EP0279771B1 - Verfahren zum Regeln des Verbrennungsluftdurchsatzes für eine brennstoffbeheizte Wärmequelle - Google Patents

Verfahren zum Regeln des Verbrennungsluftdurchsatzes für eine brennstoffbeheizte Wärmequelle Download PDF

Info

Publication number
EP0279771B1
EP0279771B1 EP88730029A EP88730029A EP0279771B1 EP 0279771 B1 EP0279771 B1 EP 0279771B1 EP 88730029 A EP88730029 A EP 88730029A EP 88730029 A EP88730029 A EP 88730029A EP 0279771 B1 EP0279771 B1 EP 0279771B1
Authority
EP
European Patent Office
Prior art keywords
combustion air
gas
throughput
speed
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88730029A
Other languages
English (en)
French (fr)
Other versions
EP0279771A1 (de
Inventor
Winfried Dr. Hangauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N.V. VAILLANT S.A.
Vaillant Austria GmbH
Vaillant GmbH
Vaillant SARL
Vaillant Ltd
Original Assignee
Vaillant Austria GmbH
Nv Vaillant Sa
Joh Vaillant GmbH and Co
Vaillant GmbH
Vaillant SARL
Vaillant Ltd
Vaillant BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant Austria GmbH, Nv Vaillant Sa, Joh Vaillant GmbH and Co, Vaillant GmbH, Vaillant SARL, Vaillant Ltd, Vaillant BV filed Critical Vaillant Austria GmbH
Publication of EP0279771A1 publication Critical patent/EP0279771A1/de
Application granted granted Critical
Publication of EP0279771B1 publication Critical patent/EP0279771B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/04Regulating fuel supply conjointly with air supply and with draught
    • F23N1/042Regulating fuel supply conjointly with air supply and with draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/02Ventilators in stacks
    • F23N2233/04Ventilators in stacks with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Definitions

  • the present invention relates to a method for regulating the total combustion air throughput of a gas-heated heat source according to the preamble of the patent claim.
  • a gas-heated heat source is understood here to mean any device equipped with a gas burner, be it an oven, water heater or circulating water heater for heating and domestic water preparation.
  • the present invention has for its object to provide a method for regulating the combustion air flow rate, in which a favorable efficiency in any operating state is achieved and it is no longer necessary to separately adapt the pipes and pipe guides for the fresh air supply / exhaust gas discharge and for which a stable behavior of the combustion air throughput occurs with air and gas side modulation.
  • the advantage of this solution lies in the independent adaptation of the combustion air throughput to the device-typical resistances in the air and exhaust gas path that are prevalent due to the installation location. There is always an optimal size of the air throughput with regard to the efficiency, since the air throughput is always a certain, but predeterminable threshold above the switch-off criterion, that is, the unsanitary combustion.
  • Figure one is a schematic diagram of a water heater and the figures two and three diagrams.
  • a circulating water heater 1 has a housing 2, which forms a combustion chamber in its interior 3, which is shielded from the top by a further inner housing 4.
  • the interior 3 is penetrated by a heat exchanger 5, which is connected to a return line 6 and to a flow line 7, in which a flow temperature sensor 8 is arranged, which is connected to a controller 10 via a line 9.
  • the flow line 7 is provided with a circulation pump 11, the drive motor 12 of which is supplied with operating voltage by the controller 10 via a line 13.
  • the flow line 7 leads downstream of the pump 11 to a heating system 14, which consists of a plurality of radiators, underfloor heating sections or a domestic hot water tank connected in series and / or in parallel, to which the return line 6 is connected on the return side.
  • the heat exchanger 5 is heated by a gas burner 15, which is fed from a gas line 16, in which a closing valve 17 is arranged, the electromagnet 18 of which is fed from a control line 19, which originates from the controller 10.
  • the gas line 16 there is a proportional control valve 20, the electromagnet 21 of which is equally connected to the controller 10 via an actuating line 22.
  • the inner housing 4 merges into an exhaust pipe 23, in which a fan 24 is arranged, the associated motor of which is supplied with operating voltage from a control line 25, which comes from a speed controller 26.
  • An actual speed value transmitter 27 is assigned to the fan 24 and is connected to the speed controller 26 via a measuring line 28.
  • a setpoint speed value is supplied to the speed controller 26 via a line 29 which starts from the controller 10.
  • a target value transmitter 30 is connected to the controller 10, with which a target value for the flow temperature of the heating system can be specified.
  • the outer housing 2 is connected to an outer tube 31, which extends concentrically and at a distance 32 from the exhaust pipe 23, which forms the inner tube.
  • the length of the concentric double pipe 31/23 from the installation location of the fan 24 directly in the device to a breakthrough through a boundary wall 33 of the installation space is almost as long as possible, but in practice is limited to a range of three to five meters.
  • the double pipe 31/23 passes through the boundary wall 33 and ends in a head 34 in the outside atmosphere.
  • An anemometer sensor 35 is assigned to the supply air path 31 and reports a continuous signal for the air throughput to an anemometer 37 via a line 36.
  • a further input of the anemometer 37 is formed by line 22, and output signals of the anemometer are sent to controller 10 via line 38, here an enable signal, and via line 39, here a correction signal.
  • the device in the controller 10 has a temperature controller.
  • the actual value of the flow temperature is detected by sensor 8 and reported to controller 10 via line 9.
  • a comparison is made with the temperature target value specified on the target value transmitter 30, and the device is put into operation in the event of a control deviation.
  • the magnet 18 is first excited so that the gas valve 17 opens fully.
  • a more or less large control signal results on the line 22, so that the magnet 21 is subjected to part-load or full-load values, so that the valve 20 opens more or less.
  • a setpoint value for a suitable air throughput is given to the anemometer 37 via the line 22.
  • the speed controller 26 is first activated via the line 29, so that the fan 24 first starts at the maximum speed and is then reduced to a value which is suitable for the expected gas throughput. The speed of the fan 24 is then regulated in the control circuit 27, 28, 26, 25 at this speed.
  • the combustion air throughput that arises due to the operation of the fan 24 is demanded from the atmosphere via the head 34 and penetrates the supply air path 31, which corresponds to the distance 32 outside the device.
  • the supply air path 31 is the distance between the two housings 2 and 4 in which the anemometer sensor 35 is arranged.
  • the air flow rate that arises is measured by him as the actual value and passed on to the anemometer 37 via the line 36.
  • a target-actual comparison takes place here, and if a minimum air flow rate that matches the expected gas flow rate is exceeded the controller 10 is released via the line 38, so that the two gas valves 17 and 20 can now open accordingly.
  • the gas emerging at the burner 15 is ignited, the burner 15 burns and treats the heat exchanger 5, and the flow temperature rises. If the actual air throughput falls below the switch-off threshold which is variable depending on the gas throughput, ie the minimum air throughput, the regulator 10 is blocked via the line 38, so that both gas valves 17 and 20 close.
  • the relationship between the target value for the speed controller 26 on line 29 and the actual value of the gas throughput corresponding to a specific voltage on line 22 is fixed. However, the relationship between the air flow rate and the actual value of the fan speed is by no means fixed. The relationship between the actual value of the gas throughput and the switch-off threshold for the anemometer 37 is also fixed.
  • FIG. Three additionally shows the curves for the voltage of the anemometer (UA), ie a variable for the actual air throughput and the voltage for the switch-off threshold (US).
  • UA the voltage of the anemometer
  • US the switch-off threshold
  • the curve US defines the switch-off threshold.
  • the curve US is laid out in such a way that it still permits hygienically perfect combustion, taking into account the properties typical of the device. Falling below this threshold US therefore results in unsanitary combustion and must therefore be avoided in any case.
  • the voltage UA is an internal voltage in the anemometer 37, it is variable with the signal from the anemometer sensor 35. If the curves US and UA coincide, this means that the combustion is just hygienic.
  • a spreading apart of the curves of US and UA means an operation with an efficiency that becomes worse the further apart the curves US and UA are.
  • curve UA While the position of curve US cannot be influenced, curve UA depends on the actual air flow. This is influenced by the fan speed and by changes in the entire air exhaust system of the heat source, for example also by pollution. The aim now is to set the value of UA as close as possible to the value of US, but without reaching or falling below the value for US.
  • the anemometer 37 occupies a difference former and forms the difference 50 between the actual value of the air throughput, given by the sensor 35, expressed by UA and the value of the switch-off threshold US. This difference 50 is dependent on the load on the device, that is to say on the open state of the solenoid valve 20/21, that is to say on the signals prevailing on the line 22.
  • the difference 50 is compared with a specification that can be specified in the anemometer 37.
  • the default can be constant, but can also be variable via the load on the device. If this value is undershot, the speed of the fan motor is increased, and if it is exceeded, the speed is adjusted by adjusting the target value for the speed controller 26 via the line 39 and the controller 10. This variation of the speed then leads to a shift of the curve UA in the direction of correction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

  • Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Regeln des Gesamtverbrennungsluftdurchsatzes einer gasbeheizten Wärmequelle gemäß dem Oberbegriff des Patentanspruchs.
  • Unter gasbeheizter Wärmequelle ist hier jedwedes mit einem Gasbrenner ausgestattetes Gerät zu verstehen, sei es Ofen, Wassererhitzer oder Umlaufwasserheizer für Heizung und Gebrauchswasserbereitung.
  • Es sind sogenannte kaminlose Umlaufwasserheizer der oben angegebenen Art - beispielsweise der "Thermoblock turbo" der Anmelderin - auf dem Markt, die zur Unterstützung der Verbrennung mit einem Abgasventilator arbeiten, dessen Antriebsmotor drehzahlvariabel ausgeführt ist. Da der Einbauort der Umlaufwasserheizer häufig nicht bekannt ist, wird der maximale Brennstoffdurchsatz und der maximale Luftdurchsatz nach der größtmöglichen Länge der Zuluft-/Abgasabführung bemessen. In der Praxis werden solche Rohrführungen als konzentrische Rohre mit Längen von maximal fünf Metern gefertigt. Es tritt aber nun häufig der Fall auf, daß der Mauerdurchbruch zum Anschluß des Gerätes weit näher als in dieser Entfernung möglich ist. Um für diesen Fall günstige Verbrennungsverhältnisse zu schaffen, werden Blenden in die Rohre eingeführt, um künstliche Luftwiderstände zu bilden. Es liegt auf der Hand, daß das Anpassen dieser Blenden viel Fingerspitzengefühl vom Fachmann erfordert und daß in der Praxis mit Fehlanpassungen zu rechnen ist. Hierbei sind zum einen Fehlanpassungen in Richtung auf unhygienische Verbrennung, d. h. Verbrennung unter Luftmangel, und zum anderen in Richtung auf schlechteren Wirkungsgrad, d. h. Verbrennung bei Luftüberschuß, möglich. Eine geräteinterne Sicherung verhindert allerdings die unhygienische Verbrennung. In der Praxis laufen solche Geräte aber häufig mit einem zu geringen Wirkungsgrad, weil zuviel Luft dem Gerät zugeführt wird. Ein solches Gerät, bei dem bei Luftmangel eine Störabschaltung vorgesehen ist oder die Luftzufuhr durch Umschaltung auf maximale Ventilatordrehzahl unter Verschlechterung des Wirkungsgrades erhöht wird, ist außerdem aus der DE-OS 35 09 652 bekannt.
  • Aus der WO-A-86/04663 ist eine Vorrichtung zum Regeln der Verbrennungsluftzufuhr für einen Vormisch-Gasbrenner oder einen Vergasungs-Ölbrenner in Abhängigkeit von Wind- und Witterungseinflüssen, die den Schornsteinzug bestimmen, bekannt. Dazu wird die Drehzahl eines im Verbrennungsluftweg angeordneten Ventilators variiert. Der Brennstoffdurchsatz ist hingegen konstant. Eine Abschaltschwelle bei einem Mindestverbrennungsluftdurchsatz ist nicht vorgesehen.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Regeln des Verbrennungsluftdurchsatzes anzugeben, bei dem in jedem Betriebszustand ein günstiger Wirkungsgrad erzielt wird und es nicht mehr notwendig ist, die Rohre und Rohrführungen für die Frischluftzufuhr/Abgasabfuhr gesondert anzupassen und bei dem sich bei luft- und gasseitiger Modulation ein stabiles Verhalten des Verbrennungsluftdurchsatzes einstellt.
  • Die Losung der Aufgabe liegt erfindungsgemäß in den kennzeichnenden Merkmalen des Patentanspruchs.
  • Der Vorteil dieser Lösung liegt in der selbständigen Anpassung des Verbrennungsluftdurchsatzes an die gerätetypischen und durch den Einbauort herrschenden Widerstände im Luft- und Abgasweg. Es stellt sich immer eine optimale Größe des Luftdurchsatzes hinsichtlich des Wirkungsgrades ein, da der Luftdurchsatz immer um eine bestimmte, aber vorgebbare Schwelle über dem Abschaltkriterium, das heißt der unhygienischen Verbrennung, liegt.
  • Weitere Ausgestaltungen und besonders vorteilhafte Weiterbildungen der Erfindung gehen aus der nachfolgenden Beschreibung hervor, die ein Ausführungsbeispiel der Erfindung zum Inhalt hat.
  • Es zeigen:
    Figur eins ein Prinzipaufbaubild eines Umlaufwasserheizers und
    die Figuren zwei und drei Diagramme.
  • In den drei Figuren bedeuten gleiche Bezugszeichen jeweils die gleichen Einzelheiten.
  • Ein Umlaufwasserheizer 1 weist ein Gehäuse 2 auf, das in seinem Innenraum 3 eine Brennkammer bildet, die von einem weiteren Innengehäuse 4 nach oben abgeschirmt ist. Der Innenraum 3 wird durch einen Wärmetauscher 5 durchsetzt, der an eine Rücklaufleitung 6 und an eine Vorlaufleitung 7 angeschlossen ist, in der ein Vorlauftemperaturfühler 8 angeordnet ist, der über eine Leitung 9 mit einem Regler 10 verbunden ist.
  • Die Vorlaufleitung 7 ist mit einer Umwälzpumpe 11 versehen, deren Antriebsmotor 12 über eine Stelleitung 13 vom Regler 10 mit Betriebsspannung versorgt wird. Die Vorlaufleitung 7 führt stromab der Pumpe 11 zu einer Heizungsanlage 14, die aus einer Vielzahl in Serie und/oder parallelgeschalteter Radiatoren, Fußbodenheizungsabschnitte oder einem Brauchwasserspeicher besteht, an die rücklaufseitig die Rücklaufleitung 6 angeschlossen ist. Der Wärmetauscher 5 ist von einen Gasbrenner 15 beheizt, der aus einer Gasleitung 16 gespeist ist, in der ein Schließventil 17 angeordnet ist, dessen Elektromagnet 18 von einer Stelleitung 19 gespeist ist, die vom Regler 10 ausgeht. In der Gasleitung 16 liegt ein Proportionalregelventil 20, dessen Elektromagnet 21 über eine Stellleitung 22 gleichermaßen an den Regler 10 angeschlossen ist. Das Innengehäuse 4 geht in eine Abgasleitung 23 über, in der ein Ventilator 24 angeordnet ist, dessen zugehöriger Motor von einer Stelleitung 25 mit Betriebsspannung beaufschlagt ist, die von einem Drehzahlregler 26 stammt. Dem Ventilator 24 ist ein Drehzahl-Ist-Wertgeber 27 zugeordnet, der über eine Meßleitung 28 mit dem Drehzahlregler 26 verbunden ist. Ein Drehzahl-Soll-Wert wird dem Drehzahlregler 26 über eine Leitung 29 zugeführt, die vom Regler 10 ausgeht. An den Regler 10 ist ein Soll-Wertgeber 30 angeschlossen, mit dem ein Soll-Wert für die Vorlauftemperatur der Heizungsanlage vorgebbar ist.
  • Das Außengehäuse 2 ist mit einem Außenrohr 31 verbunden, das sich konzentrisch und im Abstand 32 zum Abgasrohr 23 erstreckt, das das Innenrohr bildet. Die Länge des konzentrischen Doppelrohres 31/23 vom Einbauort des Ventilators 24 unmittelbar noch im Gerät bis zu einem Durchbruch durch eine Begrenzungsmauer 33 des Aufstellungsraums ist nahezu beliebig lang, in der Praxis auf einen Bereich von drei bis fünf Meter allerdings längstens begrenzt. Das Doppelrohr 31/23 geht durch die Begrenzungsmauer 33 hindurch und endet in einem Kopf 34 in der Außenatmosphäre. Dem Zuluftweg 31 ist ein Anemometerfüler 35 zugeordnet, der ein stetiges Signal für den Luftdurchsatz über eine Leitung 36 an ein Anemometer 37 meldet. Ein weiterer Eingang des Anemometers 37 wird von der Leitung 22 gebildet, und Ausgangssignale des Anemometers werden einmal über eine Leitung 38, hier ein Freigabesignal, und über eine Leitung 39, hier ein Korrektursignal, an den Regler 10 gegeben.
  • Die Funktion der Erfindung wird nunmehr anhand der Diagramme der Figuren zwei und drei näher erläutert.
  • Es muß zunächst vorausgeschickt werden, daß das Gerät im Regler 10 einen Temperaturregler aufweist. Der Ist-Wert der Vorlauftemperatur wird vom Fühler 8 erfaßt und über die Leitung 9 dem Regler 10 gemeldet. Es findet ein Vergleich zum am Soll-Wertgeber 30 vorgegebenenen Temperatur-Soll-Wert statt, und bei einer Regelabweichung wird das Gerät in Betrieb gesetzt.
  • Hierzu wird zunächst der Magnet 18 erregt, so daß das Gasventil 17 voll öffnet. Entsprechend der Größe der Regelabweichung resultiert auf der Leitung 22 ein mehr oder weniger großes Stellsignal, so daß der Magnet 21 mit Teillast- oder Vollastwerten beaufschlagt wird, so daß das Ventil 20 mehr oder weniger stark öffnet. Gleichzeitig wird über die Leitung 22 dem Anemometer 37 ein Soll-Wert für einen hierzu passenden Luftdurchsatz vorgegeben. Bevor aber das Gas freigegeben wird, wird zunächst über die Leitung 29 der Drehzahlregler 26 aktiviert, so daß der Ventilator 24 zunächst mit Maximaldrehzahl anläuft und dann auf einen dem zu erwartenden Gasdurchsatz passenden Wert reduziert wird. Mit dieser Drehzahl wird dann im Regelkreis 27, 28, 26, 25 die Drehzahl des Ventilators 24 geregelt. Der sich aufgrund das Arbeitens des Ventilators 24 einstellende Verbrennungsluftdurchsatz wird aus der Atmosphäre über den Kopf 34 gefordert und durchsetzt den Zuluftpfad 31, der dem Abstand 32 außerhalb des Gerätes entspricht. Innerhalb des Gerätes ist der Zuluftpfad 31 der Abstand der beiden Gehäuse 2 und 4, in dem der Anemometerfühler 35 angeordnet ist. Der sich einstellende Luftdurchsatz wird als Ist-Wert von ihm gemessen und über die Leitung 36 auf das Anemometer 37 gegeben. Es findet hier ein Soll-Ist-Vergleich statt, und bei Überschreiten eines zu dem zu erwartenden Gasdurchsatz passenden Mindestluftdurchsatzes wird über die Leitung 38 der Regler 10 freigegeben, so daß nunmehr die beiden Gasventile 17 und 20 entsprechend öffnen können. Das am Brenner 15 austretende Gas wird gezündet, der Brenner 15 brennt und behetzt den Wärmetauscher 5, die Vorlauftemperatur steigt. Unterschreitet der Ist-Luftdurchsatz die je nach Gasdurchsatz variable Abschaltschwelle, d. h. den Mindestluftdurchsatz, so wird über die Leitung 38 der Regler 10 gesperrt, so daß beide Gasventile 17 und 20 schließen.
  • Der Zusammenhang zwischen dem Soll-Wert für den Drehzahlregler 26 auf der Leitung 29 und dem Ist-Wert des Gasdurchsatzes entsprechend einer bestimmten Spannung auf der Leitung 22 ist fest. Keineswegs fest ist aber der Zusammenhang zwischen dem sich einstellenden Luftdurchsatz und den Ist-Wert der Ventilatordrehzahl. Weiterhin fest ist der Zusammenhang zwischen dem Ist-Wert des Gasdurchsatzes und der Abschaltschwelle für das Anemometer 37.
  • Um nun unabhängig von der Länge und den Widersänden im Wärmetauscher 5 (aufgrund von einsetzender Verschmutzung) und der Länge und dem Zustand der Rohre 31 und 23 einen Luftdurchsatz aufrechtzuerhalten, der mit Sicherheit die jeweilige Abschaltschwelle überschreitet, aber nicht so groß wird, daß ein Betrieb mit minderen Wirkungsgrad der Wärmequelle erfolgt, wird nunmehr erfindungsgemäß wie folgt verfahren:
    In der Figur zwei ist in der Abszisse die Spannung UGMV für den Öffnungsgrad des Gasmagnetventils 20 aufgetragen, in der Ordinate die Werte für den Gasdurchsatz Q und für den Sollbeziehungsweise Ist-Wert der Drehzahl des Ventilators 24. Der schräge Teil der Kurven bedeutet den Modulationsbereich, der waagerechte Teil den Vollastzustand. Die Nullpunktverschiebung kommt dadurch zustande, daß man unterhalb eines bestimmten Teillastbereiches ein Arbeiten des Gerätes unterdrücken will.
  • Figur drei zeigt neben der Kurve Q für den Gasdurchsatz zusätzlich die Kurven für die Spannung des Anemometers (UA), d. h. eine Größe für den Ist-Luftdurchsatz und die Spannung der Abschaltschwelle (US). Zwischen den Kurven US und UA liegt ein Abstand 50. Die Kurve US definiert die Abschaltschwelle. Die Kurve US ist so gelegt, daß sie unter Berücksichtigung der gerätetypischen Eigenschaften noch eine hygienisch einwandfreie Verbrennung zuläßt. Unterschreiten dieser Schwelle US bedingt also eine unhygienische Verbrennung und muß daher auf jeden Fall vermieden werden. Die Spannung UA ist eine interne Spannung im Anemometer 37, sie ist mit dem Signal des Anemometerfühlers 35 variabel. Decken sich die Kurven US und UA, so bedeutet das, daß die Verbrennung gerade noch hygienisch ist. Andererseits bedeutet ein Auseinanderklaffen der Kurven von US and UA einen Betrieb mit einem Wirkungsgrad, der um so schlechter wird, je weiter die Kurven US und UA auseinanderliegen.
  • Während die Kurve US in ihrer Lage nicht beeinflußbar ist, hängt die Kurve UA vom Ist-Luftdurchsatz ab. Dieser wird beeinflußt durch die Ventilatordrehzahl und durch Änderungen im gesamten Luftabgassystem der Wärmequelle, beispielsweise auch durch Verschmutzung. Es wird nun angestrebt, den Wert von UA möglichst dicht an den Wert von US zu legen, ohne daß der Wert für US aber erreicht oder unterschritten wird. Hierzu besetzt das Anemometer 37 einen Differenzbildner und bildet die Differenz 50 zwischen dem Ist-Wert des Luftdurchsatzes, gegeben vom Fühler 35, ausgedrückt durch UA und den Wert der Abschaltschwelle US. Diese Differenz 50 ist abhängig von der Gerätebelastung, das heißt von dem Öffnungszustand des Magnetventils 20/21, das heißt abhängig von den auf der Leitung 22 herrschenden Signalen. Die Differenz 50 wird mit einer Vorgabe verglichen, der im Anemometer 37 vorgebbar ist. Die Vorgabe kann konstant sein, kann auch über die Gerätebelastung variabel sein. Bei Unterschreiten dieser Vorgabe wird die Drehzahl des Ventilatormotors erhöht und bei Überschreiten erniedrigt, indem der Soll-Wert für den Drehzahlregler 26 über die Leitung 39 und den Regler 10 nachgeführt wird. Dieses Variieren der Drehzahl führt dann zu einer Verschiebung der Kurve UA in Richtung Korrektur.

Claims (1)

  1. Verfahren zum Regeln des Gesamtverbrennungsluftdurchsatzes für eine gasbeheizte Wärmequelle mit einem eine Luftzuführung (31) und eine Abgasabführung (23) aufweisenden Außenwandanschluß (33), einem Abgasventilator (24), dessen Antriebsmotor drehzahlvariabel ist, einem in der Luftzuführung angeordneten stetigen Ist-Wertgeber (35) für den Verbrennungsluftdurchsatz und einer Einrichtung zum Abschalten der Brenngaszufuhr beim Unterschreiten einer einem Mindestverbrennungsluftdurchsatz entsprechenden Abschaltschwelle (US), dadurch gekennzeichnet, daß die Einrichtung zum Abschalten der Brenngaszufuhr eine zum Gasdurchsatz proportionale Abschaltschwelle (US) bildet und daß in Abhängigkeit von der Differenz (50) zwischen dem Ist-Wert (UA) des Verbrennungsluftdurchsatzes und der Abschaltschwelle (US) eine Führungsgröße zum Regeln der Drehzahl des Abgasventilators (24) gebildet wird mit dem Regelziel, diese Differenz (50) auf einen Vorgabewert zu stabilisieren.
EP88730029A 1987-02-07 1988-02-06 Verfahren zum Regeln des Verbrennungsluftdurchsatzes für eine brennstoffbeheizte Wärmequelle Expired - Lifetime EP0279771B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3703839 1987-02-07
DE3703839 1987-02-07

Publications (2)

Publication Number Publication Date
EP0279771A1 EP0279771A1 (de) 1988-08-24
EP0279771B1 true EP0279771B1 (de) 1994-12-14

Family

ID=6320517

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88730029A Expired - Lifetime EP0279771B1 (de) 1987-02-07 1988-02-06 Verfahren zum Regeln des Verbrennungsluftdurchsatzes für eine brennstoffbeheizte Wärmequelle

Country Status (3)

Country Link
EP (1) EP0279771B1 (de)
AT (1) ATE115710T1 (de)
DE (1) DE3852407D1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616995A (en) 1993-02-22 1997-04-01 General Electric Company Systems and methods for controlling a draft inducer for a furnace
US5676069A (en) 1993-02-22 1997-10-14 General Electric Company Systems and methods for controlling a draft inducer for a furnace
US5680021A (en) 1993-02-22 1997-10-21 General Electric Company Systems and methods for controlling a draft inducer for a furnace
US5682826A (en) 1993-02-22 1997-11-04 General Electric Company Systems and methods for controlling a draft inducer for a furnace

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418438A (en) * 1993-02-26 1995-05-23 General Electric Company Draft inducer air flow control
GB2304878A (en) * 1995-09-12 1997-03-26 Satermic S L Forced draft controlling device for gas-oil heaters
DE19853573A1 (de) * 1998-11-20 2000-05-25 Bosch Gmbh Robert Heizgerät
CN109612073B (zh) * 2018-12-17 2021-03-23 成都前锋电子有限责任公司 燃气热水器和壁挂炉自适应烟道压力变化的点火控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2356367C2 (de) * 1973-11-12 1975-12-04 Siemens Ag, 1000 Berlin Und 8000 Muenchen Regelanordnung zur Luftmangelsicherung für Dampferzeuger
DE3037936A1 (de) * 1980-10-08 1982-05-27 Robert Bosch Gmbh, 7000 Stuttgart Temperatur-regeleinrichtung fuer gas- oder oelbeheizte wassererhitzer
NL8102571A (nl) * 1981-05-26 1982-12-16 Neom Bv Inrichting voor het verhitten van een stromend warmtetransporterend fluidum.
FR2512179A1 (fr) * 1981-08-27 1983-03-04 Sdecc Chaudiere a gaz etanche a tirage force avec regulation par microprocesseur
DE3509652A1 (de) * 1984-03-30 1985-10-10 Joh. Vaillant Gmbh U. Co, 5630 Remscheid Regeleinrichtung fuer das brennstoff-luftverhaeltnis einer brennstoffbeheizten waermequelle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616995A (en) 1993-02-22 1997-04-01 General Electric Company Systems and methods for controlling a draft inducer for a furnace
US5676069A (en) 1993-02-22 1997-10-14 General Electric Company Systems and methods for controlling a draft inducer for a furnace
US5680021A (en) 1993-02-22 1997-10-21 General Electric Company Systems and methods for controlling a draft inducer for a furnace
US5682826A (en) 1993-02-22 1997-11-04 General Electric Company Systems and methods for controlling a draft inducer for a furnace

Also Published As

Publication number Publication date
EP0279771A1 (de) 1988-08-24
DE3852407D1 (de) 1995-01-26
ATE115710T1 (de) 1994-12-15

Similar Documents

Publication Publication Date Title
EP2594848B1 (de) Verfahren zur Steuerung einer Feuerungseinrichtung und Feuerungseinrichtung
DE4317981A1 (de) Gas-Luft-Verhältnisregelvorrichtung für einen Temperaturregelkreis für Gasverbrauchseinrichtungen
DE102010055567B4 (de) Verfahren zur Stabilisierung eines Betriebsverhaltens eines Gasgebläsebrenners
EP0275439B1 (de) Einrichtung zur Leistungsregelung von brennstoffbefeuerten Wärmeerzeugern
DE102004048986B4 (de) Verfahren zur Regelung eines Gasbrenners
EP0279771B1 (de) Verfahren zum Regeln des Verbrennungsluftdurchsatzes für eine brennstoffbeheizte Wärmequelle
DE19627857C2 (de) Verfahren zum Betrieb eines Gasgebläsebrenners
DE19635974A1 (de) Gas/Luft-Mischsystem für Gasheizgeräte
DE2545135A1 (de) Vorrichtung zur regulierung eines gasheizungskessels mit kuenstlichem zug
DE4312801A1 (de) Verfahren zur Steuerung eines Gas-Gebläsebrenners
DE4303579B4 (de) Heizgerät
EP0062856B1 (de) Regeleinrichtung für den gasbefeuerten Heizkessel einer Warmwasser-Heizungsanlage
EP2071243B1 (de) Feuerungsanlage, insbesondere Kamin- oder Kachelofen
DE9217896U1 (de) Lüftungsanlage
DE102005040792B3 (de) Selbstlernender Temperaturregler
DE102021121888A1 (de) Verfahren zum Betrieb einer Brennwert-Heizanlage, Brennwert-Heizanlage sowie Computerprogramm
EP0211913B1 (de) Einrichtung für eine feuerungsanlage
EP0192227A2 (de) Verfahren zur Regelung der Temperatur in Räumen
WO2012062787A1 (de) Regeleinrichtung
DE2301832C3 (de) Warmwasser-Zentralheizungssystem mit Vorlauf- und Brauchwasserthermostaten
DE68905932T2 (de) Automatische regeleinrichtung des verbrennungsluft- und gasdurchflusses fuer ein gasheizgeraet.
EP0103303A2 (de) Brennstoffbeheizte Wärmequelle
DE3517471A1 (de) Regelung fuer das brennstoff-luftverhaeltnis einer brennstoffbeheizten waermequelle
DE3513580C2 (de)
EP0036610B1 (de) Verfahren zum Betreiben einer brennstoffbeheizten Wärmequelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19890208

17Q First examination report despatched

Effective date: 19910301

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VAILLANT B.V.

Owner name: VAILLANT S.A.R.L

Owner name: VAILLANT GMBH

Owner name: N.V. VAILLANT S.A.

Owner name: VAILLANT LTD.

Owner name: VAILLANT GES.M.B.H

Owner name: JOH. VAILLANT GMBH U. CO.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19941214

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19941214

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19941214

Ref country code: GB

Effective date: 19941214

Ref country code: BE

Effective date: 19941214

Ref country code: NL

Effective date: 19941214

REF Corresponds to:

Ref document number: 115710

Country of ref document: AT

Date of ref document: 19941215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3852407

Country of ref document: DE

Date of ref document: 19950126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950314

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19941214

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19981210

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990113

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990204

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990325

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST