C and 600 ° C and reduced between 50 and 600 ° C or optionally used directly after the impregnation of the group IVa compound (s).
  • Another method is to knead the wet support powder with the catalyst precursors and then shape and dry.
  • organometallic compounds of a group VIII metal in solution in an organic solvent, for example a hydrocarbon.
  • hydrocarbons mention may be made of saturated paraffinic hydrocarbons, the chain of which contains from 6 to 12 carbon atoms per molecule, or also aromatic hydrocarbons containing an equivalent number of carbon. Mention may be made, as examples of organometallic metal compounds of group VIII, of carbonyl, halocarbonyl and acetylacetonate compounds, without this list being limiting.
  • the element chosen from the group consisting of tin, germanium and lead can be introduced in the form of polyketonic or hydrocarbon complexes such as alkyls, aryls, alkylaryls.
  • group IVa metal (s) is advantageously carried out using a solution in an organic solvent of the organometallic complex of said metal.
  • organometallic complex of the metal of group IVa mention will be made in particular of tetrabutyltin, tetramethyltin, tetraethyltin, tetrapropyltin, tetraethylgermanium, tetramethylgermanium, tetraethyl lead, diphenyltin, tributyltin hydride, tributyltin chloride, tributyltin chloride being not exhaustive.
  • the impregnating solvent is chosen from the group consisting of paraffinic, naphthenic, aromatic hydrocarbons containing from 6 to 12 carbon atoms per molecule and halogenated organic compounds containing 1 to 12 carbon atoms per molecule. Mention may be made of n-heptane, methylcyclohexane, toluene, chloroform. It is also possible to use well-defined mixtures of the above solvents or other solvents.
  • the element chosen from the group consisting of tin, germanium or lead can also be introduced via compounds such as chlorides, bromides, nitrates, acetates of tin; oxides, oxalates germanium chlorides; halides, nitrates, lead acetate in aqueous or organic solution.
  • the support can be of varied nature as already mentioned above.
  • a particularly suitable support has specific characteristics such as a specific area determined by the BET method of between 10 and 500 m 2 per gram and a total pore volume of 0.2 to 1.3 cm 3 per gram of support.
  • the catalyst can optionally undergo an activation treatment under hydrogen between 50 and 600 ° C. However, this step is not always necessary.
  • the catalyst is prepared by impregnating rhodium chloride chloropentamine in ammoniacal solution on a silica whose specific surface is equal to 200 m 2 per gram and the total pore volume at 0.8 cm 3 per gram, followed by filtration. , washing with distilled water, calcination in air at 450 ° C.
  • the finished catalyst contains 1.9% rhodium and will be called catalyst A.
  • Catalyst A (0.0075 g) is then mixed with 0.1425 g of silica to yield catalyst B.
  • Catalyst B is then reduced under hydrogen at 450 ° C. charged under a stream of argon in the reactor of the grignard type containing an organic solvent (n-heptane). The reactor is then closed, purged of the argon contained. Under excess hydrogen, a solution of 4-vinyl-cyclohexene (I) is then injected corresponding to a initial concentration of 0.154 mol / l of 4-vinyl-cyclohexene (I). The hydrogen pressure is then increased to 5 MPa; the temperature is kept constant at 22 ° C. The evolution of the composition of the reaction medium is followed by gas chromatography.
  • Catalyst B mainly leads to the reduction of the two unsaturations of 4-vinylcyclohexene with the formation of ethyl-cyclohexane (IV).
  • a rhodium-tin catalyst is prepared according to the following protocol.
  • Catalyst A is first reduced under hydrogen at 450 ° C.
  • the fixing of the tin takes place in the gas phase: the tetrabutyltin is injected directly onto the catalyst A at room temperature under 2 kPa of hydrogen, then the temperature is increased in a controlled manner, at a speed of 100 ° C./h up to at 350 ° C while maintaining a low hydrogen pressure.
  • Catalyst C thus obtained contains 1.9% by weight of rhodium and 2% by weight of tin.
  • Catalyst C is tested in hydrogenation of vinylcyclohexene under the conditions of Example 1 (catalyst B).
  • catalyst C is less active than catalyst B, it makes it possible to obtain distinctly better vinyl-cyclohexane (II) selectivities since at conversions less than 60% the selectivity for vinylcyclohexane (II) is greater than 85% .
  • a rhodium-tin catalyst D is prepared according to the protocol already described in the literature (US 4,456,775). Tin is impregnated in the form of tetrabutyltin in solution in normal heptane. After having left the catalyst and the tetrabutyltin solution in contact for 1 hour at the reflux temperature of n-heptane, the catalyst is washed with n-heptane and then dried under a nitrogen atmosphere. The catalyst D thus obtained contains 1.9% by weight of rhodium and 2% by weight of tin.
  • Catalyst D (0.150 g) is then loaded under a stream of argon into the reactor of the grignard type containing an organic solvent (n-heptane). The reactor is then closed, purged of the argon contained. Under hydrogen, a solution of 4-vinyl-cyclohexene (I) is then injected corresponding to an initial concentration of 0.154 mol / l of 4-vinyl-cyclohexene (I)
  • Catalyst D has an activity comparable to catalyst C but makes it possible to obtain slightly higher vinylcyclohexane yields.
  • Catalyst C (0.150 g) prepared in Example 2 is loaded into a reactor of the grignard type containing an organic solvent, normal heptane, with the precautions mentioned in Example 2. The reactor is then closed, purged of the argon contained . Under hydrogen, a solution of 4-vinyl-cyclohexene (I) is then injected corresponding to an initial concentration of 0.154 mol / l of 4-vinyl-cyclohexene. (I) The hydrogen pressure is then increased to 2 MPa; the temperature is kept constant at 22 ° C. The evolution of the composition of the reaction medium is followed by gas chromatography.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

  • L'invention concerne un procédé d'hydrogénation d'un composé cyclique polyinsaturé, comportant au moins une double liaison carbone-carbone endocyclique (c'est-à-dire dans le cycle) et au moins une double liaison carbone-carbone exocyclique (hors du cycle) terminale, l'hydrogénation se faisant sélectivement sur la(les) double(s) liaison(s) endocyclique(s).
  • Le procédé nécessite l'emploi d'un catalyseur à base d'un métal du groupe VIII et d'un métal additionnel appartenant au groupe IVa, famille de l'étain (germanium, étain, plomb).
  • L'invention s'applique particulièrement bien à l'hydrogénation catalytique du 4-vinylcyclohexène en vinylcyclohexane.
  • Le 4-vinylcyclohexène (I) est un composé contenant deux doubles liaisons carbone-carbone, l'une endocyclique et l'autre exocyclique.
    Figure imgb0001
  • L'hydrogénation catalytique du 4-vinylcyclohexène (I) peut conduire d'abord au vinylcyclohexane (II) ou à l'éthyl-cyclohexène (III). Ces deux produits peuvent ensuite être hydrogénés en éthyl-cyclohexane (IV).
  • La réduction catalytique du 4-vinylcyclohexène (I) a fait l'objet d'un certain nombre de travaux que ce soit sur des catalyseurs hétérogènes (US 4 716 256 par exemple) ou homogènes. Mais dans la plupart des cas rapportés dans la littérature les deux produits majoritaires obtenus sont l'éthyl-cyclohexène (III) et le l'éthyl-cyclohexane (IV).
  • Au contraire, dans le brevet US 3,154,594 le vinylcyclohexane est préparé à partir du 4-vinylcyclohexène en faisant réagir le 4-vinylcyclohexène avec un organoaluminium (triisobutyl aluminium par exemple), le composé obtenu est hydrogéné en présence d'un catalyseur choisi dans le groupe formé par le palladium, le platine, le nickel Raney. Par chauffage du produit hydrogéné à 100-200 °C en présence d'une oléfine ayant une insaturation terminale (dodécène-1 par exemple), le vinylcyclohexane est isolé.
  • Le document DD-106.343 décrit un procédé d'hydrogénation sélective des liaisons endocycliques du 2-vinylbicyclo-[2,2,1]-heptène avec un catalyseur au Palladium, et en particulier un catalyseur constitué de 0,5% Pd et d'alumine gamma chargés avec 15% CaO.
  • Il a été découvert dans la présente invention qu'il est possible de réaliser en une seule étape l'hydrogénation sélective du 4-vinyl-cyclohexène (I) en vinyl-cyclohexane (II) sans obtention d'éthyl-cyclohexène et en limitant la production d'éthyl-cyclohexane (IV). On opère dans un réacteur continu ou discontinu en présence d'hydrogène sous une pression totale comprise entre 1 et 10 MPa et de préférence entre 1 et 5 MPa et à une température comprise entre 0 et 100 °C et de préférence entre 20 et 50°C en présence d'un catalyseur renfermant un support et (a) au moins un métal du groupe VIII choisi dans le groupe constitué par l'iridium, l'osmium, le nickel, le palladium, le platine, le rhodium (le rhodium étant le métal préféré) et dont le pourcentage pondéral est choisi entre 0,1 et 5 % et de préférence entre 1 et 3 %. et (b) au moins un métal additionnel choisi dans le groupe IVa constitué par l'étain, le germanium et le plomb dont le pourcentage pondéral est choisi entre 0,01 % et 15 %. Le rapport molaire élément du groupe VIII, élément du groupe IVa est compris entre 0,3 et 3 et de préférence entre 0,8 et 2,5. Le support peut être choisi parmi les oxydes réfractaires dans le groupe constitué par la silice, l'alumine, les silices alumines ainsi que les supports à base de carbone et notamment le charbon et le graphite.
  • Le catalyseur peut être préparé par différentes procédures d'imprégnation du support. L'opération d'imprégnation consiste par exemple à mettre en contact le support avec une solution aqueuse ou organique d'un composé du métal ou des métaux choisis. On peut introduire le (ou les) métal(aux) du groupe VIII et le (ou les) métal(aux) additionnel(s) simultanément ou successivement. Après avoir laissé le contact entre le support et la solution pendant plusieurs heures le support imprégné est filtré, lavé à l'eau ou par un hydrocarbure, séché et calciné sous air entre 110°C et 600°C et préférentiellement entre 100°C et 500°C.
  • De préférence, on opère avec deux imprégnations successives : le support subit d'abord une imprégnation, à l'aide d'une solution aqueuse ou organique d'au moins un composé de métal du groupe VIII. Le support imprégné est ensuite filtré, séché éventuellement lavé à l'eau ou par un solvant organique et calciné sous air habituellement entre 110°C et 600°C et de préférence entre 110°C et 500°C puis réduit sous hydrogène à une température comprise entre 200°C et 600°C environ et de préférence entre environ 300°C et 500°C; le produit obtenu est alors imprégné par une solution aqueuse ou organique d'un composé du germanium, de l'étain et/ou du plomb. De manière avantageuse on utilise une solution d'au moins un alkyl ou aryl germanium, alkyl ou aryl étain, alkyl ou aryl plomb selon la technologie décrite dans le brevet US-A-4.548.918. de la demanderesse.
  • Parmi les solvants organiques utilisables dans le cadre de l'invention on peut citer à titre d'exemple les hydrocarbures, les hydrocarbures halogénés, les cétones, les éthers et les dérivés aromatiques. Lorsque le composé du germanium de l'étain ou du plomb est liquide ou gazeux dans les conditions d'imprégnation, le solvant n'est pas indispensable.
  • Après avoir laissé le contact entre le support imprégné du ou des métaux du groupe VIII et la solution contenant au moins un composé du groupe IVa pris parmi le germanium, l'étain ou le plomb pendant un temps déterminé compris entre 0,2 et 10 heures à une température généralement comprise entre 20°C et 150°C, le produit est éventuellement lavé à l'aide du solvant utilisé pour imprégner le composé du groupe IVa, éventuellement séché et éventuellement calciné sous air à une température comprise entre 90°C et 600°C et réduit entre 50 et 600°C ou éventuellement utilisé directement après l'imprégnation du ou des composés du groupe IVa.
  • Une autre méthode consiste à malaxer la poudre humide de support avec les précurseurs du catalyseur et à mettre ensuite en forme et à sécher.
  • Les exemples des précurseurs métalliques utilisables dans la préparation du catalyseur sont les suivants: pour les métaux du groupe VIII on peut utiliser des composés tels que les chlorures, les nitrates, les composés halogénoaminés, les composés aminés, les sels d'acides organiques.
  • On peut aussi utiliser des composés organométalliques d'un métal du groupe VIII en solution dans un solvant organique, par exemple un hydrocarbure. Comme exemples d'hydrocarbures ont peut citer les hydrocarbures paraffiniques saturés dont la chaîne renferme de 6 à 12 atomes de carbone par molécule ou encore les hydrocarbures aromatiques renfermant un nombre de carbone équivalent. A titre d'exemples de composés organométalliques de métal du groupe VIII on peut citer les composés carbonyles, halogénocarbonyles, les acétylacétonates sans que cette liste soit limitative.
  • L'élément choisi dans le groupe constitué par l'étain le germanium et le plomb peut être introduit sous la forme de complexes polycétoniques ou hydrocarbyles tels que les alkyles, les aryles, les alkylaryles. L'introduction du ou des métaux du groupe IVa est avantageusement effectuée à l'aide d'une solution dans un solvant organique du complexe organométallique du dit métal. Comme complexe organométallique du métal du groupe IVa on citera en particulier le tétrabutylétain, le tétraméthylétain, le tétraéthylétain, le tétrapropylétain, le tétraéthylgermanium, le tétraméthylgermanium, le tétraéthylplomb, le diphénylétain, l'hydrure de tributylétain, le chlorure de tributylétain, cette liste n'étant pas exhaustive. Le solvant d'imprégnation est choisi dans le groupe constitué par les hydrocarbures paraffiniques, naphténiques, aromatiques contenant de 6 à 12 atomes de carbone par molécule et les composés organiques halogénés contenant 1 à 12 atomes de carbone par molécule. On peut citer le n-heptane, le méthylcyclohexane, le toluène, le chloroforme. On peut aussi utiliser des mélanges bien définis des solvants ci-dessus ou d'autres solvants.
  • L'élément choisi dans le groupe constitué de l'étain, du germanium ou du plomb peut aussi être introduit par l'intermédiaire de composés tels que les chlorures, les bromures, les nitrates, les acétates d'étain; les oxydes, les oxalates les chlorures de germanium; les halogénures, les nitrates, l'acétate de plomb en solution aqueuse ou organique.
  • Le support peut être de nature variée comme déjà mentionné plus haut. Un support particulièrement adapté possède des caractéristiques spécifiques telles qu'une aire spécifique déterminée par la méthode BET comprise entre 10 et 500 m2 par gramme et un volume poreux total de 0,2 à 1,3 cm3 par gramme de support.
  • Une fois les métaux fixés sur le support, le catalyseur peut éventuellement subir un traitement d'activation sous hydrogène entre 50 et 600°C. Cette étape n'est cependant pas toujours nécessaire.
  • Les exemples suivants, non limitatifs, illustrent l'invention.
  • Exemple 1 (Essai comparatif)
  • La préparation du catalyseur se fait par imprégnation de chlorure de rhodium chloropentamine en solution ammoniacale sur une silice dont la surface spécifique est égale à 200 m2 par gramme et le volume poreux total à 0,8 cm3 par gramme, suivie d'une filtration, d'un lavage à l'eau distillé, d'une calcination sous air à 450°C.
  • Le catalyseur fini contient 1,9 % de rhodium et sera appelé le catalyseur A.
  • Le catalyseur A (0,0075 g) est ensuite mélangé avec 0,1425 g de silice pour conduire au catalyseur B. Le catalyseur B est ensuite réduit sous hydrogène à 450 °C chargé sous courant d'argon dans le réacteur de type grignard contenant un solvant organique (n-heptane). Le réacteur est ensuite fermé, purgé de l'argon contenu. Sous excès d'hydrogène, on injecte alors une solution de 4-vinyl-cyclohexène (I) correspondant à une concentration initiale de 0,154 mol/l de 4-vinyl-cyclohexène (I). La pression d'hydrogène est ensuite augmentée jusqu'à 5 MPa; la température est maintenue constante à 22°C. L'évolution de la composition du milieu réactionnel est suivie par chromatographie en phase gazeuse.
  • Les résultats obtenus sont rapportés dans le tableau 1. Tableau 1
    Temps minutes Conversion (%) Sélectivité en (%)
    (II) (IV)
    0 0 - -
    5 85 5,5 87
    10 100 0 98
  • On voit que l'activité du catalyseur B est élevée. Par contre, les sélectivités en 4-vinyl-cyclohexane (II) sont faibles. Le catalyseur B conduit majoritairement à la réduction des deux insaturations du 4-vinylcyclohexène avec formation d'éthyl-cyclohexane (IV).
  • Exemple 2 (selon l'invention)
  • A partir du catalyseur A un catalyseur C rhodium-étain est préparé selon le protocole suivant. Le catalyseur A est d'abord réduit sous hydrogène à 450°C. La fixation de l'étain se fait phase gazeuse: le tétrabutylétain est injecté directement sur le catalyseur A à température ambiante sous 2 kPa d'hydrogène, puis la température est augmentée de façon contrôlée, à une vitesse de 100°C/h jusqu'à 350°C tout en maintenant une faible pression d'hydrogène. Le catalyseur C ainsi obtenu contient 1,9 % poids de rhodium et 2 % poids d'étain.
  • Le catalyseur C est testé en hydrogénation du vinylcyclohexène dans les conditions de l'exemple 1 (catalyseur B).
  • Les résultats obtenus sont rapportés dans le tableau 2. Tableau 2
    temps minutes conversion (%) sélectivité en %
    (II) (IV)
    0 0 - -
    15 31 91 8
    60 62 85 15
    350 100 0 100
  • Bien que le catalyseur C soit moins actif que le catalyseur B, il permet d'obtenir des sélectivités en vinyl-cyclohexane (II) nettement meilleures puisqu'à des conversions inférieures à 60 % la sélectivité en vinylcyclohexane (II) est supérieure à 85 %.
  • Exemple 3 (selon l'invention)
  • A partir du catalyseur A un catalyseur D rhodium-étain est préparé selon le protocole déjà décrit dans la littérature (US 4,456,775). L'étain est imprégné sous forme de tétrabutylétain en solution dans le normal heptane. Après avoir laissé en contact pendant 1 heures le catalyseur et la solution de tétrabutylétain à la température de reflux du n-heptane, le catalyseur est lavé par du n-heptane puis séché sous atmosphère d'azote. Le catalyseur D ainsi obtenu contient 1,9 % poids de rhodium et 2 % poids d'étain.
  • Le catalyseur D (0,150 g) est ensuite chargé sous courant d'argon dans le réacteur de type grignard contenant un solvant organique (n-heptane). Le réacteur est ensuite fermé, purgé de l'argon contenu. Sous hydrogène, on injecte alors une solution de 4-vinyl-cyclohexène (I) correspondant à une concentration initiale de 0,154 mol/l de 4-vinyl-cyclohexène (I)
  • L'hydrogénation du 4-vinyl-cyclohexène (I) est alors réalisée dans les conditions de l'exemple 1. Tableau 3
    temps minutes conversion (%) sélectivité en (%)
    (II) (IV)
    0 0 - -
    30 41 92 7
    60 63 88 12
    90 74 87 12
    120 82 85 15
    360 100 15 95
  • Le catalyseur D est d'activité comparable au catalyseur C mais permet d'obtenir des rendements en vinylcyclohexane légèrement supérieurs.
  • Exemple 4 (selon l'invention)
  • Le catalyseur C (0,150 g) préparé dans l'exemple 2 est chargé dans un réacteur de type grignard contenant un solvant organique le normal heptane avec les précautions mentionnées dans l'exemple 2. Le réacteur est ensuite fermé, purgé de l'argon contenu. Sous hydrogène, on injecte alors une solution de 4-vinyl-cyclohexène (I) correspondant à une concentration initiale de 0,154 mol/l de 4-vinyl-cyclohexène. (I) La pression d'hydrogène est ensuite augmentée jusqu'à 2 MPa; la température est maintenue constante à 22°C. L'évolution de la composition du milieu réactionnel est suivie par chromatographie en phase gazeuse.
  • Les résultats obtenus sont rapportés dans le tableau 4. Tableau 4
    temps minutes conversion (%) sélectivité en (%)
    (II) (IV)
    0 0 - -
    15 21 92 8
    60 42 90 9
    350 85 87 13
  • Sous plus faible pression d'hydrogène (2 MPa), le catalyseur C est moins actif que sous pression élevée (5 MPa) mais l'abaissement de la pression permet d'augmenter le rendement en vinyl-cyclohexène qui peut atteindre 74 %.
  • L'homme du métier choisira les conditions opératoires (pression, température, quantité H2, temps de séjour, quantité de catalyseur) selon la sélectivité en produit (II) souhaité pour une conversion donnée.
    L'invention s'applique particulièrement bien aux cyclohexène substitués.

Claims (9)

  1. Procédé pour l'hydrogénation sélective, en présence d'un catalyseur, d'un composé cyclique polyinsaturé, comportant au moins une double liaison carbone-carbone endocyclique et au moins une double liaison carbone-carbone exocyclique terminale, lesdits doubles liaisons n'étant pas conjuguées, en un mélange renfermant essentiellement le composé dont le cycle a été saturé et qui comporte au moins une double liaison exocyclique terminale, procédé dans lequel le composé cyclique polyinsaturé est mis en contact, en présence d'hydrogène sous 1 à 10 MPa et à une température de 0-100°C, avec un catalyseur renfermant un support choisi dans le groupe constitué par l'alumine, la silice, les silice-alumines et les supports à base de carbone, et
    a) 0,1 à 5% en poids d'au moins un métal du groupe VIII choisi dans le groupe constitué par l'iridium, l'osmium, le nickel, le palladium, le platine, le rhodium,
    et
    b) 0,01 à 15% en poids d au moins un métal du groupe IVa choisi dans le groupe constitué par l'étain, le germanium et le plomb, le rapport molaire entre le(s) dit(s) métal(aux) du groupe VIII et celui(ceux) du groupe IVa étant compris entre 0,3 et 3.
  2. Procédé selon la revendication 1 dans lequel le catalyseur est essentiellement constitué du support, d'au moins un métal du groupe VIII et d'au moins un métal du groupe IVa.
  3. Procédé selon la revendication 1 dans lequel le composé cyclique polyinsaturé est un cyclohexène substitué.
  4. Procédé selon l'une des revendications 1 ou 2, dans lequel le composé polyinsaturé est le 4-vinylcyclohexène qui est hydrogéné en vinylcyclohexane.
  5. Procédé selon l'une des revendications 1 à 3, dans lequel la pression est comprise entre 1 et 5 MPa.
  6. Procédé selon l'une des revendications 1 à 3, dans lequel la température est comprise entre 20 et 50°C.
  7. Procédé selon l'une des revendications précédentes, dans lequel le métal du groupe VIII est le rhodium et le métal du groupe IVa l'étain.
  8. Procédé selon l'une des revendications précédentes, dans lequel le catalyseur contient 1 à 3% d'au moins un métal du groupe VIII.
  9. Procédé selon l'une des revendications précédentes, dans lequel le rapport molaire entre métal(aux) du groupe VIII et métal(métaux) du groupe IVa est compris entre 0,8 et 2,5.
EP93402840A 1992-11-26 1993-11-22 Procédé pour l'hydrogénation sélective de composés comportant des insaturations endo et exocycliques Expired - Lifetime EP0599728B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9214353A FR2698351B1 (fr) 1992-11-26 1992-11-26 Procédé pour l'hydrogénation sélective de composés comportant des insaturations endo et exocycliques.
FR9214353 1992-11-26

Publications (2)

Publication Number Publication Date
EP0599728A1 EP0599728A1 (fr) 1994-06-01
EP0599728B1 true EP0599728B1 (fr) 1997-07-23

Family

ID=9436017

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93402840A Expired - Lifetime EP0599728B1 (fr) 1992-11-26 1993-11-22 Procédé pour l'hydrogénation sélective de composés comportant des insaturations endo et exocycliques

Country Status (7)

Country Link
US (1) US5475174A (fr)
EP (1) EP0599728B1 (fr)
JP (1) JP3472885B2 (fr)
CA (1) CA2110079A1 (fr)
DE (1) DE69312433T2 (fr)
ES (1) ES2108845T3 (fr)
FR (1) FR2698351B1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6548444B2 (en) * 2001-06-20 2003-04-15 Eastman Chemical Company Tin promoted iridium catalyst for carbonylation of lower alkyl alcohols
FR2949078B1 (fr) 2009-08-17 2011-07-22 Inst Francais Du Petrole Procede de preparation d'un catalyseur supporte ni/sn pour l'hydrogenation selective d'hydrocarbures polyinsatures

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773654A (en) * 1971-06-24 1973-11-20 Universal Oil Prod Co Hydrotreating of hydrocarbons
DD106343A1 (fr) * 1972-11-16 1974-06-12
US4152365A (en) * 1975-03-17 1979-05-01 Phillips Petroleum Company Selective hydrogenation of polyenes
US4079092A (en) * 1976-05-17 1978-03-14 Uop Inc. Hydroprocessing of aromatics to make cycloparaffins

Also Published As

Publication number Publication date
DE69312433D1 (de) 1997-09-04
CA2110079A1 (fr) 1994-05-27
JP3472885B2 (ja) 2003-12-02
ES2108845T3 (es) 1998-01-01
EP0599728A1 (fr) 1994-06-01
JPH06199709A (ja) 1994-07-19
FR2698351B1 (fr) 1995-01-20
US5475174A (en) 1995-12-12
FR2698351A1 (fr) 1994-05-27
DE69312433T2 (de) 1998-01-29

Similar Documents

Publication Publication Date Title
EP0564329B1 (fr) Catalyseur contenant un métal du groupe VIII et un métal du groupe IIIA déposés sur un support
EP0172091B1 (fr) Procédé de production d'alcools par hydrogénolyse d'esters d'acides carboxyliques en présence d'un catalyseur contenant du nickel et de l'étain, du germanium ou du plomp
EP0913453B1 (fr) Procédé d'hydrogènation sélective des composés insaturés
EP0564328B1 (fr) Procédé d'hydrogénation sélective des hydrocarbures
FR2674769A1 (fr) Catalyseur du type galloaluminosilicate contenant du gallium, un metal noble de la famille du platine et au moins un metal additionnel, et son utilisation en aromatisation des hydrocarbures.
EP0422968B1 (fr) Hydrogénation du citral
CN1172885C (zh) 用甲烷生产烷烃的方法
EP0494568B1 (fr) Réduction catalytique de composés nitroaromatiques chlorés en anilines chlorées
EP0256945B1 (fr) Catalyseur à base de mordénite pour l'isomérisation de paraffines normales
EP1932819B1 (fr) Procédé d'isomérisation des composés C8 aromatiques en présence d'un catalyseur comprenant une zéolithe EUO modifiée
EP0599728B1 (fr) Procédé pour l'hydrogénation sélective de composés comportant des insaturations endo et exocycliques
EP0913451B1 (fr) Procédé d'hydroreformage Catalytique
FR2694286A1 (fr) Procédé de production d'alcool aromatique par hydrogénation sélective de cétone aromatique.
EP0623664A1 (fr) Procédé d'hydroréformage catalytique
FR2704773A1 (fr) Procédé de préparation de catalyseurs utilisables en déshydrogénation.
EP0623387B2 (fr) Procédé d'hydrogénation catalytique
CA2123072C (fr) Procede de preparation de catalyseur applicable a la deshydrogenation
FR2505819A1 (fr) Procede de fabrication d'alcools par hydrogenation catalytique d'esters d'acides organiques
EP0282409B1 (fr) Procédé de fabrication d'alcools par hydrogénolyse d'esters d'acides carboxyliques en présence d'un catalyseur contenant du ruthénium et de l'étain, du germanium ou du plomb
EP0542613A1 (fr) Catalyseur à structure MFI et son utilisation en aromatisation d'hydrocarbures comportant 2 à 12 atomes de carbone
JP2000513271A (ja) 複分解反応でシクロアルカジエンを製造する際に使用するための担持触媒
FR2792630A1 (fr) Procede d'hydrogenation de fonctions organiques en presence d'un catalyseur comprenant un metal du groupe viii et un element additionel introduit sous forme de compose organometallique hydrosoluble
BE1002425A4 (fr) Procede de preparation de catalyseurs contenant un metal du groupe du platine.
BE1002043A3 (fr) Procede de deshydrogenation catalytique d'hydrocarbures paraffiniques.
FR2894576A1 (fr) Procede de preparation d'ethylcyclohexane par hydrogenation selective de 4-vinylcyclohexene

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES GB IT LI NL

17P Request for examination filed

Effective date: 19941201

17Q First examination report despatched

Effective date: 19950314

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: 0508;08MIFDE DOMINICIS & MAYER S.R.L.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES GB IT LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970811

REF Corresponds to:

Ref document number: 69312433

Country of ref document: DE

Date of ref document: 19970904

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2108845

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031027

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20031110

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20031124

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031128

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031204

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20031230

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU *PETROLE

Effective date: 20041130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051122

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20041123

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU *PETROLE

Effective date: 20041130