WO2009074742A2 - Procede de fabrication d'esters alcooliques a partir de triglycerides et d'alcools au moyen de catalyseurs heterogenes a base de solide hybride a matrice mixte organique-inorganique - Google Patents

Procede de fabrication d'esters alcooliques a partir de triglycerides et d'alcools au moyen de catalyseurs heterogenes a base de solide hybride a matrice mixte organique-inorganique Download PDF

Info

Publication number
WO2009074742A2
WO2009074742A2 PCT/FR2008/001330 FR2008001330W WO2009074742A2 WO 2009074742 A2 WO2009074742 A2 WO 2009074742A2 FR 2008001330 W FR2008001330 W FR 2008001330W WO 2009074742 A2 WO2009074742 A2 WO 2009074742A2
Authority
WO
WIPO (PCT)
Prior art keywords
organic
alcohol
reaction
carbon atoms
oils
Prior art date
Application number
PCT/FR2008/001330
Other languages
English (en)
Other versions
WO2009074742A3 (fr
Inventor
Delphine Bazer-Bachi
Vincent Lecocq
Original Assignee
Ifp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0706852A external-priority patent/FR2921655B1/fr
Priority claimed from FR0706853A external-priority patent/FR2921674B1/fr
Application filed by Ifp filed Critical Ifp
Priority to US12/680,115 priority Critical patent/US20100293843A1/en
Priority to BRPI0817443-1A priority patent/BRPI0817443A2/pt
Priority to SE1050396A priority patent/SE534732C2/sv
Priority to DE112008002440T priority patent/DE112008002440T5/de
Publication of WO2009074742A2 publication Critical patent/WO2009074742A2/fr
Publication of WO2009074742A3 publication Critical patent/WO2009074742A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/06Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils with glycerol
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/49Esterification or transesterification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/32Gallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a novel process for producing alcoholic esters of monocarboxylic acids from fatty substances of vegetable or animal origin.
  • the reaction mainly aimed at is a transesterification carried out according to Scheme I below and possibly a combined esterification and transesterification reaction, the esterification being carried out according to Scheme II below.
  • the fatty acid esters are currently used in many applications as diesel fuels, domestic fuels, ecological solvents, basic compounds for the manufacture of sulfonates of fatty alcohols, amides, ester dimers, etc.
  • the ester shall contain not less than 96.5% by mass of esters, not more than 0.8% by mass of mo ⁇ oglycerides, not more than 0,2% by mass of diglycerides and not more than 0,2% by mass of triglycerides, Few free fatty acids ( ⁇ 0.5 mg KOH per g), which may be corrosive, less than 0.25% by weight bound and free glycerin and trace metals only. This implies a precise protocol to obtain the desired purity.
  • an ester When an ester is manufactured from oil or fat and monoalcohol, it is automatically formed, depending on the nature of the oil initially engaged, from 10 to 15% by weight of a secondary product, which is the glycerin.
  • This glycerin is sold at a high price for various uses, but only when it is very pure. This is obtained after extensive purification in units specialized in vacuum distillation.
  • the heterogeneous catalysis processes have the advantage of producing esters and glycerine free of catalyst and therefore easy to purify. However, it is often difficult to economically obtain both an ester and a high purity glycerin.
  • European patent EP-B-0 198 243 describes the manufacture of methyl esters by transesterification of an oil with methanol, using as catalyst an alumina or a mixture of alumina and ferrous oxide. However, the WH (volume of oil injected / volume of catalyst / hour) is low, the amount of glycerin collected is much lower than theoretically expected and the purity of the esters obtained is quite low (between 93.5 and 98% ).
  • Patent FR-B-2,752,242 in the name of the Applicant describes the use of solid and insoluble catalysts formed from zinc oxide and alumina or zinc aluminate.
  • Patent Applications EP-A-1 505 048 and EP-A-1 593 732 also filed in the name of the Applicant describe a process for the transesterification of vegetable or animal oils using heterogeneous catalysts based on mixtures of oxides of titanium and alumina, zirconium oxide and alumina, antimony oxide and alumina or a combination of oxides of zinc and titanium, zinc oxide, titanium and alumina, bismuth oxides, and titanium or bismuth oxide, titanium and alumina.
  • the present invention describes a process for producing a composition of alcoholic esters of linear monocarboxylic acids of 6 to 26 carbon atoms and of glycerin in which a fatty substance of animal or vegetable origin is reacted with an aliphatic monoalcohol. comprising from 1 to 18 carbon atoms, in the presence of at least one heterogeneous catalyst, based on an hybrid solid hybrid organic-inorganic matrix.
  • porous hybrid hybrids with organic-inorganic mixed matrix are coordination polymers. They consist of metal ions or polyhedra of metal ions associated with each other by at least one polyfunctionalized organic ligand at least bidentate.
  • Organic-inorganic hybrid solids based on metals connected to one another by organic molecules can be used for applications such as the storage of gases such as hydrogen for example (US Pat. 127, 17998; Zhou, J. Am. Chem. Soc., 128, 3896).
  • a material based on the zinc element and a chiral pyridine ligand was synthesized by Kim et al, to catalyze the enantioselective transesterification of 2,4-dinitrophenyl acetate by an alcohol.
  • this material the synthesis of which is complex, is not very active since the conversion reaches 90% only after a hundred hours of reaction with, moreover, extremely low enantiomeric excesses (less than 10%) ( Kim, Nature, 404, 2000, 982).
  • This reaction involves an ester activated by electron-withdrawing nitro groups, in the presence of a solvent at room temperature.
  • catalysts based on porous hybrid solids with organic-inorganic mixed matrix advantageously have the capacity to catalyze the transesterification of fatty substances with methanol, as well as with heavier alcohols.
  • ethyl, isopropyl or butyl esters which are of interest because often the pour points of the esters formed with the ethyl, isopropyl or butyl alcohols are lower than those of the methyl esters, the gain being sometimes of
  • An advantage of the invention using a catalyst based on porous hybrid solids with organic-inorganic mixed matrix is in particular to allow a reduction in the reaction temperature, the contact time between the reagents or of the alcohol / fat ratio relative to the prior art, while improving the conversion rate and maintaining a high selectivity to esters.
  • Another advantage of the invention lies in the fact that these solids catalyze transesterification and esterification reactions according to a heterogeneous catalysis process.
  • the catalyst is not consumed in the reaction and is not dissolved in the reaction medium.
  • it is easily separated from the reaction medium without loss of catalyst and without pollution of the reaction medium by dissolved species or catalyst residues.
  • this catalyst is stable and recyclable under the experimental conditions of the reaction.
  • This type of catalyst is compatible with use in a continuous industrial process, for example in a fixed bed and in which the catalyst charge can be used for a very long time without loss of activity.
  • the fatty substances used in the process of the invention correspond to natural or elaborate substances of animal or vegetable origin, predominantly containing triglycerides, commonly grouped under the terms of oils and fats.
  • Usable oils include all common oils, such as palm oils (concrete or oleic), soybean, palm kernel, copra, babassu, rapeseed (old or new), sunflower (conventional or oleic). ), maize, cotton, peanut, jatropha curcas, castor oil, linseed oil and crambe oils and all oils derived from sunflower or rapeseed by genetic modification or hybridization or from 'algae.
  • oils used it is also possible to indicate partially modified oils, for example by polymerization or oligomerization, such as, for example, "standolies" of linseed oil, sunflower oil and blown vegetable oils.
  • oils used are neutral or acid, virgin or recycled.
  • the presence of fatty acids in the oils is not a priori detrimental because catalytic systems based on porous hybrid solids with organic-inorganic mixed matrix are also active for esterification and also convert the fatty acids into esters.
  • the limit value for free fatty acids contained in the oils is at an acid number close to 10 (the acid number being defined as the mass in mg of KOH required for the determination of all the free fatty acids in 1 g oil).
  • the operability of the process under these conditions is close to that defined with a low acid number oil (ie less than 0.2 mg KOH / g).
  • oils with a very high acid number close to 10 mg of KOH / g
  • one of the possibilities is to precede the transesterification reaction with an esterification reaction of the free fatty acids present, either in using the same alcohol as that used in the transesterification process in the presence of a strong acid such as sulfuric acid or soluble or supported sulfonic acids (Amberlyst 15 type resins), or preferably using glycerin, for to form a total or partial glycerol ester, using the same catalyst based on porous hybrid solids with organic-inorganic mixed matrix, at atmospheric pressure and preferably under vacuum and at temperatures between 150 and 220 ° C.
  • frying oils which are a very cheap raw material for producing biodiesel, it is necessary to remove from the reaction mixture the fatty acid polymers afi n that the ester mixture meets the specifications of EN 14214.
  • the nature of the alcohol involved in the process plays a role in the transesterification activity.
  • various aliphatic monoalcohols containing, for example, from 1 to 18 carbon atoms, preferably from 1 to 12 carbon atoms.
  • the aliphatic monoalcohol contains from 1 to 5 carbon atoms.
  • methyl alcohol The most active is methyl alcohol.
  • ethyl alcohol and isopropyl, propyl, butyl, isobutyl and even amyl alcohols can be envisaged.
  • Heavier alcohols such as ethyl hexyl alcohol or lauric alcohol may also be used. It is advantageously possible to add methyl alcohol to the heavy alcohols, which facilitates the reaction.
  • ethyl ester when the ethyl ester is prepared, it is possible to use a mixture of ethyl and methyl alcohol comprising from 1 to 50% by weight, preferably from 1 to 10% by weight, of methyl alcohol so as to increase conversion.
  • the coordinating polymer powders may be granulated with, for example, the use of organic or inorganic binders as described in patent application WO 2006/050898.
  • binders, fillers, peptization agents also allows shaping in the form of extruded extrusion-extrusion.
  • the drop coagulation technique can also be adapted to these hybrid solids.
  • Alumina for example, can be used as a binder. This makes it possible to increase the surface area of the material, and often, to create a much more stable compound with regard to leaching and mechanical stresses.
  • the alumina content represents up to 90% by weight relative to the total mass of the shaped material. Very preferably, the alumina content is between 10 and 70% by weight relative to the total weight of the shaped material.
  • the coordination polymers consist of metal ions or inorganic polyhedra of metal ions, or nodes, interconnected by polyfunctionalized organic molecules, or ligands, having at least two chelating functions (carboxylates, amines, phosphonates, sulfonates, alkoxides ).
  • These materials have pores, in particular micropores (size less than 2 nm) and mesopores (size between 2 and 50 nm).
  • the specific surfaces of these materials can vary from 5 to 5000 m 2 / g, preferably from 100 to 3000 m 2 / g.
  • metals used constituting the "nodes” of these materials mention may be made of metals from groups 2 to 17 of the periodic table.
  • metals such as Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V 1 Nb, Ta, Cr, Mo, W, Mn, Re 1 Fe, Ru, Os, Co, Rh 1 Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Al 1 Ga, In, Tl, Ge 1 Sn 1 Pb, As, Sb and Bi are preferred.
  • Zn, Cu, Cd, Ni, Fe, Co, Ru, Rh, Pd, R, Mn, Mg, Ag are preferred.
  • the metal ions present in the porous hybrid materials partially derived from the preceding list are the following: Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Sc 3+ , Y 3+ , Ti 4+ , Zr 4+ , Hf 4+ , V 4+ , V 3+ , V 2+ , Nb 3+ , Ta 3+ , Cr 3+ , Mo 3+ , W 3+ , Mn 3+ , Mn 2+ , Re 3+ , Re 2+ , Fe 3+ , Fe 2+ , Ru 3+ , Ru 2+ , Os 3+ , Os 2+ , Co 3+ , Co 2+ , Co + , Rh 2+ , Rh + , Ir 2+ , Ir + , Ni 2+ , Ni + , Pd 2+ , Pd + , Pt 2+ , Pt + , Cu 2+ , Cu + , Ag + , Au +
  • the metal will be chosen from groups 2 to 15 of the periodic table.
  • the metal will be chosen from groups 2 and 7 to 12 and more particularly from Zn, Cu, Cd, Ni, Fe, Co, Ru, Rh, Pd, Pt, Mn, Mg, Ag.
  • the metal ions present in the porous hybrid materials are the following: Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Sc 3+ , Y 3+ , Ti 4+ , Zr 4+ , Hf 4+ , V 4+ , V 3+ , V 2+ , Nb 3+ , Ta 3+ , Cr 3+ , Mo 3+ , W 3+ , Mn 3+ , Mn 2+ , Re 3 + , Re 2+ , Fe 3+ , Fe 2+ , Ru 3+ , Ru 2+ , Os 3+ , Os 2+ , Co 3+ , Co 2+ , Co + , Rh 2+ , Rh + , Ir 2 + , Ir + , Ir + , Ni 2+ , Ni + , Pd 2+ , Pd + , Pt 2+ , R + , Cu 2+ , Cu + , Ag + , Au + , Zn 2+ , C
  • metal oxides and their mixtures in any proportion, as well as salts of these metals, salts of halides, sulphates, nitrates, phosphates, carbonates, oxalates, hydroxides, alkoxides, perchlorates, carboxylates or acetylacetonates.
  • salts of these metals salts of halides, sulphates, nitrates, phosphates, carbonates, oxalates, hydroxides, alkoxides, perchlorates, carboxylates or acetylacetonates.
  • the organic molecules having at least two chelating functions and constituting the framework of the material can comprise an alkyl group of 1 to 10 carbon atoms, aryl groups (from 1 to 5 benzene rings), a mixture of alkyl groups (from 1 to 10 carbon atoms) and aryl groups (from 1 to 5 benzene rings).
  • These groups must be functionalized with at least two chemical groups such as COOH, CS 2 H, NO 2 , NH 2 , OH, SO 3 H 1 Si (OH) 3 , Ge (OH) 3 , Sn (OH) 3 , Si (SH) 4 , Ge (SH) 4 , Sn (SH) 3 , PO 3 H, AsO 3 H, AsO 4 H, P (SH) 3 , As (SH) 3 , CH (RSH) 2 , C (RSH) ) 3 , CH (RNH 2 ) 2 , C (RNH 2 J 3 , CH (ROH) 2 , C (ROH) 3 , CH (RCN) 2 , C (RCN) 3 where R is an alkyl group having between 1 and 10 carbon atoms or an aryl group having between 1 and 5 benzene rings, and CH (SH) 2 , C (SH) 3 , CH (NH 2) 2 , C (NH 2) 3 , CH (OH) 2 , C (OH) 3 ,
  • ligands bearing carboxylic acid groups substituted or unsubstituted on the aromatic ring by the groups mentioned above, naphthalene dicarboxylate (NDC), or bearing amino groups such as bipyridi ⁇ es, will be used.
  • NDC naphthalene dicarboxylate
  • the organic ligand is terephthalic acid substituted or not on the benzene ring or 2-methylimidazole.
  • the organic-inorganic mixed matrix porous hybrid solids used as catalysts in the present invention consist of ions or polyhedra of Zn 2+ and preferably interconnected by bidentate ligands derived from terephthalic acid. .
  • This type of catalyst can advantageously be prepared by one of the methods described below.
  • a conventional method for preparing a coordination polymer comprises a first step in which the zinc precursor is dissolved in water or in a polar organic solvent or a mixture of solvents, and the organic ligand is also in solution in water or in a polar organic solvent. In a second step, these two solutions are mixed and stirred.
  • a third step consists in adding to the above mixture a base in aqueous solution (methylamine for example) or in solution in a polar organic solvent on the above mixture. This final mixture is then stirred or not. The hybrid material precipitates in the medium, it is filtered, washed with water or with an organic solvent, and then dried. It may possibly undergo a subsequent heat treatment to release the porosity.
  • a hybrid organic-inorganic mixed matrix porous solid preferably used as catalyst in the present invention and consisting of Zn 2+ ions or polyhedra and interconnected by bidentate ligands derived from terephthalic acid is a hybrid crystallized material, called HMI-1, having the crystal structure detailed below.
  • the IHM-1 hybrid material has an X-ray diffraction pattern including at least the lines listed in Table 1. This diffraction diagram is obtained by radiocrystallographic analysis using the conventional powder method using an X'Pert diffractometer.
  • the routine analyzes of the material were recorded with a pitch of 0.05 ° for 5 seconds, up to 70 °. For more accurate recordings, the pitch is 0.02 ° for 10 seconds up to 120 °.
  • the measurement error ⁇ (d hk i) on d h ⁇ is calculated as a function of the absolute error ⁇ (2 ⁇ ) assigned to the measurement of 2 ⁇ .
  • An absolute error of ⁇ (2 ⁇ ) equal to ⁇ 0.02 ° is commonly accepted.
  • the relative intensity 1 / I 0 assigned to each value of d hk i is measured from the height of the corresponding diffraction peak.
  • the X-ray diffraction pattern of the IHM-1 hybrid material according to the invention comprises at least the lines with the values of d hk i given in Table 1.
  • Table 1 Mean dhk i values and relative intensities measured on an X-ray diffraction pattern of the IHM-1 hybrid material
  • the process for preparing the solid HMI-1 comprises the following steps: i. dissolving at least one zinc precursor based on anhydrous zinc dichloride and terephthalic acid (H 2 BDC) in at least one organic solvent ii. solution of 2-methylamine (MEA) in water iii. possibly, a mixture of the two previous solutions iv. crystallization filtration, washing and drying of the product obtained.
  • the solvent used in the synthesis contains, in particular, dimethylformamide (DMF). It may possibly be associated with toluene.
  • the crystallization step is between room temperature and 100 ° C. for 12 to 30 hours.
  • the drying is carried out between 40 ° C. and up to a temperature of 200 ° C. Most often, the drying is carried out between 40 ° C. and 100 ° C., preferably between 45 ° C. and 75 ° C., for a period of time. varying between 15 minutes and 1 hour, usually about 30 minutes. Then, it is carried out between 100 0 C and 200 0 C, preferably between 130 and 170 0 C, usually for 2 to 8 hours and usually about 6 hours.
  • the process is carried out at temperatures of between 130 ° C. and 220 ° C., at pressures of less than 100 bars with an excess of monoalcohol relative to the stoichiometry of fatty substances / alcohol.
  • the reaction can be carried out according to different embodiments. If a batch reaction is used, it can be worked in one or two steps, that is to say carry out a first reaction up to 85% to 95% conversion to esters, cool by evaporating the reaction. excess alcohol, decanting the glycerin and ending the reaction by heating again to between 13O 0 C and 22O 0 C and adding alcohol to obtain complete conversion.
  • a continuous reaction is undertaken, one can work with several autoclaves and decanters in series.
  • a partial conversion is usually carried out less than 90% generally of at least 50% and most often of approximately 85%, then decanting by evaporating the alcohol and cooling;
  • the transesterification reaction is completed under the conditions mentioned by adding a portion of the alcohol which has previously been evaporated.
  • the excess alcohol is finally evaporated in an evaporator and the glycerine and the esters are separated by decantation.
  • a continuous fixed bed process it is advantageously possible to work at temperatures of 130 to 220 ° C., preferably 150 to 180 ° C., at pressures of 10 to 70 bar, the WH being preferably comprised between 0.1 and 3, preferably from 0.3 to 2, in the first step and the alcohol / oil weight ratio varying from 3/1 to 0.1 / 1.
  • the introduction of the alcohol can be advantageously fractionated.
  • the two-level introduction into the tubular reactor can be carried out as follows: feeding the reactor with the oil and about 2/3 of the alcohol to be used, then introducing the alcohol supplement approximately at level of the upper third of the catalytic bed.
  • the leaching behavior is checked in the present invention by the absence of traces from the catalyst both in the ester formed and in the glycerin produced.
  • the recyclability of the catalyst is evaluated experimentally over time. If no more than 220 ° C, an ester of the same color as the starting oil and a colorless glycerine after decantation are generally obtained.
  • the compounds produced are analyzed either by gas chromatography for the esters and glycerol or, more rapidly, by steric exclusion liquid chromatography for the esters.
  • the ester and glycerol obtained do not contain impurities from the catalyst. Therefore, no purification treatment will be applied to remove the catalyst or the residues thereof in contrast to the catalysts operating in a homogeneous process for which the catalyst or its residues are, after reaction, located in the same phase as the ester and / or glycerine.
  • the procedure is the same to obtain a purity glycerin of between 95 and 99.9% and preferably between 98 and 99.9%.
  • the final purification is reduced to a minimum, while making it possible to obtain an ester with fuel specifications and a glycerine of purity of between 95 and 99.9% and preferably between 98 and 99.9%.
  • the oil used in these examples is rapeseed oil whose fatty acid composition is as follows:
  • Table 2 Composition of rapeseed oil.
  • a zinc precursor (ZnCl 2 , purity> 98%, Sigma) and terephthalic acid (H 2 BDC 1 > 98% purity, Sigma) are dissolved in 250 ml of dimethylformamide (DMF, 99.8%, Sigma).
  • 2-methylamine (MEA, 40% in H 2 O, Sigma) is dissolved in 100 ml of water and is added to the above mixture dropwise for 30 minutes.
  • the product of the reaction is then allowed to crystallize for 24 hours and then isolated by filtration and rinsed twice with DMF.
  • the solid obtained is then dried at 60 ° C. for 30 minutes, then at 150 ° C. for 6 hours.
  • the hybrid material HMI-1 thus obtained has an X-ray diffraction pattern including at least the lines listed in Table 1.
  • Example 2 Transesterification of vegetable oils (rapeseed oil) with methanol from a hybrid solid hybrid organic-inorganic matrix-HM-1 mixed catalyst at 200 ° C.
  • the conversion of the triglycerides begins while the reaction medium has not reached 200 ° C. (46% of esters at 100).
  • the leaching of the catalyst in the ester phase is negligible (the zinc content, estimated by the inductively coupled plasma (IPC) technique is less than 200 ppm). This result is valid for all the following examples.
  • Example 3 Transesterification of vegetable oils (rapeseed oil) with methanol from a hybrid organic-inorganic solid catalyst HMI-1 at 180 ° C.
  • Example 2 is repeated using 25 g of rapeseed oil, 25 g of methanol and 1 g of HMI-1 catalyst prepared according to Example 1 and in powder form. The reaction is carried out at 180 ° C., the temperature of the reaction medium being stabilized at 180 ° C. after 20 minutes of heating.
  • the following table summarizes the results obtained.
  • Example 2 is repeated using 25 g of rapeseed oil, 25 g of methanol and 1 g of catalyst prepared according to Example 1 and in powder form. The reaction is carried out at 160 ° C., the temperature of the reaction medium being stabilized at 160 ° C. after 20 minutes of heating.
  • the following table summarizes the results obtained.
  • the conversion (estimated relative to triglycerides) is 99% in 6 hours.
  • a methanoic solution of 2-methylimidazole (1.64 g in 50 ml of MeOH) is introduced with stirring dropwise in an ammoniacal solution of Zn (OH) 2 (0.994 g in 100 ml of 25% NH 3 ).
  • stirring is stopped and the solid is allowed to precipitate for 4 days.
  • the solid is then filtered and washed with 3 * 50 mL of a H 2 O / MeOH solution (1: 1 v: v) and then air dried (XC Huang, et al Angew Chem Int Ed, 2006, 45, 1557-1559).
  • EXAMPLE 6 Transesterification of vegetable oils (rapeseed oil) with methanol from a hybrid porous solid catalyst with an organic-inorganic mixed matrix at 18 ° C.
  • Example 2 is repeated using 25 g of rapeseed oil, 25 g of methanol and 1 g of catalyst prepared according to Example 5 and in powder form. The reaction is carried out at 180 ° C., the temperature of the reaction medium being stabilized at 180 ° C. after 20 minutes of heating.
  • the following table summarizes the results obtained.
  • the conversion (estimated relative to triglycerides) is 99% in 2 hours.
  • Example 7 (Comparative) Transesterification of rapeseed oil with methanol in the presence of zinc aluminate (ZnAbO 4 ) in powder form at 200 ° C.
  • Example 2 is repeated using 25 g of rapeseed oil, 25 g of methanol and 1 g of ZnAl 2 O 4 catalyst in powder form. The reaction is carried out at 200 ° C., the temperature of the reaction medium being stabilized at 200 ° C. after 40 minutes of heating.
  • the following table summarizes the results obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Fats And Perfumes (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Un procédé de fabrication d'une composition d'esters alcooliques d'acides monocarboxyliques linéaires de 6 à 26 atomes de carbone à partir d'une huile végétale ou animale, neutre ou acide, vierge ou recyclée, avec des monoalcools de 1 à 18 atomes de carbone, en présence d'un catalyseur hétérogène, à base de solide hybride à matrice mixte organique-inorganique, permet de fabriquer directement, en une ou plusieurs étapes, un ester utilisable comme carburant ou combustible et une glycérine pure.

Description

PROCEDE DE FABRICATION D'ESTERS ALCOOLIQUES A PARTIR DE
TRIGLYCÉRIDES ET D'ALCOOLS AU MOYEN DE CATALYSEURS
HÉTÉROGÈNES À BASE DE SOLIDE HYBRIDE À MATRICE MIXTE ORGANIQUE-INORGANIQUE. La présente invention est relative à un nouveau procédé de fabrication d'esters alcooliques d'acides monocarboxyliques à partir de corps gras d'origine végétale ou animale.
La réaction principalement visée est une transestérification réalisée selon le schéma I ci-dessous et éventuellement une réaction couplée estérification et transestérification, l'estérification étant réalisée selon le schéma II ci-dessous.
Schéma I :
1 triglycéride + 3 alcools → 3 esters de corps gras + glycérine Schéma II :
Acide gras + alcool — > esters d'acide gras + eau Acide gras + glycérine → glycéride + eau
Les esters de corps gras sont actuellement utilisés dans de nombreuses applications comme carburants diesel, fuels domestiques, solvants écologiques, composés de base pour la fabrication de sulfonates d'alcools gras, d'amides, de dimères d'esters, etc.
Dans le cas du carburant Diesel, qui constitue aujourd'hui une application majeure des esters de corps gras, un certain nombre de spécifications ont été établies dont la liste, les limites et les méthodes font partie de la norme EN 14214 (2003) applicable actuellement en Europe. L'ester doit contenir au moins 96,5 % en masse d'esters, au plus 0,8 % en masse de moπoglycérides, au plus 0,2 % en masse de diglycérides et au plus 0,2 % en masse de triglycérides, peu d'acides gras libres (<0,5 mg de KOH par g), qui peuvent être corrosifs, moins de 0,25 % en masse de glycérine liée et libre et des métaux seulement à l'état de trace. Ceci implique un protocole précis pour obtenir la pureté désirée. Lorsqu'on fabrique un ester à partir d'huile ou de graisse et de monoalcool, il se forme automatiquement, selon la nature de l'huile engagée au départ, de 10 à 15 % en masse d'un produit secondaire, qui est la glycérine. Cette glycérine est vendue à un prix élevé pour des utilisations variées, mais seulement lorsqu'elle possède une grande pureté. Celle-ci est obtenue après des purifications poussées dans des unités spécialisées dans Ia distillation sous vide.
En résumé, la plupart des procédés commerciaux de fabrication d'esters aboutissent assez facilement à des produits bruts (esters et glycérine), qu'il faut cependant purifier de façon approfondie par divers traitements qui grèvent finalement le prix de la transformation.
Il est connu de fabriquer des esters méthyliques par les voies classiques de la catalyse homogène avec des catalyseurs solubles, comme la soude ou le méthylate de sodium, en faisant réagir une huile neutre et un alcool comme le méthanol (par exemple JAOCS 61, 343-348 (1984)). On n'arrive cependant à un produit pur utilisable comme carburant et une glycérine aux normes qu'après de très nombreuses étapes. En effet, la glycérine obtenue est polluée par les sels alcalins ou les alcoolates, si bien que l'installation de purification de la glycérine est presque aussi coûteuse que celle qui permet la fabrication de l'ester.
Les procédés par catalyse hétérogène offrent l'avantage de produire des esters et de la glycérine exempts de catalyseur donc faciles à purifier. Toutefois, il est souvent difficile d'obtenir de façon économique à la fois un ester et une glycérine de grande pureté. Le brevet européen EP-B-O 198 243 décrit la fabrication d'esters méthyliques par transestérification d'une huile avec du méthanol, en utilisant comme catalyseur une alumine ou un mélange d'alumine et d'oxyde ferreux. Toutefois, la WH (volume d'huile injecté/volume de catalyseur/heure) est faible, la quantité de glycérine recueillie est très inférieure à celle prévue théoriquement et la pureté des esters obtenus est assez faible (comprise entre 93,5 et 98%).
Des procédés utilisant un système catalytique à base d'oxydes métalliques seuls ou associés, déposés ou non sur une alumine ont été décrits. Le brevet FR-B- 2 752 242 au nom de la Demanderesse, décrit l'utilisation de catalyseurs solides et non solubles formés à partir d'oxyde de zinc et d'alumine ou d'aluminate de zinc. Les demandes de brevets EP-A-1 505 048 et EP-A-1 593 732 également déposées au nom de la Demanderesse décrivent un procédé de transestérification d'huiles végétales ou animales au moyen de catalyseurs hétérogènes à base de mélanges d'oxydes de titane et d'alumine, d'oxyde de zirconium et d'alumine, d'oxyde d'antimoine et d'alumine ou bien de combinaison d'oxydes de zinc et de titane, d'oxyde de zinc, de titane et d'alumine, d'oxydes de bismuth, et de titane ou d'oxyde de bismuth, de titane et d'alumine.
Outre ces solides de type oxyde, un nombre grandissant de nouvelles phases basiques ont pu être utilisées pour catalyser la transestérification des huiles avec des alcools.
A titre d'exemple, De Filippis et al. (Energy & fuels 2005, 19, 225-228) suggèrent l'utilisation de phosphate de sodium pour catalyser la réaction de transestérification d'huile de colza.
Suppes et al. (Applied Catalysis A: gênerai 257 (2004) 213-223) ont recours à divers matériaux aussi différents que des zéolithes échangées par Cs ou K ou des métaux entrant dans la composition des réacteurs, pour la transestérification de l'huile de soja.
La présente invention décrit un procédé de fabrication d'une composition d'esters alcooliques d'acides monocarboxyliques linéaires de 6 à 26 atomes de carbone et de glycérine dans lequel on fait réagir un corps gras d'origine animale ou végétale, avec un monoalcool aliphatique renfermant de 1 à 18 atomes de carbone, en présence d'au moins un catalyseur hétérogène, à base de solide hybride à matrice mixte organique-inorganique.
Ces solides hybrides poreux à matrice mixte organique-inorganique sont des polymères de coordination. Ils sont constitués d'ions métalliques ou de polyèdres d'ions métalliques associés entre eux par au moins un ligand organique polyfonctionnalisé au moins bidentate.
Les solides hybrides organiques-inorganiques, à base de métaux connectés entre eux par des molécules organiques peuvent être utilisés pour des applications comme le stockage de gaz tels que l'hydrogène par exemple (US 7,196,210 ; Yaghi, J. Am. chem. Soc, 127, 17998 ; Zhou, J. Am. Chem. Soc, 128, 3896).
Les applications en catalyse de ces matériaux sont beaucoup plus rares. Néanmoins, ils ont été utilisés pour des réactions d'alcooxylation (US 7,202,385), d'époxydation (US 6, 624, 318), d'alkylations asymétriques d'aldéhydes (Lin, J. Am. Chem. Soc, 2005, 127, 8940), de cyanosilylation (Fujita, Chem. Commun., 2004, 1586). Très récemment, Llabrès et al. (Journal of Catalysis, 250 (2007) 294-298) ont montré l'activité d'un matériau hybride au palladium pour les réactions d'oxydation d'un alcool, de couplage de Suzuki et d'hydrogénation des oléfines. Un matériau à base de l'élément zinc et d'un ligand pyridinique chiral a été synthétisé par Kim et a/, pour catalyser la transestérification énantiosélective de l'acétate de 2,4-dinitrophényle par un alcool. Cependant, ce matériau, dont la synthèse est complexe, est peu actif car la conversion n'atteint 90% qu'au bout d'une centaine d'heures de réaction avec par ailleurs des excès énantiomériques extrêmement faibles (inférieurs à 10%) (Kim, Nature, 404, 2000, 982). Cette réaction met en jeu un ester activé par des groupements nitro électroattracteurs, en présence d'un solvant à température ambiante. L'utilisation de monoesters activés, dont l'encombrement stérique est par ailleurs faible, constitue une différence fondamentale avec la transestérification des triglycérides, ou triesters d'acides gras, qui se déroule à des températures plus élevées selon un mécanisme constitué de réactions consécutives mettant en jeu des dérivés d'acides gras qui présentent tous un encombrement stérique important. Par ailleurs, la réaction de transestérification des corps gras se déroule en l'absence de solvant. L'ensemble de ces paramètres (absence de solvant, température élevée, réactifs de natures différentes et stériquement encombrés), distingue de manière importante la transestérification des corps gras d'une transestérification énantiosélective. Ainsi, d'après les résultats présentés par Kim et al., l'utilisation d'un solide hybride fonctionnalisé, dont la synthèse est complexe, semble présenter peu d'intérêt pour les réactions de transformation d'esters. Par ailleurs, les faibles tailles de pores de ces solides, ainsi qu'une absence de fonctions chimiques dans la charpente du matériau pour les plus simples d'entre eux, ne prédestinaient pas ces polymères de coordination à être utilisés en tant que catalyseur de réactions mettant en jeu des corps gras.
De manière surprenante, nous avons montré que les catalyseurs à base de solides hybrides poreux à matrice mixte organique-inorganique ont avantageusement la capacité de catalyser la transestérification de corps gras avec le méthanol, ainsi qu'avec des alcools plus lourds. Ainsi, on peut former des esters éthyliques, isopropyliques ou butyliques, qui présentent un intérêt car souvent les points d'écoulement des esters formés avec les alcools éthyliques, isopropyliques ou butyliques sont plus bas que ceux des esters méthyliques, le gain étant parfois de
1O0C, ce qui permet d'utiliser au départ des huiles plus saturées.
Un avantage de l'invention utilisant un catalyseur à base de solides hybrides poreux à matrice mixte organique-inorganique est notamment de permettre une diminution de la température de réaction, du temps de contact entre les réactifs ou du rapport alcool/corps gras par rapport à l'art antérieur, tout en améliorant le taux de conversion et en maintenant une sélectivité élevée en esters.
Un autre avantage de l'invention réside dans le fait que ces solides catalysent des réactions de transestérification et d'estérification selon un processus de catalyse hétérogène. Ainsi, le catalyseur n'est pas consommé dans la réaction et ne se retrouve pas dissous dans le milieu réactionnel. En restant sous forme solide, il est facilement séparé du milieu réactionnel sans perte de catalyseur et sans pollution du milieu réactionnel par des espèces dissoutes ou des résidus de catalyseur.
L'activité et la sélectivité de ce catalyseur n'est pas affectée par la réaction de transestérification ou d'estérification : le catalyseur est stable et recyclable dans les conditions expérimentales de la réaction. Ce type de catalyseur est compatible avec une utilisation dans un procédé industriel en continu, par exemple, en lit fixe et dans lequel la charge de catalyseur peut être utilisée pendant une très longue durée sans perte d'activité.
Le procédé de l'invention est décrit de façon plus détaillée ci-après.
Corps gras
Les corps gras utilisés dans le procédé de l'invention correspondent à des substances naturelles ou élaborées, d'origine animale ou végétale, contenant majoritairement des triglycérides, couramment regroupés sous les termes d'huiles et de graisses.
Parmi les huiles utilisables, on peut citer toutes les huiles courantes, comme les huiles de palme (concrètes ou oléines), de soja, de palmiste, de coprah, de babassu, de colza (ancien ou nouveau), de tournesol (classique ou oléique), de maïs, de coton, les huiles d'arachide, de pourghère (Jatropha curcas), de ricin, de lin et de crambe et toutes les huiles issues par exemple du tournesol ou du colza par modification génétique ou hybridation ou encore provenant d'algues.
On peut même utiliser des huiles de friture, d'équarrissage, des huiles animales variées, comme les huiles de poissons, de phoques, d'équarrissage, le suif, le saindoux, ou encore les graisses issues du traitement des eaux usées et même des graisses de volailles, car les esters fabriqués à partir de certains alcools comme l'alcool éthylique, isopropylique ou butylique, permettent de gagner plus de 100C en point d'écoulement et par conséquent d'utiliser au départ des huiles plus saturées.
Parmi les huiles utilisées, on peut encore indiquer des huiles partiellement modifiées par exemple par polymérisation ou oligomérisation, comme par exemple, les "standolies" d'huile de lin, de tournesol et les huiles végétales soufflées.
Les huiles utilisées sont neutres ou acides, vierges ou recyclées.
La présence d'acides gras dans les huiles n'est pas a priori préjudiciable car les systèmes catalytiques à base de solides hybrides poreux à matrice mixte organique-inorganique sont également actifs pour l'estérification et transforment également les acides gras en esters. La valeur limite en acides gras libres contenus dans les huiles se situe à un indice d'acide voisin de 10 (l'indice d'acide étant défini comme la masse en mg de KOH nécessaire au dosage de tous les acides gras libres dans 1 g d'huile). L'opérabilité du procédé dans ces conditions est proche de celle définie avec une huile à faible indice d'acide (soit inférieure à 0,2 mg de KOH/g). Dans le cas d'huiles à très fort indice d'acide (proche de 10 mg de KOH/g), une des possibilités est de faire précéder la réaction de transestérification d'une réaction d'estérification des acides gras libres présents, soit en utilisant le même alcool que celui utilisé dans le procédé de transestérification en présence d'un acide fort comme l'acide sulfurique ou des acides sulfoniques solubles ou supportés (de type résines Amberlyst 15®), soit en utilisant de préférence de la glycérine, pour former un ester de glycérol total ou partiel, en utilisant le même catalyseur à base de solides hybrides poreux à matrice mixte organique-inorganique, à pression atmosphérique et de préférence sous vide et à des températures comprises entre 150 et 2200C. Lorsqu'on utilise des huiles de friture, qui constituent une matière première très bon marché pour produire un biodiesel, il est nécessaire d'éliminer du mélange réactionnel les polymères d'acides gras afin que le mélange d'esters réponde aux spécifications de la norme EN 14214.
Alcool
La nature de l'alcool mis en jeu dans le procédé joue un rôle dans l'activité de transestérification. D'une manière générale, il est possible d'utiliser divers monoalcools aliphatiques renfermant, par exemple, de 1 à 18 atomes de carbone, de préférence, de 1 à 12 atomes de carbone.
De façon encore plus préférée, le monoalcool aliphatique renferme de 1 à 5 atomes de carbone.
Le plus actif est l'alcool méthylique. Toutefois, l'alcool éthylique et les alcools isopropylique, propylique, butylique, isobutylique et même amylique, peuvent être envisagés. Des alcools plus lourds tels que l'alcool éthyl-hexylique ou l'alcool laurique peuvent également être utilisés. On peut avantageusement ajouter aux alcools lourds de l'alcool méthylique qui facilite la réaction.
Par ailleurs, lorsqu'on prépare l'ester éthylique, on peut utiliser un mélange d'alcool éthylique et méthylique comprenant de 1 à 50% en poids, de préférence de 1 à 10% en poids, d'alcool méthylique de manière à augmenter la conversion.
Catalyseurs
La plupart des catalyseurs rencontrés sont sous forme de poudres, de billes, d'extrudés ou de pastilles. Ces types de mise en forme restent valables dans le cas des solides hybrides poreux tels que ceux que nous décrivons dans la présente invention.
Dans le cas où la technologie de réacteur impose de mettre en forme le catalyseur sous forme de billes, pastilles, granulés ou extrudés, les différents modes de mise en forme bien connus de l'homme du métier (voir brevet US-B2-6,893,564) peuvent être utilisés (imprégnation, dépôts, malaxage-extrusion, granulation, pastillage...). Les exemples ci-dessous illustrent, de façon non exhaustive, certaines des méthodes envisageables.
Les poudres de polymère de coordination peuvent subir une granulation avec, par exemple, utilisation de liants organiques ou inorganiques tels que décrits dans la demande de brevet WO 2006/050898. L'utilisation de liants, charges, agents de peptisation permet, en outre, des mises en forme sous forme d'extrudés par malaxage-extrusion. La technique de coagulation en gouttes peut également être adaptée à ces solides hybrides.
Les méthodes classiques de dépôt sur support préformé approprié, d'imprégnation ou de modification d'un support préformé, bien connues de l'homme du métier, peuvent également, être avantageusement utilisées.
Tous ces types de mise en forme peuvent être réalisés en présence ou absence de liant.
L'alumine, par exemple, peut être utilisée en tant que liant. Celle-ci permet d'augmenter la surface du matériau, et souvent, de créer un composé beaucoup plus stable vis-à-vis du lessivage et des contraintes mécaniques. De façon préférée, la teneur en alumine représente jusqu'à 90% en poids par rapport à la masse totale du matériau mis en forme. De façon très préférentielle, la teneur en alumine est comprise entre 10 et 70 % en poids par rapport à la masse totale du matériau mis en forme. Les polymères de coordination sont constitués d'ions métalliques ou de polyèdres inorganiques d'ions métalliques, ou noeuds, reliés entre eux par des molécules organiques polyfonctionnalisées, ou ligands, possédant au moins deux fonctions chélatantes (carboxylates, aminés, phosphonates, sulfonates, alcoolates...). Ces matériaux possèdent des pores, en particuliers des micropores (taille inférieure à 2 nm) et des mésopores (taille comprise entre 2 et 50 nm). Les surfaces spécifiques de ces matériaux peuvent varier de 5 à 5000 m2/g, préférentiellement de 100 à 3000 m2/g.
Parmi les métaux utilisés constituant les "noeuds" de ces matériaux, on peut citer des métaux des groupes 2 à 17 de la classification périodique. En particulier, des métaux tels que Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V1 Nb, Ta, Cr, Mo, W, Mn, Re1 Fe, Ru, Os, Co, Rh1 Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Al1 Ga, In, Tl, Ge1 Sn1 Pb, As, Sb et Bi sont préférés. Parmi ceux-ci, Zn, Cu, Cd, Ni, Fe, Co, Ru, Rh, Pd, R, Mn, Mg, Ag sont préférés. De manière non limitative, les ions métalliques présents dans les matériaux hybrides poreux issus en partie de la liste précédente sont les suivants : Mg2+, Ca2+, Sr2+, Ba2+, Sc3+, Y3+, Ti4+, Zr4+, Hf4+, V4+, V3+, V2+, Nb3+, Ta3+, Cr3+, Mo3+, W3+, Mn3+, Mn2+, Re3+, Re2+, Fe3+, Fe2+, Ru3+, Ru2+, Os3+, Os2+, Co3+, Co2+, Co+, Rh2+, Rh+, Ir2+, Ir+, Ni2+, Ni+, Pd2+, Pd+, Pt2+, Pt+, Cu2+, Cu+, Ag+, Au+, Zn2+, Cd2+, Hg2+, Al3+, Ga3+, In3+, Tl3+, Si4+, Si+, Ge4+, Sn4+, Sn2+, Pb4+, Pb2+, As5+, As3+, As+, Sb5+, Sb3+, Sb+, Bi5+, Bi3+, Bi+. De façon préférée, le métal sera choisi parmi les groupes 2 à 15 de la classification périodique. De façon très préférée, le métal sera choisi parmi les groupes 2 et 7 à 12 et plus particulièrement parmi Zn, Cu, Cd, Ni, Fe, Co, Ru, Rh, Pd, Pt, Mn, Mg, Ag. De manière non limitative, les ions métalliques présents dans les matériaux hybrides poreux issus en partie de la liste précédente sont les suivants : Mg2+, Ca2+, Sr2+, Ba2+, Sc3+, Y3+, Ti4+, Zr4+, Hf4+, V4+, V3+, V2+, Nb3+, Ta3+, Cr3+, Mo3+, W3+, Mn3+, Mn2+, Re3+, Re2+, Fe3+, Fe2+, Ru3+, Ru2+, Os3+, Os2+, Co3+, Co2+, Co+, Rh2+, Rh+, Ir2+, Ir+, Ni2+, Ni+, Pd2+, Pd+, Pt2+, R+, Cu2+, Cu+, Ag+, Au+, Zn2+, Cd2+, Hg2+, Al3+, Ga3+, In3+, Tl3+, Si4+, Si+, Ge4+, Sn4+, Sn2+, Pb4+, Pb2+, As5+, As3+, As+, Sb5+, Sb3+, Sb+, Bi5+, Bi3+, Bi+.
Parmi les sources de métaux utilisables, on peut citer, les oxydes métalliques et leurs mélanges en toute proportion ainsi que des sels de ces métaux, sels d'halogénures, de sulfates, de nitrates, de phosphates, de carbonates, d'oxalates, d'hydroxydes, d'alcoolates, de perchlorates, de carboxylates ou d'acétylacétonates. Ces précurseurs peuvent être sous forme de poudre ou mis en forme, soluble ou insoluble dans le milieu réactionnel.
Les molécules organiques possédant au moins deux fonctions chélatantes et constituant la charpente du matériau peuvent comporter un groupement alkyle de 1 à 10 atomes de carbone, des groupements aryles (de 1 à 5 noyaux benzéniques), un mélange de groupements alkyles (de 1 à 10 atomes de carbone) et de groupements aryles (de 1 à 5 noyaux benzéniques). Ces groupements doivent être fonctionnalisés par au moins deux groupements chimiques tels que COOH, CS2H, NO2, NH2, OH, SO3H1 Si(OH)3, Ge(OH)3, Sn(OH)3, Si(SH)4, Ge(SH)4, Sn(SH)3, PO3H, AsO3H, AsO4H, P(SH)3, As(SH)3, CH(RSH)2, C(RSH)3, CH(RNH2)2, C(RNH2J3, CH(ROH)2, C(ROH)3, CH(RCN)2, C(RCN)3 où R est un groupement alkyle comportant entre 1 et 10 atomes de carbone ou un groupement aryle comportant entre 1 et 5 noyaux benzéniques, et CH(SH)2, C(SH)3, CH(NH2J2, C(NH2J3, CH(OH)2, C(OH)3, CH(CN)2 et C(CN)3. Par ailleurs, des hétérocycles azotés, soufrés, oxygénés, substitués ou non, peuvent aussi servir de ligands (dérivés de la pyridine, de l'imidazole...)..
De manière préférée, on utilisera des ligands portant des groupements acides carboxyliques, substitués ou non sur le noyau aromatique par les groupements cités précédemment, le naphtalène dicarboxylate (NDC), ou portant des groupements aminés tels que les bipyridiπes. Très préférentiellement, le ligand organique est l'acide téréphtalique substitué ou non sur le noyau benzénique ou le 2- méthylimidazole.
De manière très préférée, les solides hydrides poreux à matrice mixte organique-inorganique utilisés comme catalyseurs dans la présente invention sont constitués d'ions ou de polyèdres de Zn2+ et de préférence reliés entre eux par des ligands bidentates dérivés de l'acide téréphtalique.
Certains modes de préparation de ces matériaux hybrides poreux sont connus de l'art antérieur et sont décrits notamment dans les brevets US 2006/0287190 ou
US-7, 196,210. Les différentes voies de synthèses conduisant à ces solides sont applicables dans le cadre de la présente invention et les modes de préparations présentés ici ne sont, en aucun cas, restrictifs.
Ce type de catalyseur peut avantageusement être préparé par l'une des méthodes décrites ci-après.
Une méthode conventionnelle de préparation d'un polymère de coordination comprend une première étape au cours de laquelle le précurseur de zinc est mis en solution dans l'eau ou dans un solvant organique polaire ou un mélange de solvants, et le ligand organique est également mis en solution dans l'eau ou dans un solvant organique polaire. Dans une seconde étape, ces deux solutions sont mélangées et agitées. Une troisième étape consiste à ajouter au mélange précédent une base en solution aqueuse (méthylamine par exemple) ou en solution dans un solvant organique polaire sur le mélange précédent. Ce mélange final est ensuite agité ou non. Le matériau hybride précipitant dans le milieu, il est filtré, lavé à l'eau ou par un solvant organique, puis séché. Il peut éventuellement subir un traitement thermique ultérieur afin de libérer la porosité. Un solide hydride poreux à matrice mixte organique-inorganique utilisé préférentiellement comme catalyseur dans la présente invention et constitué d'ions ou de polyèdres de Zn2+ et reliés entre eux par des ligands bidentates dérivés de l'acide téréphtalique est un matériau cristallisé hybride, appelé IHM-1 , présentant la structure cristalline détaillée ci-après. Le matériau hybride IHM-1 présente un diagramme de diffraction des rayons X incluant au moins les raies inscrites dans le tableau 1. Ce diagramme de diffraction est obtenu par analyse radiocristallographique en utilisant la méthode classique des poudres au moyen d'un diffractomètre X'Pert PRO PANalytical équipé d'un goniomètre θ-θ, d'un tube à rayons X au cuivre (raie Kαi à 1,5418 A) muni d'un monochromateur arrière. Les analyses de routine du matériau ont été enregistrées avec un pas de 0,05° pendant 5 secondes, jusqu'à 70°. Pour des enregistrements plus précis, le pas est de 0,02° pendant 10 secondes jusqu'à 120°.
A partir de la position des pics de diffraction représentée par l'angle 2Θ, on calcule, en appliquant la relation de Bragg, les distances réticulaires dhki caractéristiques de l'échantillon. L'erreur de mesure Δ(dhki) sur dhκι est calculée en fonction de l'erreur absolue Δ(2Θ) affectée à la mesure de 2Θ. Une erreur absolue de Δ(2Θ) égale à ±0,02° est communément admise. L'intensité relative 1/I0 affectée à chaque valeur de dhki est mesurée d'après la hauteur du pic de diffraction correspondant. Le diagramme de diffraction des rayons X du matériau hybride IHM-1 selon l'invention comporte au moins les raies aux valeurs de dhki données dans le tableau 1. Dans la colonne des dhki. on a indiqué les valeurs moyennes des distances inter-réticulaires en Angstrôms (A). Chacune de ces valeurs doit être affectée de l'erreur de mesure Δ(dhk|) comprise entre ±0,3 Λ et ±0,01 Â.
Tableau 1 : Valeurs moyennes des dhki et intensités relatives mesurées sur un diagramme de diffraction des rayons X du matériau hybride IHM-1
2 Thêta (°) CWi (A) l/lo
8,81 10,03 FF
14,22 6,22 ff
15,78 5,61 f
17,67 5,02 m
26,65 3,34 ff
27,11 3,28 ff
28,69 3,11 f
28,95 3,08 f
29,97 2,98 ff
30,51 2,93 f
31,11 2,87 f
31 ,90 2,80 f
32,55 2,75 mf
34,05 2,63 ff
34,97 2,56 ff
35,77 2,51 f
36,87 2,44 f
39,05 2,30 ff
40,39 2,23 ff
41,99 2,15 ff
42,75 2,11 ff
45,19 2,00 f où FF=très fort ; F=fort ; m=moyen ; mf=moyen faible ; f=faible ; ff≈très faible. L'intensité l/lo est donnée en rapport à une échelle d'intensité relative où il est attribué une valeur de 100 à la raie la plus intense du diagramme de diffraction des rayons X : ff<15 ; 15< f <30 ; 30≤ mf< 50 ; 50< m<65 ; 65< F<85 ; FF> 85. Ce matériau hybride IHM-1 s'indexe en symétrie monoclinique, avec comme paramètres de maille a=20,21(7)Â; b=3,33(1 )Â, c=6,28(6)Â et angles: α=γ=90° et β=97,1(4)° .
Le procédé de préparation du solide IHM-1 comprend les étapes suivantes : i. dissolution d'au moins un précurseur de zinc à base de dichlorure de zinc anhydre et de l'acide téréphtalique (H2BDC) dans au moins un solvant organique ii. mise en solution de 2-méthylamine (MEA) dans de l'eau iii. éventuellement, mélange des deux solutions précédentes iv. cristallisation v. filtration, lavage et séchage du produit obtenu. Le solvant entrant dans la synthèse contient, en particulier, du diméthylformamide (DMF). Il pourra éventuellement être associé à du toluène.
L'étape de cristallisation se fait entre la température ambiante et 1000C pendant 12 à 30 heures.
Le séchage est réalisé entre 400C et jusqu'à une température de 2000C. Le plus souvent, le séchage est réalisé entre 4O0C et 1000C, de préférence entre 45°C et 75°C, pendant une durée variant entre 15 minutes et 1 heure, le plus souvent environ 30 minutes. Puis, il est réalisé entre 1000C et 2000C, de préférence entre 130 et 1700C, le plus souvent pendant 2 à 8 heures et habituellement environ 6 heures.
Conditions opératoires de la réaction de transestérification
Le procédé est opéré à des températures comprises entre 130°C et 2200C, à des pressions inférieures à 100 bars avec un excès de monoalcool par rapport à la stoechiométrie corps gras/alcool. Généralement, la réaction peut être opérée selon différents modes de réalisation. Si l'on a recours à une réaction en discontinu, on peut travailler en une ou deux étapes, c'est-à-dire réaliser une première réaction jusqu'à 85 % à 95 % de conversion en esters, refroidir en évaporant l'excès d'alcool, décanter la glycérine et finir la réaction en réchauffant à nouveau entre 13O0C et 22O0C et en ajoutant de l'alcool pour obtenir une conversion totale.
On peut aussi viser une conversion de 98 % en esters en travaillant suffisamment longtemps en une seule étape dans des conditions appropriées, par exemple en augmentant la température et/ou le rapport alcool/corps gras.
Si l'on entreprend une réaction en continu, on peut travailler avec plusieurs autoclaves et décanteurs en série. Dans le premier, on réalise une conversion partielle le plus souvent inférieure à 90% généralement d'au moins 50% et le plus souvent d'environ 85 %, puis on décante en évaporant l'alcool et en refroidissant ; dans un deuxième réacteur, on achève la réaction de transestérification dans les conditions citées en ajoutant une partie de l'alcool que l'on a évaporé précédemment. On évapore finalement dans un évaporateur l'excès d'alcool et l'on sépare la glycérine et les esters par décantation.
Ainsi, à l'issue de ces deux étapes, on obtient un biodiesel répondant aux spécifications. Le niveau de conversion est ajusté pour obtenir un ester carburant répondant aux spécifications et une glycérine de pureté élevée, en opérant en une ou deux étapes.
Si l'on choisit un procédé continu en lit fixe, on peut avec avantage travailler à des températures de 130 à 220 0C, de préférence 150 à 180 0C, à des pressions de 10 à 70 bar, la WH étant de préférence comprise entre 0,1 et 3, de préférence de 0,3 à 2, dans la première étape et le rapport poids alcool/huile variant de 3/1 à 0,1/1. L'introduction de l'alcool peut être avantageusement fractionnée. L'introduction à deux niveaux dans le réacteur tubulaire peut s'opérer de la façon suivante : alimentation du réacteur avec l'huile et environ les 2/3 de l'alcool à mettre en jeu, puis introduction du complément d'alcool approximativement au niveau du tiers supérieur du lit catalytique. La tenue au lessivage est vérifiée dans la présente invention par l'absence de traces provenant du catalyseur aussi bien dans l'ester formé que dans la glycérine produite.
La recyclabilité du catalyseur est évaluée expérimentalement dans le temps. Si l'on ne dépasse pas 220 °C, on obtient généralement un ester de même couleur ,que l'huile de départ et une glycérine incolore après décantation.
L'analyse des composés produits se fait, soit par chromatographie en phase gazeuse pour les esters et la glycérine, soit, plus rapidement, par chromatographie liquide par exclusion stérique pour les esters.
L'ester et le glycérol obtenus ne contiennent pas d'impuretés issues du catalyseur. De ce fait, aucun traitement de purification ne sera appliqué pour éliminer le catalyseur ou les résidus de celui-ci contrairement aux catalyseurs fonctionnant suivant un processus homogène pour lequel le catalyseur ou ses résidus sont, après réaction, localisés dans la même phase que l'ester et/ou la glycérine.
On opère ainsi en une ou deux étapes en ajustant le niveau de conversion pour obtenir un ester carburant présentant une teneur en monoglycérides d'au plus 0,8% en masse, en diglycérides d'au plus 0,2% en masse, en triglycérides d'au plus 0,2% en masse, en glycérine de moins de 0,25% en masse. On opère de la même façon pour obtenir une glycérine de pureté comprise entre 95 et 99,9% et de préférence entre 98 et 99,9%.
Par ce type de procédé, l'épuration finale est réduite au minimum, tout en permettant d'obtenir un ester aux spécifications carburant et une glycérine de pureté comprise entre 95 et 99,9% et de préférence entre 98 et 99,9%.
EXEMPLES
Les exemples suivants illustrent l'invention sans en limiter la portée, l'exemple 7 étant donné à titre de comparaison.
Tous les exemples donnés ci-dessus ont été mis en oeuvre dans un réacteur fermé et correspondent par conséquent à une seule étape. Pour obtenir un biodiesel répondant aux spécifications, il serait nécessaire de procéder à l'issue de cette première étape à une décantation en évaporant l'alcool et en refroidissant, puis d'achever la réaction de transestérification en ajoutant la partie de l'alcool évaporé.
L'huile utilisée dans ces exemples est de l'huile de colza dont la composition en acides gras est la suivante :
Figure imgf000016_0001
Tableau 2 : Composition de l'huile de colza.
Cependant, toute autre huile d'origine végétale ou animale pourrait donner des résultats analogues.
Exemple 1 : Préparation d'un catalyseur à base de solide hydride à matrice mixte organique-inorganique IHM-1 .
Un précurseur de zinc (ZnCI2, pureté >98%, Sigma) et l'acide téréphtalique (H2BDC1 pureté > 98%, Sigma) sont dissous dans 250 ml_ de diméthylformamide (DMF, 99.8%, Sigma). La 2-méthylamine (MEA, 40% dans H2O, Sigma) est mise en solution dans 100 ml_ d'eau et est ajoutée au mélange précédent au goutte à goutte pendant 30 minutes. On laisse ensuite cristalliser le produit de la réaction pendant 24 heures puis on l'isole par filtration et on le rince deux fois au DMF. Le solide obtenu est ensuite séché à 6O0C pendant 30 minutes, puis à 1500C pendant 6 heures.
Le matériau hybride IHM-1 ainsi obtenu présente un diagramme de diffraction des rayons X incluant au moins les raies inscrites dans le tableau 1. Exemple 2 : Transestérification d'huiles végétales (huile de colza) par le méthanol à partir d'un catalyseur solide hybride à matrice mixte organique-inorganique IHM-1 à 200°C.
On introduit dans un réacteur fermé à température ambiante 25 g d'huile de colza, 25 g de méthanol et 1 g de catalyseur IHM-1 préparé selon l'exemple 1 et sous forme de poudre. Le ratio massique méthanol/ huile est donc de 1, ce qui correspond à un ratio molaire de 27,5. Le réacteur est ensuite fermé, agité (200 trs/min) et chauffé à 2000C à l'aide d'un agitateur magnétique chauffant. La température du milieu réactionnel est stabilisée à 200°C après 40 minutes de chauffe. La pression est la pression autogène de l'alcool à la température de travail. Le suivi de la réaction est commencé lorsque la température du milieu réactionnel a atteint la consigne. Des prélèvements sont effectués de manière régulière afin de suivre l'avancement de la réaction. Après 6 h de réaction, l'agitation est arrêtée et le réacteur laissé à refroidir jusqu'à température ambiante. Les prélèvements effectués ainsi que l'effluent final sont lavés par une solution aqueuse saturée en NaCI, puis après décantation, la phase organique supérieure est analysée par chromatographie par perméation de gel (GPC). Le tableau suivant résume les résultats obtenus.
Figure imgf000017_0001
a déterminé par GPC b t=0 lorsque le milieu réactionnel est à température c % représentant les diglycérides et stérols
La conversion des triglycérides commence alors que le milieu réactionnel n'a pas atteint 2000C (46% d'esters à tO). La conversion (estimée par rapport aux triglycérides, conversion=1-mfjnaie (triglycérides)/minitiaie (triglycérides)) est de 99% en 120 min.
Le lessivage du catalyseur dans la phase ester est négligeable (la teneur en zinc, estimée par la technique plasma à couplage inductif (IPC) est inférieure à 200 ppm). Ce résultat est valable pour tous les exemples suivants.
Exemple 3 : Transestérification d'huiles végétales (huile de colza) par le méthanol à partir d'un catalyseur solide hybride organique-inorganique IHM-1 à 180°C.
On répète l'exemple 2 en utilisant 25 g d'huile de colza, 25 g de méthanol et 1 g de catalyseur IHM-1 préparé selon l'exemple 1 et sous forme de poudre. La réaction est conduite à 1800C, la température du milieu réactionnel étant stabilisée à 1800C après 20 minutes de chauffe. Le tableau suivant résume les résultats obtenus.
Figure imgf000018_0001
a déterminé par GPC b t=0 lorsque le milieu réactionnel est à température c o %, représentant les diglycérides et stérols
La conversion des triglycérides commence alors que le milieu réactionnel n'a pas atteint 1800C (20% d'esters à tO). La conversion (estimée par rapport aux triglycérides) est de 99% à 120 min. Exemple 4 : Transestérification d'huiles végétales (huile de colza) par le méthanol à partir d'un catalyseur solide hybride à matrice mixte organique-inorganique IHM-1 à 1600C.
On répète l'exemple 2 en utilisant 25 g d'huile de colza, 25 g de méthanol et 1 g de catalyseur préparé selon l'exemple 1 et sous forme de poudre. La réaction est conduite à 1600C, la température du milieu réactionπel étant stabilisée à 16O0C après 20 minutes de chauffe. Le tableau suivant résume les résultats obtenus.
Figure imgf000019_0001
a déterminé par GPC b t=0 lorsque le milieu réactionnel est à température c % représentant les diglycérides et stérols
La conversion (estimée par rapport aux triglycérides) est de 99% en 6 h.
Exemple 5 : Préparation d'un catalyseur à base de solide hvdride à matrice mixte organique-inorganique.
Une solution méthanoïque de 2-méthylimidazole (1 ,642 g dans 50 mL de MeOH) est introduite sous agitation goutte à goutte dans une solution ammoniacale de Zn(OH)2 (0,994 g dans 100 mL de NH3 25%). Après avoir introduit l'ensemble de la solution méthanoïque, l'agitation est arrêtée et le solide est laissé à précipiter pendant 4 jours. Le solide est ensuite filtré et lavé par 3*50 mL d'une solution H2O/MeOH (1 :1 v:v) puis séché à l'air libre (X-C Huang, et al. Angew. Chem. Int. Ed., 2006, 45, 1557- 1559).
Exemple 6 : Transestérification d'huiles végétales (huile de colza) par le méthanol à partir d'un catalyseur solide poreux hybride à matrice mixte organique-inorganique à 18O0C.
On répète l'exemple 2 en utilisant 25 g d'huile de colza, 25 g de méthanol et 1 g de catalyseur préparé selon l'exemple 5 et sous forme de poudre. La réaction est conduite à 1800C, la température du milieu réactionnel étant stabilisée à 1800C après 20 minutes de chauffe. Le tableau suivant résume les résultats obtenus.
Figure imgf000020_0001
a déterminé par GPC b t=0 lorsque le milieu réactionnel est à température c % représentant les diglycérides et stérols
La conversion (estimée par rapport aux triglycérides) est de 99% en 2 h.
Exemple 7 (comparatif) : Transestérification de l'huile de colza par le méthanol en présence d'aluminate de zinc (ZnAbO4) sous forme de poudre à 200°C. On répète l'exemple 2 en utilisant 25 g d'huile de colza, 25 g de méthanol et 1 g de catalyseur ZnAI2O4 sous forme de poudre. La réaction est conduite à 2000C, la température du milieu réactionnel étant stabilisée à 2000C après 40 minutes de chauffe. Le tableau suivant résume les résultats obtenus.
Figure imgf000021_0001
a déterminé par GPC b t=0 lorsque le milieu réactionnel est à température c % représentant les diglycérides et stérols
Cet exemple montre clairement que l'aluminate de zinc catalyse la réaction de transestérification beaucoup plus lentement qu'un solide hybride à matrice mixte inorganique-organique, puisque ces performances à 2000C sont équivalentes à celles du polymère de coordination à plus basse température (1800C dans l'exemple 6).

Claims

REVENDICATIONS
1. Procédé de fabrication d'une composition d'esters alcooliques d'acides monocarboxyliques linéaires de 6 à 26 atomes de carbone et de glycérine, dans lequel on fait réagir un corps gras d'origine végétale ou animale avec un monoalcool aliphatique renfermant de 1 à 18 atomes de carbone, en présence d'au moins un catalyseur hétérogène à base de solide hybride à matrice mixte organique-inorganique constitué d'ions métalliques ou de polyèdres d'ions métalliques reliés entre eux par au moins un ligand organique polyfonctionnalisé au moins bidentate.
2. Procédé selon la revendication 1 dans lequel ledit monoalcool aliphatique renferme de 1 à 12 atomes de carbone.
3. Procédé selon l'une des revendications 1 à 2 dans lequel l'alcool mis en jeu est un mélange d'alcool éthylique et méthylique, comprenant de 1 à 50% en poids, de préférence de 1 à 10% en poids d'alcool méthylique.
4. Procédé selon l'une des revendications 1 à 3 dans lequel on opère à une température comprise entre 130° et 2200C, à une pression inférieure à 100 bars et avec un excès de monoalcool par rapport à la stoechiométrie corps gras/alcool.
5. Procédé selon l'une des revendications 1 à 4 dans lequel l'huile de départ est choisie parmi les huiles de palme (concrètes ou oléines), de soja, de palmiste, de coprah, de babassu, de colza ancien ou nouveau, de tournesol classique ou oléique, de maïs, de coton, les huiles d'arachide, de pourghère, de ricin, de lin et de crambe, d'algues et les huiles du tournesol ou du colza obtenus par modification génétique ou par hybridation, les huiles partiellement modifiées par polymérisation ou oligomérisation, les huiles de friture, d'équarrissage, les huiles de poissons, de phoques, les graisses de volailles, le suif, le saindoux, les graisses issues du traitement des eaux usées.
6. Procédé selon l'une des revendications 1 à 5 caractérisé en ce que le catalyseur est sous forme de poudre, d'extrudés, de billes ou de pastilles.
7. Procédé selon l'une des revendications 1 à 6 dans lequel on utilise de l'alumine comme liant, dans des proportions allant jusqu'à 90% en poids de la masse totale du matériau mis en forme.
8. Procédé selon l'une des revendications 1 à 7 dans lequel l'ion métallique est choisi parmi les métaux des groupes 2 à 17 de la classification périodique, de préférence parmi Zn, Cu, Cd, Ni, Fe, Co, Ru, Rh, Pd, Pt, Mn, Mg et Ag .
9. Procédé selon l'une des revendications 1 à 8 dans lequel le ligand organique bidentate comporte un groupement alkyle de 1 à 10 atomes de carbone, un groupement aryle de 1 à 5 noyaux benzéniques ou un mélange des deux, ces groupements étant fonctionnalisés par au moins deux groupements chimiques choisis parmi COOH, CS2H, NO2, NH2, OH, SO3H1 Si(OH)3, Ge(OH)3, Sn(OH)3, Si(SH)4, Ge(SH)4, Sn(SH)3, PO3H, AsO3H, AsO4H, P(SH)3, As(SH)3, CH(RSH)2, C(RSH)3, CH(RNH2)2, C(RNH2)3, CH(ROH)2, C(ROH)3, CH(RCN)2, C(RCN)3 où R est un groupement alkyle comportant entre 1 et 10 atomes de carbone ou un groupement aryle comportant entre 1 et 5 noyaux benzéniques, et CH(SH)2, C(SH)3, CH(NH2)2, C(NH2)2, CH(OH)2, C(OH)3, CH(CN)2 et C(CN)3.
10. Procédé selon la revendication 9 dans lequel le ligand organique bidentate est choisi parmi les hétérocycles azotés, soufrés, oxygénés, substitués ou non.
11. Procédé selon l'une des revendications 9 ou 10 dans lequel le ligand organique est l'acide téréphtalique substitué ou non sur le noyau benzénique.
12. Procédé selon l'une des revendications 9 ou 10 dans lequel le ligand organique est le 2-méthylimidazole.
13. Procédé selon l'une des revendications 1 à 12 dans lequel le catalyseur hétérogène à base de solide hybride à matrice mixte organique-inorganique est constitué d'ions métalliques ou de polyèdres d'ions métalliques Zn2+ reliés entre eux par au moins un ligand organique de type acide téréphtalique.
14. Procédé selon la revendication 13 dans lequel ledit catalyseur est le matériau IHM-1 présentant un diagramme de diffraction des rayons X incluant au moins les raies inscrites dans le tableau ci-dessous, et s'indexant en système monoclinique avec comme paramètres de maille a=20,21(7) A; b=3,33(1) A, c=6,28(6) A et angles: α=γ=90° et β=97.1(4)° 2 Thêta O cMÀ) l/lo
8,81 10,03 FF
14,22 6,22 ff
15,78 5,61 f
17,67 5,02 m
26,65 3,34 ff
27,11 3,28 ff
28,69 3,11 f
28,95 3,08 f
29,97 2,98 ff
30,51 2,93 f
31,11 2,87 f
31,90 2,80 f
32,55 2,75 mf
34,05 2,63 ff
34,97 2,56 ff
35,77 2,51 f
36,87 2,44 f
39,05 2,30 ff
40,39 2,23 ff
41 ,99 2,15 ff
42,75 2,11 ff
45,19 2,00 f où FF=très fort ; F=fort ; m=moyen ; mf=moyen faible ; f=faible ; ff≈très faible. L'intensité l/lo est donnée en rapport à une échelle d'intensité relative où il est attribué une valeur de 100 à la raie la plus intense du diagramme de diffraction des rayons X : ff<15 ; 15< f <30 ; 30≤ mf< 50 ; 50< m<65 ; 65< F<85 ; FF> 85. 15. Procédé selon l'une des revendications 1 à 14 dans lequel le solide hydride à matrice mixte organique-inorganique a une surface spécifique BET comprise entre 5 et 5000 m2/g.
16. Procédé selon l'une des revendications 1 à 15 dans lequel la réaction est mise en oeuvre en discontinu.
17. Procédé selon l'une des revendications 1 à 15 dans lequel la réaction est mise en oeuvre en continu, en lit fixe ou avec des autoclaves et décanteurs en série.
18. Procédé selon la revendication 17 dans lequel la réaction est mise en œuvre en lit fixe, à une pression comprise entre 10 et 70 bars et à une WH comprise entre 0,1 et 3, avec un rapport poids alcool/corps gras compris entre 3/1 et 0,1/1.
19. Procédé selon l'une des revendications 1 à 18 dans lequel on opère en une ou deux étapes en ajustant le niveau de conversion pour obtenir un ester carburant présentant une teneur en monoglycérides d'au plus 0,8% en masse, en diglycérides d'au plus 0,2% en masse, en triglycérides d'au plus 0,2% en masse, en glycérine de moins de 0,25% en masse.
20. Procédé selon l'une des revendications 1 à 19 dans lequel on opère en une ou deux étapes en ajustant le niveau de conversion pour obtenir une glycérine avec une pureté comprise entre 95 et 99,9 %, et de préférence entre 98 et 99,9%.
PCT/FR2008/001330 2007-09-28 2008-09-25 Procede de fabrication d'esters alcooliques a partir de triglycerides et d'alcools au moyen de catalyseurs heterogenes a base de solide hybride a matrice mixte organique-inorganique WO2009074742A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/680,115 US20100293843A1 (en) 2007-09-28 2008-09-25 Method of preparing alcohol esters from triglycerides and alcohols using heterogeneous catalysts based on a hybrid solid with an organic-inorganic mixed matrix
BRPI0817443-1A BRPI0817443A2 (pt) 2007-09-28 2008-09-25 Processo de produção de ésteres alcoólicos, a partir de triglicerídeos e de álcoois, por meio de catalisadores heterogêneos à base de sólido híbrido de matriz mista orgânica - inorgânica
SE1050396A SE534732C2 (sv) 2007-09-28 2008-09-25 Förfarande för framställning av alkoholestrar från triglycerider och alkoholer med användning av heterogena katalysatorer baserade på en fast hybrid med en organisk-oorganisk blandad matris
DE112008002440T DE112008002440T5 (de) 2007-09-28 2008-09-25 Verfahren zur Herstellung von Alkoholestern aus Triglyceriden und Alkoholen mittels heterogener Katalysatoren auf der Basis eines hybriden Feststoffs mit organisch-anorganischer Mischmatrix

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR07/06853 2007-09-28
FR0706852A FR2921655B1 (fr) 2007-09-28 2007-09-28 Procede de fabrication d'esters alcooliques a partir de triglycerides et d'alcools au moyen de catalyseurs heterogenes a base de solide hybride a matrice mixte organique-inorganique
FR07/06852 2007-09-28
FR0706853A FR2921674B1 (fr) 2007-09-28 2007-09-28 Nouveau materiau hybride organique-inorganique

Publications (2)

Publication Number Publication Date
WO2009074742A2 true WO2009074742A2 (fr) 2009-06-18
WO2009074742A3 WO2009074742A3 (fr) 2009-11-05

Family

ID=40755936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/001330 WO2009074742A2 (fr) 2007-09-28 2008-09-25 Procede de fabrication d'esters alcooliques a partir de triglycerides et d'alcools au moyen de catalyseurs heterogenes a base de solide hybride a matrice mixte organique-inorganique

Country Status (6)

Country Link
US (1) US20100293843A1 (fr)
BR (1) BRPI0817443A2 (fr)
DE (1) DE112008002440T5 (fr)
ES (1) ES2345316B2 (fr)
SE (1) SE534732C2 (fr)
WO (1) WO2009074742A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2951725B1 (fr) * 2009-10-23 2011-10-28 Inst Francais Du Petrole Nouveau solide hybride organique-inorganique mil-53-ai-n3 pourvu d'une fonction azoture et son procede de preparation
FR2951723B1 (fr) * 2009-10-23 2011-10-28 Inst Francais Du Petrole Nouveau solide hybride organique-inorganique ihm-2-n3 pourvu d'une fonction azoture et son procede de preparation
CN111790403A (zh) * 2020-07-23 2020-10-20 成都国丰新能源科技有限公司 一种新能源混合生物甲酯燃料催化剂

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060135824A1 (en) * 2003-07-03 2006-06-22 Basf Aktiengesellschaft Process for the alkoxylation of monools in the presence of metallo-organic framework materials

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US893564A (en) 1899-07-18 1908-07-14 Wyckoff Seamans & Benedict Type-writing machine.
DE3512497A1 (de) 1985-04-06 1986-10-09 Hüls AG, 4370 Marl Verfahren zur herstellung von carbonsaeurealkylestern, insbesondere fettsaeurealkylestern, und deren verwendung als dieselkraftstoff
FR2752242B1 (fr) 1996-08-08 1998-10-16 Inst Francais Du Petrole Procede de fabrication d'esters a partir d'huiles vegetales ou animales et d'alcools
ATE334992T1 (de) 2001-04-30 2006-08-15 Univ Michigan Isoretikuläre organometallische grundstrukturen, verfahren zu deren bildung und systematische entwicklung von deren porengrösse und funktionalität, mit anwendung für die gasspeicherung
US20030078311A1 (en) * 2001-10-19 2003-04-24 Ulrich Muller Process for the alkoxylation of organic compounds in the presence of novel framework materials
US6624318B1 (en) 2002-05-30 2003-09-23 Basf Aktiengesellschaft Process for the epoxidation of an organic compound with oxygen or an oxygen-delivering compounds using catalysts containing metal-organic frame-work materials
EP1505048A1 (fr) 2003-05-26 2005-02-09 Institut Francais Du Petrole Procédé de transestérification d'huiles végétales ou animales au moyen de catalyseurs hétérogènes à base de titane, de zirconium ou d'antimoine et d'aluminium
EP1593732A1 (fr) 2004-05-03 2005-11-09 Institut Français du Pétrole Procede de transesterification d'huiles vegezales ou animales au moyen de catalyseurs heterogenes a base de zinc ou de bismuth de titane et d'aluminium
US7524444B2 (en) 2004-11-09 2009-04-28 Basf Aktiengesellschaft Shaped bodies containing metal-organic frameworks
EP1877412A4 (fr) 2005-04-22 2011-05-04 Univ South Florida Structures organometalliques de type zeolithe (zmof) : approche modulaire de la synthese de materiaux poreux hybrides organiques-inorganiques presentant une topologie de type zeolithe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060135824A1 (en) * 2003-07-03 2006-06-22 Basf Aktiengesellschaft Process for the alkoxylation of monools in the presence of metallo-organic framework materials

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KIM ET AL: "Crystal structures and catalytic activities of Zn(II) compounds containing 1,3-bis(4-pyridyl)propane" INORGANICA CHIMICA ACTA, X, XX, vol. 359, no. 8, 15 mai 2006 (2006-05-15), pages 2534-2542, XP005402561 ISSN: 0020-1693 *
LEE ET AL: "Anion effect on construction of zinc(II) coordination polymer with a chelating ligand 2,2'-dipyridylamine (Hdpa): Novel heterogeneous catalytic activities" INORGANIC CHEMISTRY COMMUNICATIONS, ELSEVIER, AMSTERDAM, NL, vol. 10, no. 3, 15 février 2007 (2007-02-15), pages 287-291, XP005891903 ISSN: 1387-7003 *
LEE J Y ET AL: "Novel infinite hexanuclear zinc coordination polymer with a flexible bipyridyl ligand and its catalytic activity" INORGANIC CHEMISTRY COMMUNICATIONS, ELSEVIER, AMSTERDAM, NL, vol. 8, no. 8, 1 août 2005 (2005-08-01), pages 692-696, XP004979239 ISSN: 1387-7003 *
MBARAKA I.K.; SHANKS B.H.: "Conversion of oils and fats using advanced mesoporous heterogeneous catalysts" JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY, vol. 83, no. 2, février 2006 (2006-02), pages 79-91, XP002482555 *
SERCHELI ET AL: "Alkylguanidine-catalyzed heterogeneous transesterification of soybean oil" JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY, SPRINGER, BERLIN, DE, vol. 76, no. 10, 1 janvier 1999 (1999-01-01), pages 1207-1210, XP002163432 ISSN: 0003-021X *

Also Published As

Publication number Publication date
BRPI0817443A2 (pt) 2015-06-16
US20100293843A1 (en) 2010-11-25
DE112008002440T5 (de) 2010-08-19
SE1050396A1 (sv) 2010-04-21
ES2345316A1 (es) 2010-09-20
SE534732C2 (sv) 2011-12-06
ES2345316B2 (es) 2011-12-20
WO2009074742A3 (fr) 2009-11-05

Similar Documents

Publication Publication Date Title
EP2147089B1 (fr) Procede de fabrication d&#39;esters alcooliques a partir de triglycerides et d&#39;alcools au moyen de catalyseurs heterogenes a base de phosphate ou de compose organophosphore de zirconium
CA2620253C (fr) Procede de fabrication d&#39;esters ethyliques d&#39;acides gras a partir de triglycerides et d&#39;alcools
EP0955298B1 (fr) Procédé de fabrication de carbonate de glycérol
EP1593732A1 (fr) Procede de transesterification d&#39;huiles vegezales ou animales au moyen de catalyseurs heterogenes a base de zinc ou de bismuth de titane et d&#39;aluminium
FR2752242A1 (fr) Procede de fabrication d&#39;esters a partir d&#39;huiles vegetales ou animales et d&#39;alcools
FR2890961A1 (fr) Procede perfectionne de fabrication d&#39;esters ethyliques a partir de corps gras d&#39;origine naturelle
FR2855517A1 (fr) Procede de transesterification d&#39;huiles vegetales ou animales au moyen de catalyseurs heterogenes a base de titane et d&#39;aluminium
FR2890656A1 (fr) Procede de fabrication d&#39;esters a partir de triglycerides et d&#39;alcools
EP2953925B1 (fr) Procédé de synthèse d&#39;aminoacide par metathèse, hydrolyse puis hydrogénation
EP1505048A1 (fr) Procédé de transestérification d&#39;huiles végétales ou animales au moyen de catalyseurs hétérogènes à base de titane, de zirconium ou d&#39;antimoine et d&#39;aluminium
WO2009074742A2 (fr) Procede de fabrication d&#39;esters alcooliques a partir de triglycerides et d&#39;alcools au moyen de catalyseurs heterogenes a base de solide hybride a matrice mixte organique-inorganique
EP1941014B1 (fr) Procede ameliore de fabrication d&#39;esters ethyliques a partir de corps gras d&#39;origine naturelle
FR2951092A1 (fr) Catalyseur heterogene de type spinelle aluminate de zinc sur-stoechiometrique en zinc et son utilisation dans un procede de preparation d&#39;esters alcooliques a partir de triglycerides et d&#39;alcools
US10183281B2 (en) Heterogeneous catalyst for transesterification and method of preparing same
JPWO2007000913A1 (ja) 高級脂肪酸エステルの製造方法
EP2202287B1 (fr) Procédé de préparation d&#39;esters alcooliques à partir de triglycérides et d&#39;alcools au moyen de catalyseurs hétérogènes associant au moins une solution solide de ZnxAl2O3+x et du ZnO
FR2921655A1 (fr) Procede de fabrication d&#39;esters alcooliques a partir de triglycerides et d&#39;alcools au moyen de catalyseurs heterogenes a base de solide hybride a matrice mixte organique-inorganique
WO2010029228A1 (fr) Procédé de préparation d&#39;esters alcooliques à partir de triglycérides et d&#39;alcools au moyen de catalyseur hétérogène a base d&#39;un solide silicique mésostructuré contenant du zinc
FR2937335A1 (fr) Procede de fabrication d&#39;esters alcooliques a partir de triglycerides et d&#39;alcools au moyen d&#39;un catalyseur heterogene a base du solide hybride a matrice mixte organique-inorganique cristallise im-19
EP2106853B1 (fr) Gel polymere homogene de catalyseur alcalin (hapjek) qui peuvent être utilisés pour la production d&#39;esters méthyliques d&#39;acides gras
EP1127042A1 (fr) Preparation d&#39;acide acetique et/ou d&#39;acetate de methyle en presence d&#39;iridium et de platine
FR2962727A1 (fr) Procede de preparation d&#39;esters alcooliques et de glycerine a partir de triglycerides et d&#39;alcools au moyen d&#39;un catalyseur heterogene en presence d&#39;eau en teneur controlee
FR2970250A1 (fr) Procede de fabrication d&#39;esters alcooliques a partir de triglycerides et d&#39;alcools au moyen de catalyseurs heterogenes a base de phosphates de metaux de transition du groupe 13
FR2855519A1 (fr) Procede de transesterification d&#39;huiles vegetales ou animales au moyen de catalyseurs heterogenes a base d&#39;antimoine et d&#39;aluminium
WO2010082527A1 (fr) Procédé de fabrication d&#39;un ester alkylique d&#39;acide gras, et carburant diesel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08860208

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 201090008

Country of ref document: ES

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: P201090008

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 1120080024405

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: PI 2010001293

Country of ref document: MY

WWE Wipo information: entry into national phase

Ref document number: 12680115

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112008002440

Country of ref document: DE

Date of ref document: 20100819

Kind code of ref document: P

WWP Wipo information: published in national office

Ref document number: 201090008

Country of ref document: ES

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 08860208

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: PI0817443

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100329