EP0276513A1 - Dispositif de détection d'intrusion et de reconnaissance de véhicules terrestres - Google Patents

Dispositif de détection d'intrusion et de reconnaissance de véhicules terrestres Download PDF

Info

Publication number
EP0276513A1
EP0276513A1 EP87202558A EP87202558A EP0276513A1 EP 0276513 A1 EP0276513 A1 EP 0276513A1 EP 87202558 A EP87202558 A EP 87202558A EP 87202558 A EP87202558 A EP 87202558A EP 0276513 A1 EP0276513 A1 EP 0276513A1
Authority
EP
European Patent Office
Prior art keywords
reference plane
intrusion detection
vehicles
detector
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87202558A
Other languages
German (de)
English (en)
Other versions
EP0276513B1 (fr
Inventor
Serge Paturel
François Magne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson TRT Defense
Original Assignee
Telecommunications Radioelectriques et Telephoniques SA TRT
Thomson TRT Defense
Philips Gloeilampenfabrieken NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telecommunications Radioelectriques et Telephoniques SA TRT, Thomson TRT Defense, Philips Gloeilampenfabrieken NV filed Critical Telecommunications Radioelectriques et Telephoniques SA TRT
Publication of EP0276513A1 publication Critical patent/EP0276513A1/fr
Application granted granted Critical
Publication of EP0276513B1 publication Critical patent/EP0276513B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
    • G08B13/193Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems using focusing means
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S250/00Radiant energy
    • Y10S250/01Passive intrusion detectors

Definitions

  • the invention relates to a device for detecting intrusion and recognizing land vehicles when the latter cross a reference plane, comprising an optical system for focusing a narrow beam for detecting passive infrared radiation along said reference plane. , a filter for selecting the analysis spectral band and at least one detector placed in the focal plane of said optical system.
  • This device can have civil or military applications. It is essentially designed to identify the general shape of mobile vehicles, more precisely the proportions between some of their characteristic elements and not their speed or their direction of movement. This involves, for example, recognizing the nature of vehicles entering or leaving a parking lot or vehicles not authorized to circulate on certain tracks or within the confines of a factory, etc.
  • the typical military application is that which, in association with other sensors or sensors, participate in the development of an automatic ignition order for an anti-tank trap.
  • the principle of detection of objects, people or vehicles by passive infrared radiation detectors, pyroelectric detectors in particular is known and used for example to automatically trigger the opening of doors when a passive infrared radiation (IR-P) is emitted by the object in a narrow detection beam.
  • IR-P passive infrared radiation
  • thermography systems which, by means of a thermal camera and a television monitor, make it possible to obtain an image by passive infrared radiation of a field of vision which can be distant by several kilometers and according to several tens of contrast levels.
  • Such systems which moreover always require cooling of the detectors, are complex and expensive.
  • the object of the invention is to implement, by means of passive infrared detector (s), the recognition of certain mobile vehicles by a simplified thermal imaging device.
  • each detector is followed by a first analog processing chain for signal amplification and filtering and in that it further comprises, after said first chain, a second digital signal processing chain comprising means for sampling, storage of samples and processing of samples in such a way that at least the train of rolling of said vehicles is reconstituted by so-called signal processing means in the form of a time-dependent curve according to which each rotating element of the undercarriage takes the form of an identifiable characteristic pulse.
  • the invention exploits the property that the rotating elements of the undercarriage of a vehicle have to heat up by friction and / or elastic deformation during the movement of this vehicle.
  • the resolution in field of the detection beam is physically limited to a minimum value such that it could prove to be insufficient for vehicles of too small size, which makes it possible to exclude the latter, as well as people, from vehicle classes to be identified.
  • an advantageous embodiment of the device is remarkable in that at the maximum observation distance provided and for all the expected angles of presentation of said vehicles with respect to said reference plane, the opening in bearing of said beam of Passive infrared radiation is such that the distance between two adjacent rotating elements of the undercarriage is resolved by each detector.
  • the device of the invention must be designed to operate in a window at a distance of between a few meters and a few tens of meters; under these conditions, an advantageous embodiment is remarkable in that it comprises a plurality of n pyroelectric detectors arranged vertically and adjacent to each other so as to define in the reference plane n adjacent detection sub-beams of respective site angle ⁇ s / n of the order of a few degrees , the angle of elevation ⁇ s of said beam being counted downwards from a horizontal of the reference plane located approximately 1 m in height.
  • FIG. 1 a detection and monitoring device according to the invention, 201.
  • This device is installed, fixed, on a site 202, and comprises, as shown in FIG. 2a, an optical system making it possible to focus , on at least one detector, a narrow beam for detecting passive infrared radiation (IR-P).
  • the detection beam 203 seen transversely, comes from a point 02 located approximately 1 m high; its elevation angle ⁇ s of the order of one to several tens of degrees is limited by a substantially horizontal straight line 204 and an oblique 205 directed downwards and the axis of symmetry 206 due beam 203 is an oblique which meets the ground between a few meters and a few tens of meters.
  • the bearing angle ⁇ g is of the order of one to a few tenths of a degree.
  • the beam 203 is obtained from the following elements: an optical system 208 characterized by its focal distance f, its opening and its optical axis 206, - a network of IR-P detectors 209 placed in the focal plane of the optical system 208, constituted by an assembly of infrared detectors 211, 212, 213, 214, sensitive in the infrared analysis band used, the dimensions as well as the relative arrangements combined with the distance f of the optical system 208 give the field of analysis constituted by the detection beam 203. It will be noted on this subject that it is possible to use a single detector at 209.
  • the detectors are preferably sensitive pyroelectric detectors in the electromagnetic radiation band between 1 ⁇ and 15 ⁇ wavelength. These are, for example, RPY94 or RPY98 detectors, the dimensions of which are approximately 1 mm ⁇ 2 mm, manufactured by the English company Mullard.
  • a filter 210 makes it possible to select the spectral analysis band, for example between 3 ⁇ and 14 ⁇ , and preferably between 8 and 12 ⁇ .
  • the beam 203 whose solid analysis angle is ⁇ s . ⁇ g consists, in the example of FIG. 2a, of n under contiguous beams in a vertical reference plane U gui comprises the axis 206 , opening in deposit: ⁇ g and opening in site ⁇ s / n , n being equal to 4 in the example chosen.
  • Each detector of the network 209 is followed by an analog signal processing chain shown in FIG. 2b.
  • This chain comprises in cascade the detector 216 which represents one of the detectors 211, 212, 213 or 214, a preamplifier 217, an amplifier 218 and a bandpass filter 219.
  • the filter 219 supplies the voltage V216 (V211, V212, V213 or V214).
  • the overall bandwidth of this processing chain is between a few tenths of Hz (typically 0.5 Hz), to be insensitive to the DC component, and a few tens of Hz (typically 50 Hz), which corresponds to the frequency of maximum modulation necessary to take into account vehicles likely to cross the reference plane U.
  • the assembly constituted by the optical system 208, the filter 211, the detector 216 and its amplification and filtering chain has a temperature difference - noise equivalent (NETD) less than 1 ° K.
  • NETD temperature difference - noise equivalent
  • the purpose of the simplified infrared analysis carried out by the invention is to collect, day and night, a certain amount of information on one (or more) vehicle (s) having passed through the detection beam 203, either for identify, whether or not to place it in the class of objectives to be destroyed in the context of a military application. In the latter case, this analysis comes after certain tests relating to the passing distance and the vehicle speed have been successfully passed.
  • the criteria taken into consideration for the design of the device 201 are the following: - Vehicles in the vicinity of the device will be mobile and will rarely appear from the front. The beam or the contiguous sub-beams, 203, although fixed, will take advantage of the movement of the vehicles to perform the longitudinal analysis of their sides. - The vehicles which will reach the reference plane U will have driven for a long time, which will have resulted in overheating of their running gear, whether in the case of tracked vehicles or on tires.
  • the position of the device 201, very close to the ground is such that the lower part of the vehicle body will remain in the beam 203 throughout the time of its travel, and this regardless of the angle ⁇ made by the trajectory of the vehicle (not shown) with the plane U, the angle ⁇ being assumed to be between 45 ° and 135 °.
  • the detectors of the analysis beams will not be sensitive to the DC component, which has several consequences: on the one hand infrared phenomena with very slow evolution in the environment are not annoying, such as the sun for example. Furthermore, constant temperature zones on vehicles will not generate any signal, only counting the transitions. The running gear of vehicles is a characteristic attribute of these.
  • the tires 221, 222 are heated by friction and deformation. These tires (typically three in number for a truck) are rarely hidden because at the front (221) the wheels provide direction and the necessary lateral movement prevents them from being fully integrated behind the bodywork and at the rear (222), for reasons of ease of access, they are not covered with a cover.
  • the rocker panel consists of a number of rollers 223 generally greater than 6. On these rollers rub the tracks 224, which has the consequence of bringing their periphery to an apparent temperature sensitive. These rollers are provided with a long-travel suspension, so they are not entirely maskable by skirts.
  • a kinematic inversion has been produced according to which the virtual image of the detector is supposed to move, in the direction of an arrow 226, between the ground 202 and a horizontal plane PH passing through. by line 204 ( Figure 1), along the lower part of the vehicle, the actual movement being opposite. This movement takes place on a linear scale.
  • curves 227 and 228 The attributes exploitable from curves 227 and 228 are pulses (peaks) of sufficient amplitude to assimilate them to as many elements of the running gear. We can then count the number of pulses, their width, their spacing and make a comparison with typical curves representative of this or that class of vehicles.
  • the distance from the vehicle has no influence on the duration of crossing the reference plane U.
  • the parameters which influence this duration are the speed of the vehicle and its angle of presentation ⁇ relative to the plane U.
  • the distance plays on the other hand, a role as regards the definition of the bearing angle ⁇ g of the detection beam 203.
  • the values of ⁇ g and ⁇ s or ⁇ s / n must be chosen according to the following criteria: -
  • the opening in deposit ⁇ g (see figure 5), must be chosen such that at the maximum observation distance D max (nominal distance in the case of a road to be monitored), and for all target presentation angles (45 ° ⁇ ⁇ 135 °), the shortest distance d min between adjacent rotating elements of an undercarriage be resolved by the detector (s).
  • the calculation is based on the possibility of observing tires or rollers of a tracked vehicle as described above with reference to Figures 3 and 4.
  • n pyroelectric detectors will be used, for example 4 detectors giving birth to 4 contiguous detection beams 233, 234, 235, 236 of elevation angle ⁇ s / 4 as shown in Figure 6.
  • FIG. 7 is suitable for the case of several detectors in which the signals V211 to V214 are supplied to a multiplexer 238 followed by a sampler-blocker 329.
  • the multiplexer 238 is intended to bring successively to a single coding channel the signals V unique to V214.
  • the control signal on a conductor 241 of the multiplexer comes from a management processor 242 which supervises the operation of the entire device.
  • the unique signal V216 is supplied directly to the sampler-blocker 239 which, under the control of a sampling signal at the frequency f EIR on a conductor 243 coming from the processor 242 , takes the analog value of the signal (or signals) V216.
  • the digital processing chain of FIG. 7 further comprises an analog-digital converter 244 and a memory for storing the digital values of the samples, 245.
  • the data processing circuit constituted by the processor 242 and its associated program memory 246 applies the digital filtering and algorithms for extracting the characteristic attributes of vehicles.
  • the sampling period T EIR of the signals at 239 must be calculated such that it is lower than the duration of a pulse 229 on 231.
  • T EIR can be determined from the minimum distance resolution rh which is wishes to have on the vehicle, whatever its angle of presentation ⁇ in a predetermined range of values and the value of the maximum apparent speed v max of the vehicle.
  • the value of T EIR is therefore deduced from the relation: For a more complex detection system incorporating other sensors, it is possible to have available the distance D of the vehicle as well as its apparent angular speed d ⁇ / dt; in this case, it comes: This last calculation method makes it possible to ensure that the number of samples taken on a vehicle of fixed length is the same regardless of its passage distance.
  • the classification of vehicles to be identified is based on a search for attributes characteristic of the undercarriage. This is done by applying a certain number of digital processing operations on the samples contained in the memory 245, and in particular the comparison of these samples with one or more thresholds, allowing the identification of the pulses 229 and 231.
  • the passing distance of a vehicle can be taken into account as follows: - if the passage distance is small, the attributes sought at the level of the undercarriage will not appear at each V211, V212, V213, V214 signal but on their sum (the 4 detectors cover the undercarriage). - as the passing distance becomes large, the attributes sought will only appear on the sum of three signals, then two, and finally on a single signal.
  • the management processor 242 is for example a microprocessor 6809 from the company Motorola and the algorithms necessary for its programming for the implementation of the invention are within the reach of those skilled in the art, in this case the average computer scientist .
  • the optical part of the device can be produced in transmission by means of optical elements of germanium for example, or in reflection by means of a concave reflecting mirror constituted by a molded form of plastic material coated with a thin layer. metallic.

Abstract

Le dispositif (201) comporte un système optique de focalisation d'un faisceau étroit de détection (203) d'un rayonnement infrarouge passif selon un plan-repère (U). Un filtre sélectionne la bande spectrale d'analyse et au moins un détecteur infrarouge passif est placé dans le plan focal. Selon l'invention le dispositif comporte une première chaîne de traitement analogique et une deuxième chaîne de traitement numérique permettant de reconstituer selon une courbe caractéristique au moins le train de roulement de véhicules. Sur cette courbe, chaque élément tournant du train de roulement revêt la forme d'une impulsion identifiable. Application à la reconnaissance de véhicules mobiles sur un site prédéterminé.

Description

  • L'invention concerne un dispositif de détection d'intrusion et de reconnaissance de véhicules terrestres lors­que ces derniers franchissent un plan-repère, comportant un système optique de focalisation d'un faisceau étroit de détec­tion d'un rayonnement infrarouge passif selon ledit plan-repé­re, un filtre permettant de sélectionner la bande spectrale d'analyse et au moins un détecteur placé dans le plan focal dudit système optique.
  • Ce dispositif peut avoir des applications civiles ou militaires. Il est essentiellement conçu pour identifier la forme générale de véhicules mobiles, plus précisément les pro­portions entre certains de leurs éléments caractéristiques et non leur vitesse ni leur sens de circulation. Il s'agit par exemple de reconnaître le nature véhicules qui rentrent ou sortent d'un parc de stationnement ou de véhicules non habili­tés à circuler sur certaines voies ou dans l'enceinte d'une usine etc... L'application militaire type est celle qui con­siste, en association avec d'autres capteurs ou senseurs à participer à l'élaboration d'un ordre d'allumage automatique pour un piège antichar. Le principe de détection d'objets, personnes ou véhicules par détecteurs de rayonnement infrarou­ge passif, de détecteurs pyroélectrique notamment est connu et utilisé par exemple pour déclencher automatiquement l'ouvertu­re de portes lorsqu'un rayonnement infrarouge passif (IR-P) est émis par l'objet dans un faisceau étroit de détection. On connaît notamment du brevet européen N° 0 065 159 un détecteur de mouvements pour surveillance d'un espace qui utilise le rayonnement thermique infrarouge d'une personne non autorisée qui entre, et dans lequel le récepteur de rayonnement est un élément pyroélectrique. De plus en plus, les détecteurs infra­ rouges passifs (IR-P) sont préférés à des dispositifs radar Doppler qui sont beaucoup plus sujets à de fausses alarmes et qui peuvent être détectés à cause du rayonnement électromagné­tique qu'ils émettent, cette derière caractéristique consti­tuant un inconvénient pour les application militaires. Les dé­tecteurs pyroélectriques sont d'une utilisation simple, du fait qu'ils ne nécessitent aucun refroidissement, et convien­nent pour une détection dans un rayon maximum de quelques di­zaines de mètres au delà duquel le bruit thermique des détec­teurs devient prépondérant par rapport au signal utile recher­ché. Il s'agit dans ce qui précède d'une simple détection qui ne fournit aucune autre information que celle de présence ou d'absence d'un objet chaud dans un faisceau de détection. On connaît par ailleurs des systèmes de thermographie infrarouge qui, au moyen d'une caméra thermique et d'un moniteur de télé­vision, permettent d'obtenir une image par rayonnement infra­rouge passif d'un champ de vision qui peut être distant de plusieurs kilomètres et selon plusieurs dizaines de niveaux de contraste. De tels systèmes, qui nécessitent d'ailleurs tou­jours un refroidissement des détecteurs, sont complexes et chers.
  • L'invention a pour but de mettre en oeuvre, au moyen de détecteur(s) en infrarouge passif, la reconnaissance de certains véhicules mobiles par un dispositif d'imagerie thermique simplifiée.
  • Ce but est atteint grâce au fait que le dispositif de détection d'intrusion et de reconnaissance de véhicules dé­fini au premier paragraphe est remarquable en ce que chaque détecteur est suivi d'une première chaîne de traitement analo­gique d'amplification et de filtrage de signal et en ce qu'il comporte en outre à la suite de ladite première chaîne une deuxième chaîne de traitement numérique de signal comportant des moyens d'échantillonnage, de stockage d'échantillons et de traitement des échantillons de façon telle qu'au moins le train de roulement desdits véhicules soit reconstitué par les­ dits moyens de traitement de signal sous forme d'une courbe fonction du temps selon laquelle chaque élément tournant du train de roulement revêt la forme d'une impulsion caractéris­tique identifiable.
  • L'invention exploite la propriété qu'ont les élé­ments tournants du train de roulement d'un véhicle à s'échauffer par frottement et/ou déformation élastique lors du déplacement de ce véhicule.
  • La vitesse du véhicule ou l'angle sous lequel il se présente par rapport au plan-repère influe sur le temps de franchissement du plan, c'est-à-dire sur l'échelle des abscis­ses de la courbe. Cependant, les proportions entre écartements relatifs des différentes impulsions caractéristiques de la courbe sont conservées dans cette homotétie. Ces proportions, surtout, sont représentatives de la forme d'un véhicule parti­culier, en liaison avec sa grosseur, ce qui permet l'identifi­cation désirée.
  • Par ailleurs, la résolution en gisement du fais­ceau de détection est physiquement limitée à une valeur mini­male telle qu'elle pourraîts s'avérer insuffisante pour des vé­hicules de trop petite taille, ce qui permet d'écarter ces derniers, ainsi que les personnes, des classes de véhicules à identifier. A ce sujet, un mode de réalisation avantageux du dispositif est remarquable en ce qu'à la distance maximale d'observation prévue et pour tous les angles de présentation attendus desdits véhicules par rapport audit plan-repère, l'ouverture en gisement dudit faisceau de rayonnement infra­rouge passif est telle que la distance entre deux éléments tournants adjacents du train de roulement soit résolue par chaque détecteur.
  • Pour une zone de surveillance assez vaste, le dis­positif de l'invention doit être conçu pour fonctionner dans une fenêtre en distance comprise entre quelques mètres et quelques dizaines de mètres ; dans ces conditions, un mode de réalisation avantageux est remarquable en ce qu'il comporte une pluralité de n détecteurs pyroélectriques disposés verti­calement et adjacents l'un à l'autre de façon à définir dans le plan-repère n sous-faisceaux de détection adjacents d'angle de site respectif ϑs/n de l'ordre de quelques degrés, l'an­gle de site ϑs dudit faisceau étant compté vers le bas à partir d'une horizontale du plan-repère située à 1 m de hau­teur environ.
  • Selon l'éloignement du véhicule lors de sa traver­sée du plan-repère, son train de roulement est détacté dans un ou plusieurs sous faisceaux de détection, ce qui permet à la fois de détecter la totalité du train de roulement et aussi d'obtenir une indication sur l'éloignement du véhicle.
  • La description qui suit, en regard des dessins an­nexés, le tout donné à titre d'exemple, fera bien comprendre comment l'invention peut être réalisée.
    • La figure 1 représente de façon schématique vu de côté le dispositif selon l'invention mis en place sur un site prédéterminé.
    • La figure 2a illustre une disposition constructive permettant de matérialiser la technique de détection en infra­rouge passif selon l'invention.
    • La figure 2b est un schéma synoptique de la premiè­re chaîne de traitement analogique.
    • La figure 3 montre la courbe obtenue pour un véhi­cule à pneus.
    • La figure 4 montre la courbe obtenue pour un véhi­cule chenillé.
    • La figure 5 illustre comment est déterminée l'ou­verture en gisement d'un détecteur.
    • La figure 6 représente, selon une vue semblable à celle de la figure 1, le cas de plusieurs détecteurs pour une détection dans une porte en distance large.
    • La figure 7 est un schéma synoptique de la deuxième chaîne de traitement numérique.
  • Sur la figure 1 est représenté un dispositif de dé­tection et de surveillance selon l'invention, 201. Ce disposi­tif est mis en place, fixe, sur un site 202, et comporte, com­me représenté à la figure 2a, un système optique permettant de focaliser, sur au moins un détecteur, un faisceau étroit de détection d'un rayonnement infrarouge passif (IR-P). Le fais­ceau de détection 203, vu transversalement, est issu d'un point 02 situé à 1 m de haut environ ; son angle de site ϑs de l'ordre de une à plusieurs dizaines de degrés est limité par une droite sensiblement horizontale 204 et une oblique 205 dirigée vers le bas et l'axe de symétrie 206 due faisceau 203 est une oblique qui rencontre le sol entre quelques mètres et quelques dizaines de mètres. L'angle de gisement ϑg, non re­présenté est de l'ordre de un à quelques dixièmes de degrés.
  • On décrit ci-dessous en référence aux figures 2a et 2b le système de détection d'intrusion effectuée par le sen­seur infrarouge passif que comporte le dispositif 201. Le faisceau 203 est obtenu à partir des éléments suivants :
    - un système optique 208 caractérisé par sa distance focale f, son ouverture et son axe optique 206,
    - un réseau de détecteurs IR-P 209 placé dans le plan focal du système optique 208, constitué par un assemblage de détec­teurs infrarouges 211, 212, 213, 214, sensibles dans le ban­de d'analyse infrarouge utilisée, dont les dimensions ainsi que les dispositions relatives combinées à la distance f du système optique 208 donnent la champ d'analyse constitué par le faisceau de détection 203. On notera à ce sujet qu'il est possible d'utiliser un seul détecteur en 209. Les détecteurs sont de préférence des détecteurs pyroélectriques sensibles dans la bande de rayonnement électromagnétique comprise en­tre 1 µ et 15 µ de longueur d'onde. Il s'agit par exemple de détecteurs RPY94 ou RPY98 dont les dimensions sont environ de 1 mm × 2 mm, fabriqués par la société anglaise Mullard. Un filtre 210 permet de sélectionner la bande spectrale d'analyse, par exemple entre 3 µ et 14 µ, et de préférence entre 8 et 12 µ.
  • On notera que la faisceau 203 dont l'angle solide d'analyse est ϑsg est constitué, dans l'exemple de la figure 2a, de n sous faisceaux contigus dans un plan-repère vertical U gui comporte l'axe 206, d'ouverture en gisement : ϑg et d'ouverture en site ϑs/n, n étant égal à 4 dans l'exemple choisi.
  • Chaque détecteur du réseau 209 est suivi d'une chaîne de traitement de signal analogique représentée à la fi­gure 2b. Cette chaîne comporte en cascade la détecteur 216 qui représente l'un des détecteurs 211, 212, 213 ou 214, un préam­plificateur 217, un amplificateur 218 et un filtre passe-bande 219. Le filtre 219 fournit la tension V₂₁₆ (V₂₁₁, V₂₁₂, V₂₁₃ ou V₂₁₄). La bande passante globale de cette chaîne de traite­ment est comprise entre quelques dixièmes de Hz (typiquement 0,5 Hz), pour être insensible à la composante continue, et quelques dizaines de Hz (typiquement 50 Hz), ce qui correspond à la fréquence de modulation maximale nécessaire à la prise en compte de véhicules susceptibles de traverser le plan-repère U. L'ensemble constitué par le système optique 208, le filtre 211, le détecteur 216 et sa chaîne d'amplification et de fil­trage a une différence de température-équivalent bruit (NETD) inférieure à 1°K.
  • Le but de l'analyse infrarouge simplifiée que réa­lise l'invention est de recueillir, de jour comme de nuit, un certain nombre de renseignements sur un (ou plusieurs) véhicu­le(s) ayant traversé le faisceau de détection 203, soit pour l'identifier, soit pour le ranger ou non dans la classe des objectifs à détruire dans le cadre d'une application militai­re. Dans le dernier cas, cette analyse intervient après que certains tests relatifs à la distance de passage et à la vi­tesse du véhicule ont été franchis avec succès.
  • Les critères pris en considération pour la concep­tion du dispositif 201 sont les suivants :
    - Les véhicules se trouvant aux abords du dispositif seront mobiles et se présenteront rarement de face. Le faisceau ou le sous faisceaux contigus, 203, bien que fixes, mettront à profit le mouvement des véhicules pour effectuer l'analyse longitudinale de leurs flancs.
    - Les véhicules qui atteindront le plan-repère U auront roulé longuement, ce qui aura entraîne un échauffement de leur train de roulement, que ce soit dans le cas de véhicules chenillés ou sur pneus.
    - La position du dispositif 201, très proche du sol est telle que la partie basse de la caisse du véhicule restera dans le faisceau 203 pendant tout le temps de son défilement, et ce­ci quel que soit l'angle ξ que fait la trajectoire du véhi­cule (non représenté) avec le plan U, l'angle ξ étant suppo­sé compris entre 45° et 135°.
    - Les détecteurs des faisceaux d'analyse ne seront pas sensi­bles à la composante continue, ce qui a plusieurs conséquen­ces : d'une part les phénomènes infrarouges à évolution très lente dans l'environnement ne sont pas gênants, tels par exemple le soleil. Par ailleurs, les zones à température constante sur les véhicules n'engendreront aucun signal, seules comptant les transitions. Le train de roulement des véhicules est un attribut caractéristique de ces derniers.
  • Dans le cas d'un véhicule sur pneus, voir figure 3, les pneus 221, 222 sont chauffés par frottement et déforma­tion. Ces pneus (typiquement au nombre de trois pour un ca­mion) sont rarement masqués car à l'avant (221) les roues as­surent la direction et le débattement latéral nécessaire empê­che de les intégrer complètement derrière la carosserie et à l'arrière (222), pour des raisons de facilité d'accès, on ne les recouvre pas de cache.
  • Pour un véhicule à chenilles, figure 4, le bas de caisse est constitué d'un nombre de galets 223 en général su­périeur à 6. Sur ces galets viennent frotter les chenilles 224, ce qui a pour conséquence de porter leur périphérie à une température apparente sensible. Ces galets sont munis d'une suspension à grand débattement, de sorte qu'ils ne sont pas entièrement masquables par des jupes. Sur les figures 3 et 4 on a réalisé, pour faciliter la représentation, une inversion cinématique selon laquelle l'image virtuelle du détecteur est supposée se déplacer, dans le sens d'une flèche 226, entre le sol 202 et un plan horizontal PH passant par la ligne 204 (fi­gure 1), le long de la partie basse du véhicule, le mouvement réel étant inverse. Ce mouvement s'effectue selon une échelle linéaire. Il en résulte pour le signal de sortie V₂₁₆ de la chaîne de traitement analogique, les courbes c fonction du temps 227 et 228. Ces courbes sont constituées d'impulsions 229, respectivement 231, légèrement creusées en leur centre et dont les rapports d'espacements dans le temps sont les mêmes que les rapports d'espacement linéaires des éléments tournants appartenant au train de roulement des véhicules. Les courbes 227 et 228 sont échantillonnées et traitées sous forme numéri­que comme décrit ci-dessous en référence à la figure 7.
  • Les attributs exploitables à partir des courbes 227 et 228 sont des impulsions (pics) d'amplitude suffisante pour les assimiler à autant d'éléments du train de roulement. On peut alors compter le nombre d'impulsions, leur largeur, leur espacement et établir une comparaison avec des courbes types représentatives de telle ou telle classe de véhicules.
  • On notera que l'éloignement du véhicule est sans influence sur la durée de traversée du plan-repère U. Les pa­ramètres qui influent sur cette durée sont la vitesse du véhi­cule et son angle de présentation ξ par rapport au plan U. L'éloignement joue par contre un rôle pour ce qui est de la définition de l'angle de gisement ϑg du faisceau de détec­tion 203.
  • Pour analyser correctement le train de roulement dans une plage de distance allant de quelques mètres à quel­ques dizaines de mètres, il faut que les valeurs de ϑg et ϑs ou ϑs/n soient choisies en fonction des critères sui­vants :
    - L'ouverture en gisement ϑg (voir figure 5), doit être choisie telle qu'à la distance maximale d'observation Dmax (distance nominale dans le cas d'une route à surveiller), et pour tous les angles de présentation des cibles (45°<ξ<135°), la distance la plus faible dmin entre élé­ments tournants adjacents d'un train de roulement soit réso­lue par le(les) détecteur(s). Pour le couple de valeurs : Dmax = 75 m et dmin = 30 cm, par exemple, ceci conduit à la valeur : ϑg ≃ 0,2°.
    - Pour l'ouverture en site ϑs ou ϑs/n, le calcul est basé sur la possibilité d'observer des pneus ou des galets d'un véhicule chenillé comme décrit ci-dessus en référence aux figures 3 et 4.
  • Si le véhicule à reconnaître est censé se déplacer sur une route, en seul détecteur 216 peut suffire. Par contre, pour une fenêtre en distance assez large comprise entre quel­ques mètres et quelques dizaines de mètres on utilisera une pluralité de n détecteurs pyroélectriques, par exemple 4 dé­tecteurs donnant naissance à 4 sous faisceaux de détection contigus 233, 234, 235, 236 d'angle de site ϑs/4 comme re­présenté à la figure 6. Ainsi, lorsque le véhicule se trouve à la distance minimale d'observation Dmin, le train de roule­ment occupe le champ vertical des n (n = 4) détecteurs. Par contre, lorsque le véhicule se trouve à la distance maximale d'observation Dmax, le train de roulement se trouve dans le champ d'un seul détecteur, celui qui correspond au sous fais­ceau du haut, 236. Cette condition permet de définir la valeur de ϑs/n. On notera que cette disposition constructive permet d'obtenir une première indication sur la distance de passage d'un véhicule. Par exemple, sur la figure 6, lorsque 4 détec­teurs sont impliqués dans la détection, le véhicule se situe entre 12 et 20 m du dispositif 201 ; pour 3 détecteurs impli­qués, entre 20 et 29 m ; pour 2 détecteurs, entre 29 et 57 m, et pour 1 détecteur, entre 57 et 75 m.
  • Pour l'exploitation des signaux de sortie des dé­tecteurs 216 on utilise de préférence la chaîne de traitement numérique de signal de la figure 7. La figure 7 convient pour le cas de plusieurs détecteurs dans lequel les signaux V₂₁₁ à V₂₁₄ sont fournis à un multiplexeur 238 suivi d'un échantil­lonneur-bloqueur 329. Le multiplexeur 238 est destiné à amener successivement vers une voie de codage unique les signaux V₂₁₁ à V₂₁₄. Le signal de commande sur un conducteur 241 du multi­plexeur est issu d'un processeur de gestion 242 qui supervise le fonctionnement de l'ensemble du dispositif. Dans le cas d'un seul détecteur, le signal V₂₁₆, unique, est fourni direc­tement à l'échantillonneur-bloqueur 239 qui, sous la commande d'un signal d'échantillonnage à la fréquence fEIR sur un conducteur 243 issu du processeur 242, prélève la valeur ana­logique du signal (ou des signaux) V₂₁₆. La chaîne de traite­ment numérique de la figure 7 comporte en outre un convertis­seur analogique-numérique 244 et une mémoire de stockage des valeurs numèriques des échantillons, 245. Le circuit de trai­tement des données constitué par le processeur 242 et sa mé­moire programme associée 246 applique les filtrages numériques et les algorithmes d'extraction des attributs caractéristiques des véhicules. La période d'échantillonnage TEIR des signaux en 239 doit être calculée telle qu'elle soit plus faible que la durée d'une impulsion 229 on 231. TEIR peut être détermi­née à partir de la résolution en distance minimale rh que l'on souhaite avoir sur le véhicule, quel que soit son angle de présentation ξ dans une plage de valeurs prédéterminée et la valeur de la vitesse apparente maximale vmax du véhicule. La valeur de TEIR se déduit alors de la relation :
    Figure imgb0001
    Pour un système de détection plus complexe incorporant d'au­tres senseurs, il peut se faire qu'on ait à disposition la distance D du véhicule ainsi que sa vitesse angulaire apparen­te dγ/dt ; dans ce cas, il vient :
    Figure imgb0002
    Cette dernière méthode de calcul permet de faire en sorte que le nombre d'échantillons pris sur un véhicule de longueur fi­xée soit le même quelle que soit sa distance de passage.
  • On a vu que le classification des véhicules à iden­tifier se fait sur la base d'une recherche d'attributs carac­téristiques du train de roulement. Ceci se fait par applica­tion d'un certain nombre de traitements numériques sur les échantillons contenus dans la mémoire 245, et notamment la comparaison de ces échantillons avec un ou plusieurs seuils, permettant l'identification des impulsions 229 et 231. Avant d'appliquer ces traitements, on peut tenir compte de la dis­tance de passage d'un véhicule de la manière suivante :
    - si la distance de passage est faible, les attributs recher­chés au niveau du train de roulement n'apparaîtront pas au niveau de chaque signal V₂₁₁, V₂₁₂, V₂₁₃, V₂₁₄ mais sur leur somme (les 4 détecteurs couvrent le train de roulement).
    - au fur et à mesure que la distance de passage devient gran­de, les attributs recherchés n'apparaîtront plus que sur la somme de trois signaux, puis deux, et enfin sur en seul si­gnal.
  • Le processeur de gestion 242 est par exemple un mi­croprocesseur 6809 de la société Motorola et les algorithmes nécessaires à sa programmation pour la mise en oeuvre de l'in­vention sont à la portée de l'homme du métier, en l'occurrence l'informaticien moyen.
  • On notera que la partie optique du dispositif peut être réalisée en transmission au moyen d'éléments optiques en germanium par exemple, ou en réflexion au moyen d'un miroir concave réfléchissant constitué d'une forme moulée en matière plastique revêtue d'une mince couche métallique.

Claims (5)

1. Dispositif de détection d'intrusion et de recon­naissance de véhicules terrestres lorsque ces derniers fran­chissent un plan-repère, comportant un système optique de fo­calisation d'un faisceau étroit de détection d'un rayonnement infrarouge passif selon ledit plan-repère, un filtre permet­tant de sélectionner la bande spectrale d'analyse et au moins un détecteur placé dans le plan focal dudit système optique, caractérisé en ce que chaque détecteur est suivi d'une premiè­re chaîne de traitement analogique d'amplification et de fil­trage de signal et en ce qu'il comporte en outre à la suite de ladite première chaîne une deuxième chaîne de traitement numé­rique de signal comportant des moyens d'échantillonnage, de stockage d'échantillons et de traitement des échantillons de façon telle qu'au moins le train de roulement desdits véhicu­les soit reconstitué par lesdits moyens de traitement de si­gnal sous forme d'une courbe fonction du temps selon laquelle chaque élément tournant du train de roulement revêt la forme d'une impulsion caractéristique identifiable.
2. Dispositif de détection d'intrusion et de recon­naissance selon la revendication 1, caractérisé en ce que les­dits moyens de traitement des échantillons sont constitués par un microprocesseur.
3. Dispositif de détection d'intrusion et de recon­naissance selon la revendication 1 ou 2, caractérisé en ce que l'ensemble constitué par ledit détecteur et ladite première chaîne de traitement analogique a une bande passante comprise entre quelques dixièmes de Hertz et quelques dizaines de Hertz et que ledit ensemble plus ledit système optique ont une dif­férence de température-équivalent bruit inférieure à 1°K.
4. Dispositif de détection d'intrusion et de recon­naissance selon l'une des revendications 1 à 3, caractérisé en ce qu'à la distance maximale d'observation prévue et pour tous les angles de présentation attendus desdits véhicules par rap­port audit plan-repère, l'ouverture en gisement dudit faisceau de rayonnement infrarouge passif est telle que la distance en­tre deux éléments tournants adjacents du train de roulement soit résolue par chaque détecteur.
5. Dispositif de détection d'intrusion et de recon­naissance dans une fenêtre en distance comprise entre quelques mètres et quelques dizaines de mètres selon l'une des revendi­cations 1 à 4, caractérisé en ce qu'il comporte une pluralité de n détecteurs pyroélectriques disposés verticalement et ad­jacents l'un à l'autre de façon à définir dans le plan-repère n sous-faisceaux de détection adjacents d'angle de site res­pectif ϑs/n de l'ordre de quelques degrés, l'angle de site ϑs dudit faisceau étant compté vers le bas à partir d'une horizontale du plan-repère située à 1 m de hauteur environ.
EP87202558A 1986-12-23 1987-12-17 Dispositif de détection d'intrusion et de reconnaissance de véhicules terrestres Expired - Lifetime EP0276513B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8618050A FR2608777B1 (fr) 1986-12-23 1986-12-23 Dispositif de detection d'intrusion et de reconnaissance de vehicules terrestres
FR8618050 1986-12-23

Publications (2)

Publication Number Publication Date
EP0276513A1 true EP0276513A1 (fr) 1988-08-03
EP0276513B1 EP0276513B1 (fr) 1991-11-06

Family

ID=9342212

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87202558A Expired - Lifetime EP0276513B1 (fr) 1986-12-23 1987-12-17 Dispositif de détection d'intrusion et de reconnaissance de véhicules terrestres

Country Status (5)

Country Link
US (1) US5012099A (fr)
EP (1) EP0276513B1 (fr)
JP (1) JP2567887B2 (fr)
DE (1) DE3774423D1 (fr)
FR (1) FR2608777B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0485192A2 (fr) * 1990-11-07 1992-05-13 Gec-Marconi (Holdings) Limited Système de sécurité
WO1992010812A1 (fr) * 1990-12-14 1992-06-25 Iris Gmbh I.G. Infrared & Intelligent Sensors Dispositif compteur et commutateur sensible aux directions

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283551A (en) * 1991-12-31 1994-02-01 Aritech Corporation Intrusion alarm system
WO1995025322A1 (fr) * 1994-03-15 1995-09-21 Gallium Software Inc. Detecteur d'angle mort
GB2322442B (en) * 1997-02-19 2000-12-06 Agd Systems Ltd A method of detecting the emission of infra-red radiation
US5886664A (en) * 1997-04-16 1999-03-23 Trw Inc. Method and apparatus for detecting mines using radiometry
WO2003019494A1 (fr) * 2001-08-23 2003-03-06 Qwip Technologies, Inc. Systeme et procede pour la notification de conditions de circulation dangereuses
JP2004302699A (ja) * 2003-03-28 2004-10-28 Sumitomo Electric Ind Ltd 車両検知器
US7172450B1 (en) * 2006-01-11 2007-02-06 Qualitau, Inc. High temperature open ended zero insertion force (ZIF) test socket
US20080012749A1 (en) * 2006-07-17 2008-01-17 Innovative American Technology, Inc. Standoff radiation detection system
DE102010046586B4 (de) * 2010-09-25 2012-10-04 Rtb Gmbh & Co. Kg Verkehrsstauerfassung
JP5911681B2 (ja) * 2011-08-22 2016-04-27 株式会社東芝 移動回転体検出装置
KR101927359B1 (ko) * 2017-01-04 2018-12-11 주식회사 에스원 반사판 기반 레이더 감지기에서 차량 신호에 의한 오작동 방지 방법 및 이를 이용한 차량 신호에 의한 오작동 방지 시스템

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2372438A1 (fr) * 1975-04-01 1978-06-23 Elliott Brothers London Ltd Dispositif de surveillance a detecteurs infrarouges
DE3439068C1 (de) * 1984-10-25 1986-01-09 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Einrichtung zur optischen Erkennung beweglicher Ziele

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA585176A (fr) * 1959-10-13 N. Howell Sabert Detecteur de boite chaude
US3646343A (en) * 1970-02-26 1972-02-29 Gen Electric Method and apparatus for monitoring hot boxes
JPS5093799A (fr) * 1973-12-21 1975-07-26
NL7606899A (nl) * 1976-06-24 1977-12-28 Optosche Ind De Oude Delft Nv Opto-elektrisch detectiestelsel.
GB2129639B (en) * 1979-10-19 1984-10-31 France Etat Detecting vehicles
US4300824A (en) * 1979-11-15 1981-11-17 Canon Inc. Signal processing circuitry for a distance measuring system
US4348898A (en) * 1980-02-11 1982-09-14 The Goodyear Tire & Rubber Company Direct reading temperature and circumferential tire monitor
US4323211A (en) * 1980-04-28 1982-04-06 Servo Corporation Of America Self adjusting wheel bearing heat signal processing circuit
DE3119720C2 (de) * 1981-05-18 1985-07-11 Richard Hirschmann Radiotechnisches Werk, 7300 Esslingen Auf elektromagnetische Strahlung ansprechender Bewegungsmelder
JPS5844999A (ja) * 1981-09-10 1983-03-16 Meinou Kikai Seisakusho:Kk プレス機械のプレス騒音防止方法及びその装置
BR8203508A (pt) * 1981-10-05 1983-06-07 Servo Corp Of America Tema detector de caixa quente de carro de estrada de ferro
JPS59228136A (ja) * 1983-06-10 1984-12-21 King Tsushin Kogyo Kk 受動型赤外線侵入検出装置
JPS62121523U (fr) * 1986-01-24 1987-08-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2372438A1 (fr) * 1975-04-01 1978-06-23 Elliott Brothers London Ltd Dispositif de surveillance a detecteurs infrarouges
DE3439068C1 (de) * 1984-10-25 1986-01-09 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Einrichtung zur optischen Erkennung beweglicher Ziele

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0485192A2 (fr) * 1990-11-07 1992-05-13 Gec-Marconi (Holdings) Limited Système de sécurité
EP0485192A3 (en) * 1990-11-07 1994-07-27 Gec Marconi Holdings Security system
WO1992010812A1 (fr) * 1990-12-14 1992-06-25 Iris Gmbh I.G. Infrared & Intelligent Sensors Dispositif compteur et commutateur sensible aux directions
US5313060A (en) * 1990-12-14 1994-05-17 Iris Gmbh I.G. Infrared & Intelligent Sensors Multi-sensor doubled row direction sensitive counting and switching device

Also Published As

Publication number Publication date
FR2608777B1 (fr) 1989-03-24
FR2608777A1 (fr) 1988-06-24
JPS63172398A (ja) 1988-07-16
US5012099A (en) 1991-04-30
DE3774423D1 (de) 1991-12-12
EP0276513B1 (fr) 1991-11-06
JP2567887B2 (ja) 1996-12-25

Similar Documents

Publication Publication Date Title
EP0276513B1 (fr) Dispositif de détection d&#39;intrusion et de reconnaissance de véhicules terrestres
CA2859900C (fr) Procede d&#39;estimation de flot optique a partir d&#39;un capteur asynchrone de lumiere
FR3035501A1 (fr)
FR2718874A1 (fr) Procédé de surveillance de trafic pour la détection automatique d&#39;incident de véhicules.
FR2487554A1 (fr) Appareil passif de detection infrarouge d&#39;intrusions
FR2822547A1 (fr) Releve en trois dimensions de l&#39;environnement, notamment d&#39;un vehicule routier
WO2009081018A1 (fr) Installation de detection de personnes dans un espace delimite
JP7433265B2 (ja) 表面における水を検出するための装置、および表面における水を検出するための方法
FR3005367A1 (fr) Detecteur compact de presence humaine
WO2001077644A1 (fr) Dispositif pour determiner les valeurs d&#39;au moins un parametre de particules, notamment de gouttelettes d&#39;eau
EP1180758A1 (fr) Procédé et dispositif de détection par voie acoustique d&#39;une source sonore mobile
FR2675610A1 (fr) Procede et installation d&#39;evaluation d&#39;un flux de circulation de vehicules routiers.
WO2009086928A1 (fr) Procede, systeme et installation de detection pour garantir l&#39;unicite de passage d&#39;un objet
FR2684763A1 (fr) Dispostif integre de detection et d&#39;identification d&#39;obstacles embarque notamment a bord d&#39;un vehicule automobile.
FR3074145A1 (fr) Procede de detection de la presence de cristaux de glace dans un environnement
EP3926529A1 (fr) Systèmes et méthodes de détermination d&#39;un nombre de personnes dans un véhicule
FR2953939A1 (fr) Systeme radar uhf pour mettre en oeuvre un procede d&#39;elimination d&#39;un fouillis de vegetation
EP0562924B1 (fr) Dispositif de mesure de la vitesse de déplacement d&#39;un objet
FR2726360A1 (fr) Procede d&#39;elaboration d&#39;un ordre d&#39;allumage automatique pour un piege antichar et allumeur pour la mise en oeuvre du procede
EP0308324B1 (fr) Cinémomètre à effet doppler de sécurité
FR2665954A1 (fr) Procede de commande de mise a feu d&#39;une mine, et mine pourvue d&#39;un dispositif de declenchement fonctionnant selon ce procede.
FR2612647A1 (fr) Dispositif de modulation pour un dispositif detecteur de rayonnement captant un champ d&#39;image
EP2985635B1 (fr) Portique de controle d&#39;acces
FR2782384A1 (fr) Dispositif de mesure de la taille de particules en deplacement, notamment pour des mesures pluviometriques
EP0228925A1 (fr) Système pour le guidage automatique d&#39;un missile et missile pourvu d&#39;un tel système

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19890123

17Q First examination report despatched

Effective date: 19901205

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-TRT DEFENSE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3774423

Country of ref document: DE

Date of ref document: 19911212

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 87202558.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961119

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19961120

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971218

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971217

EUG Se: european patent has lapsed

Ref document number: 87202558.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031210

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031229

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051217