EP0274043B1 - Walzenelektrode und Vorrichtung zur Oberflächenvorbehandlung von Folienbahnen mittels elektrischer Koronaentladung - Google Patents

Walzenelektrode und Vorrichtung zur Oberflächenvorbehandlung von Folienbahnen mittels elektrischer Koronaentladung Download PDF

Info

Publication number
EP0274043B1
EP0274043B1 EP87117347A EP87117347A EP0274043B1 EP 0274043 B1 EP0274043 B1 EP 0274043B1 EP 87117347 A EP87117347 A EP 87117347A EP 87117347 A EP87117347 A EP 87117347A EP 0274043 B1 EP0274043 B1 EP 0274043B1
Authority
EP
European Patent Office
Prior art keywords
electrode
layer
roll
fibres
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87117347A
Other languages
English (en)
French (fr)
Other versions
EP0274043A1 (de
Inventor
Peter Dinter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6315294&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0274043(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0274043A1 publication Critical patent/EP0274043A1/de
Application granted granted Critical
Publication of EP0274043B1 publication Critical patent/EP0274043B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge

Definitions

  • the invention relates to a roller electrode for surface treatment of film webs by means of an electrical corona discharge, which has an electrode arrangement and at least one dielectric insulating layer applied thereon, the dielectric insulating layer fiber being reinforced
  • the plastic film to be treated or the film to be treated is passed over an electrically grounded support surface, usually a roller, and the side of the film facing away from the support surface is exposed to an electrical corona discharge which is caused by the application of a high-frequency alternating current of high voltage to a spaced apart area to the support surface arranged electrode is generated.
  • the known devices working according to this basic principle differ more or less only in the design and the materials of the support surface serving as counterelectrode, such as e.g. a single central roller with peripherally arranged electrodes compared to several electrode rollers with associated electrodes, the dielectric materials used to isolate the counterelectrode, the structural design of the electrode used and the type of the respective generator.
  • the simplest and therefore preferred embodiment has been metallic carrier rollers made of solid material, in particular those made of steel or aluminum, with layers of insulation materials applied thereon. such as glass, ceramics, enamel, rubber, or glass fiber reinforced plastics.
  • insulation materials such as glass, ceramics, enamel, rubber, or glass fiber reinforced plastics.
  • the disadvantages of this design principle are on the one hand that the installation costs increase considerably due to the provision of expensive steel rollers and on the other hand due to weight problems, especially in large plants. technical difficulties in storage, deflection. the concentricity and the drive of the rollers occur.
  • EP-PS 0 002 453 and EP-PS 0 086 977 describe corona devices which use hollow roller bodies in the form of fiber-reinforced synthetic resin pipes.
  • these fiber-reinforced tubular bodies not only meet the mechanical requirements, but also through the embedded wire winding in the synthetic resin matrix of course also the electrode function.
  • the production of this glass fiber reinforced roller body is fully under control, but it turns out that when a wire winding or a wire helix is inserted into the plastic matrix to make it electrically conductive, the interlaminar shear strength, that is the adhesive property between the plastic matrix and the metal wire, is too leaves a lot to be desired.
  • GB-A 2.065.982 discloses a roller electrode for surface treatment of film webs by means of an electrical corona discharge, which consists of an electrically conductive carrier roller and at least one dielectric layer applied thereon.
  • the roller electrode has a shaft and a housing as a dielectric layer. The cavity between the shaft and the housing is completely filled with a pourable gypsum mass, carbon particles being dispersed in this gypsum mass, which bring about the conductivity of the gypsum mass. A wire mesh is inserted into the gypsum mass to reinforce it.
  • the insulating layer of this roller electrode consists of glass fiber, ceramic, hard rubber or the like material.
  • This roller electrode has a similar weight as a roller electrode, which is made of solid steel material. This high weight causes technical difficulties in the storage, deflection, concentricity and drive of the roller electrode. Compared to the roller electrode made of solid steel material, the only advantage is that it is cheaper to manufacture.
  • a roller electrode according to the preamble of claim 1 is known from EP-A 0 086 977. It consists of two dielectric tubes that are manufactured by a winding process.
  • the dielectric material of the tubes consists of glass fibers, glass fiber reinforced resins,
  • Polyester or polycarbonates all of which are not electrically conductive. Between the two tubes there are wire electrodes which are subjected to high-frequency AC voltage as electrodes of a corona device.
  • the object of the invention is to improve the roller electrode described above in such a way that the adhesive properties of the electrode material embedded in the plastic matrix and thus the interlaminar shear strength are increased and the mechanical strength of the composite body made of insulating layer and plastic matrix with embedded electrode material of the roller electrode is increased.
  • the electrode arrangement is an electrode layer made of synthetic resin, which forms a closed matrix, in which metallized fibers for increasing the bond strength and as electrode material are embedded, and in that the matrix of the layer and the insulating layer contain the same synthetic resin.
  • the fibers of the electrically conductive layer can be made of metallized electrically conductive glass, Aramid or carbon fibers. Glass fibers are expediently embedded in the insulating layer. Furthermore, the electrically conductive layer is embedded between two insulating layers.
  • the synthetic resins for the electrode layer and the insulating layers are preferably unsaturated polyester, epoxy, polyimide or silicone resins.
  • the invention relates to a device according to claim 9, with a roller electrode according to the invention, the first part of claim 9 being known from EP-A-0086977.
  • the metallization of different fibers with the aid of an electroless or chemogalvanic process is known, with these processes applying a metallic coating of nickel, cobalt, alloys of these metals to one another, including iron, for example nickel-iron, onto the fibers.
  • Gold, silver, copper and other chemically separable metals can also be chemically deposited on the surface of plastic fibers or their semi-finished products or textile fabrics after appropriate activation.
  • This metallization of electrical nonconductors, but also of conductive carbon fibers, can be carried out by various methods known in the art, this metallization not being the subject of the present invention.
  • the fiber surface is generally activated with heavy metal catalysts, and after the activation, the fiber material is placed in a metal salt solution and with the aid of a chemical reducing agent, the elemental metal is deposited on the fiber surface in the purest possible form (DE-OS 27 43 768).
  • the electrode materials can be processed using the machines and manufacturing processes introduced in the manufacture of composite materials. such as. the filament winding technology, easy to process.
  • the incorporation of high-strength fibers, which are impregnated, for example, with the same synthetic resin that is used to manufacture the plastic matrix of the base roll body results in a more homogeneous composite structure of the finished roll body, which has increased mechanical strength properties that are comparable to those of metals.
  • the metal layers deposited on the fibers have an adhesion-promoting effect on the fiber / resin component system, which leads to an increase in the interlaminar shear strength and ultimately to an improved bond strength of the molded body.
  • the known winding processes also allow the incorporation of a completely closed electrode layer in the synthetic resin matrix.
  • Such efforts e.g. Forming a full-surface conductive layer by intermediate winding of metal bandages, for example made of aluminum foil, has so far failed because the metal foil acted as a separating layer which interferes with the bond strength with respect to the inner and outer winding layers of the glass-fiber-reinforced roller body.
  • the impregnation of the metallized fiber rovings provided for the construction of the electrode layer with the matrix resin overcomes this disadvantage.
  • roller electrode according to the invention is explained in more detail with reference to the figures.
  • the device for corona pretreatment of film webs consists of a roller electrode 1 according to the invention, above which a metallic discharge electrode 2 is arranged, which is connected to a high-voltage generator 3.
  • a high-frequency alternating current of medium to high voltage to the discharge electrode 2
  • the air gap between the roller electrode 1 and the discharge electrode 2 is ionized, and a corona discharge is formed.
  • a film web 7 guided over the roller electrode 1 undergoes corresponding physical-chemical changes on its surface as it passes through the discharge zone, which increase its printability or bond strength with layer materials.
  • the roller electrode shown in Fig. 1 consists of an inner, electrically conductive. full-surface layer 4 as an electrode layer, an overlying insulating layer 5 made of glass fiber reinforced material and an outer protective layer 6 based on a silicone lacquer.
  • Metallized glass, aramid or carbon fibers which are embedded in a matrix of epoxy, silicone, unsaturated polyester or polyimide resins are suitable for forming the electrically conductive electrode layer 4.
  • metallic layer thicknesses of less than 1 mm. preferably by 0.5 mm, fully meets the requirements for the electrical conductivity of the metallized fibers.
  • the insulating layer 5 is an approximately 2.5 to 3.5 mm thick layer of glass fibers which, like the electrode layer 4, are embedded in a matrix of epoxy, silicone, unsaturated polyester or polyimide resins.
  • the protective layer 6 based on a silicone lacquer, which is only a few, prevents the abrasion and thus the destruction of the insulating layer 5 by the corona discharge.
  • the embodiment of the roller electrode 1 according to FIG. 2 differs from FIG. 1 in that the electrode layer 4 is embedded between two insulating layers 5, an inner carrier layer and an outer dielectric layer.
  • This embodiment allows various configurations of the electrode layer 4, such as they will be explained with reference to Figures 3, 4 and 5.
  • the inner insulating layer 5 exclusively fulfills the support function for the electrode layer 4.
  • An advantage of this roller construction is that the electrode layer 4, which is formed from expensive material, has to be wound, neglecting its mechanical strength properties, only as thinly as is required by the electrical requirement, while the inner backing layer is generally only designed according to strength criteria. Since the resin components of both the insulating layers 5, 5 and the electrode layer 4 are identical, there are no difficulties with regard to the interlaminar bond between the individual layers.
  • the electrically conductive layer 4 is designed as a tube which has an axially parallel fiber arrangement 10 in the synthetic resin matrix.
  • the electrically conductive layer 4 forms a homogeneous closed layer in the form of a tube, which is enclosed on each side by an insulating layer 5.
  • the fibers are embedded as a single- or multi-start helix 8 in the electrically conductive layer 4, which, as in FIG. 3, is designed as a homogeneous, closed tube.
  • FIG. 5 shows a further embodiment of the electrically conductive layer 4, in which the fibers form a network 9 in the synthetic resin matrix of the conductive layer 4, which is shaped as a homogeneous, closed tube.
  • the metallized fibers in the electrically conductive layer 4 can be incorporated into the synthetic resin matrix as scrims, woven fabrics, knitted fabrics, knitted fabrics, nonwovens or in any other form.
  • the embodiments shown in FIGS. 3 to 5 are exemplary of the large number of possible fiber arrangements in the synthetic resin matrix.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Treatment Of Fiber Materials (AREA)

Description

  • Die Erfindung betrifft eine Walzenelektrode zur Oberflächenbehandlung von Folienbahnen mittels einer elektrischen Koronaentladung, die eine Elektrodenanordnung und zumindest eine darauf aufgebrachte dielektrische Isolierschicht aufweist, wobei die dielektrische Isolierschichtfaser verstärkt ist
  • Auf dem Gebiet der Veredelung von Kunststoffolien und der Verbundfolien zählt die Oberflächenbehandlung mittels elektrischer Koronaentladung zur Bedruckbarmachung bzw. Steigerung der Verbundfestigkeit von mehreren Schichten zum Stand der Technik. Hierbei wird die zu behandelnde Kunststoffolie bzw. der zu behandelnde Film über eine elektrisch geerdete Stützfläche, üblicherweise eine Walze, geführt und die der Stützfläche abgewandte Seite des Films einer elektrischen Koronaentladung ausgesetzt, die durch das Anlegen eines hochfrequenten Wechselstromes hoher Spannung an eine im- Abstand zur Stützfläche angeordnete Elektrode erzeugt wird. Im wesentlichen unterscheiden sich die nach diesem Grundprinzip arbeitenden, bekannten Vorrichtungen mehr oder weniger nur in der Ausgestaltung und den Materialien der als Gegenelektrode dienenden Stützfläche, wie z.B. einer einzelnen Zentralwalze mit peripher angeordneten Elektroden gegenüber mehreren Elektrodenwalzen mit zugehörigen Elektroden, den zur Isolierung der Gegenelektrode verwendeten dielektrischen Materialien, der konstruktiven Gestaltung der benutzten Elektrode sowie der Bauart des jeweiligen Generators.
  • Bezüglich des Aufbaus der Walzenelektrode haben sich als einfachste und damit bevorzugte Ausführung metallische Trägerwalzen aus vollem Material, insbesondere solche aus Stahl oder Aluminium, mit darauf aufgebrachten Schichten aus Isolationswerkstoffen. wie z.B. Glas, Keramik, Email, Gummi, oder glasfaserverstärkten Kunststoffen, durchgesetzt. Die Nachteile dieses Konstruktionsprinzips bestehen einerseits darin, daß infolge der Bereitstellung teurer Stahlwalzen die Anlagekosten sich erheblich erhöhen und andererseits durch Gewichtsprobleme, speziell bei Großanlagen. technische Schwierigkeiten bei der Lagerung, Durchbiegung. dem Rundlauf und dem Antrieb der Walzen auftreten. Zur Überwindung dieser Probleme werden in den EP-PS 0 002 453 und EP-PS 0 086 977 Koronavorrichtungen beschrieben, die hohle Walzenkörper in Form faserverstärkter Kunstharzrohre verwenden. Diese faserverstärkten Rohrkörper erfüllen, bei einem Bruchteil des Gewichts von Stahlwalzen, nicht nur die gestellten mechanischen Anforderungen, sondern durch die eingelagerte Drahtwicklung in der Kunstharzmatrix selbstverständlich auch die Elektrodenfunktion. Die Fertigung dieser glasfaserverstärkten Walzenköper wird voll beherrscht, es zeigt sich jedoch, daß beim Einlagern eines Drahtwickels oder einer Drahtwendel in die Kunststoffmatrix, um diese elektrisch leitfähig zu machen, die interlaminare Scherfestigkeit, das ist die Hafteigenschaft zwi schen der Kunststoffmatrix und dem Metalldraht, zu wünschen übrig läßt.
  • Aus der Druckschrift GB-A 2.065.982 ist eine Walzenelektrode zur Oberflächenbehandlung von Folienbahnen mittels einer elektrischen Koronaentladung bekannt, die aus einer elektrisch leitfähigen Tragerwalze und zumindest einer darauf aufgebrachten dielektrischen Schicht besteht. Die Walzenelektrode weist eine Welle und als dielektrische Schicht ein Gehäuse auf. Der Hohlraum zwischen der Welle und dem Gehäuse ist mit einer gießfähigen Gipsmasse voll ausgefüllt, wobei in dieser Gipsmasse Kohlenstoffpartikel dispergiert sind, welche die Leitfähigkeit der Gipsmasse bewirken. Zur Armierung der Gipsmasse ist in diese ein Drahtgeflecht eingebracht. Die Isolierschicht dieser Walzenelektrode besteht aus Glasfiber, Keramik, Hartgummi oder dergleichen Material. Diese Walzenelektrode hat ein ähnlich hohes Gewicht wie eine Walzenelektrode, die aus vollem Stahlmaterial gearbeitet ist. Durch dieses hohe Gewicht ergeben sich technische Schwierigkeiten bei der Lagerung, Durchbiegung, dem Rundlauf und dem Antrieb der Walzenelektrode. Gegenüber der Walzenelektrode aus vollem Stahlmaterial ergibt sich einzig und allein der Vorteil einer kostengünstigeren Herstellung.
  • Aus der Druckschrift EP-A 0 086 977 ist eine Walzenelektrode gemäß dem Oberbegriff des Anspruchs 1 bekannt. Sie besteht aus zwei dielektrischen Rohren, die durch ein Wickelverfahren hergestellt werden. Das dielektrische Material der Rohre besteht aus Glasfasern, glasfaserverstärkten Harzen,
  • Polyester oder Polycarbonaten, die alle nicht elektrisch leitfähig sind. Zwischen den beiden Rohren befinden sich Drahtelektroden, die mit hochfrequenter Wechselspannung als Elektroden einer Koronavorrichtung beaufschlagt werden.
  • Aufgabe der Erfindung ist es, die eingangs beschriebene Walzenelektrode so zu verbessern, daß die Hafteigenschaften des in der Kunststoffmatrix eingelagerten Elektrodenmaterials und somit die interlaminare Scherfestigkeit verstärkt und die mechanische Festigkeit des Verbundkörpers aus Isolierschicht und Kunststoffmatrix mit eingelagertem Elektrodenmaterial der Walzenelektrode erhöht ist.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Elektrodenanordnung eine Elektrodenschicht aus Kunstharz ist, das eine geschlossen Matrix bildet, in die metallisierte Fasern zur Verbundfestigkeitserhöhung und als Elektrodenmaterial eingebettet sind und daß die Matrix der Schicht und die Isolierschicht das gleiche Kunstharz enthalten.
  • Ferner können die Fasern der elektrisch leitenden Schicht durch Metallisierung elektrisch leitfähige Glas-,
    Aramid- oder Kohlenstoffasern sein. Zweckmäßigerweise sind in die Isolierschicht Glasfasern eingelagert. Ferner ist die elektrisch leitende Schicht zwischen zwei Isolierschichten eingebettet.
  • Die Kunstharze für die Elektrodenschicht und die Isolierschichten sind bevorzugt ungesättigte Polyester-, Epoxid-, Polyimid- oder Silikonharze.
  • Weitere vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Merkmalen der Ansprüchen 6 bis 8. Desweiteren betrifft die Erfindung eine Vorrichtung gemäß Anspruch 9, mit einer erfindungsgemäßen Walzenelektrode, wobei der erste Teil des Anspruchs 9 aus der EP-A-0086977 bekannt ist.
  • Das Metallisieren von verschiedenen Fasern mit Hilfe eines stromlosen oder chemogalvanischen Verfahrens ist bekannt, wobei durch diese Verfahren ein metallischer Überzug aus Nickel, Kobalt, Legierungen dieser Metalle untereinander, auch mit Eisen, z.B. Nickel-Eisen, auf die Fasern aufgebracht wird. Auch Gold, Silber, Kupfer und andere chemisch abscheidbare Metalle können nach entsprechender Aktivierung auf der Oberfläche von Kunststoffasern oder deren Halbfabrikaten oder textilen Flächengebilden chemisch abgeschieden werden. Diese Metallisierung elektrischer Nichtleiter, aber auch von leitenden Kohlenstoffasern, kann nach verschiedenen, im Stand der Technik bekannten Methoden vorgenommen werden, wobei diese Metallisierung nicht Gegenstand der vorliegenden Erfindung ist. Die Faseroberfläche wird im allgemeinen bei diesen Methoden mit Schwermetallkatalysatoren aktiviert, und nach der Aktivierung wird das Fasermaterial in eine Metallsalzlösung gegeben und mit tels eines chemischen Reduktionsmittels das elementare Metall in möglichst reiner Form auf der Faseroberfläche niedergeschlagen (DE-OS 27 43 768).
  • Nach dem Schritt der Metallisierung lassen sich die Elektrodenmaterialien mit den in der Fertigung von Verbundwerkstoffen eingeführten Maschinen und Herstellungsverfahren. wie z.B. der Filament-winding-Technologie, problemlos verarbeiten. Neben diesem Vorteil resultiert aus der Einarbeitung hochfester Fasern, die beispielsweise mit demselben Kunstharz imprägniert werden, das zur Herstellung der Kunststoffmatrix des Basiswalzenkörpers benutzt wird, ein homogenerer Verbundaufbau des fertigen Walzenkörpers, der erhöhte mechanische Festigkeitseigenschaften aufweist, die denen von Metallen vergleichbar sind. Dabei wirken sich die auf den Fasern abgeschiedenen Metallschichten haftvermittelnd auf das System Faser Harzkomponente aus, was zur Steigerung der interlaminaren Scherfestigkeit und letztendlich zu verbesserter Verbundfestigkeit des Formkörpers führt.
  • Die bekannten Wickelverfahren ermöglichen auch die Einlagerung einer vollflächig geschlossenen Elektrodenschicht in die Kunstharzmatrix. Derartige Bemühungen, z.B. eine vollflächig leitfähige Schicht durch Zwischenwickeln von Metallbandagen, beispielsweise aus Aluminiumfolie, auszuformen, scheiterten bisher daran, daß die Metallfolie als eine die Verbundfestigkeit störende Trennschicht gegenüber den inneren und äußeren Wickellagen des glasfaserverstärkten Walzenkörpers wirkte. Die Imprägnierung der für den Aufbau der Elektrodenschicht vorgesehen metallisierten Faserrovings mit dem Matrixharz überwindet diesen Nachteil.
  • Die erfindungsgemäße Walzenelektrode wird anhand der Figuren näher erläutert.
  • Es zeigen:
    • Figuren 1 und 2 schematisch im Schnitt eine erste und zweite Ausführungsform einer Koronavorrichtung mit einer Walzenelektrode als Gegenelektrode,
    • Figuren 3, 4 und 5 in perspektivischer Darstellung verschiedene Elektrodenformen, die in der Kunststoffmatrix der Walzenelektrode eingelagert sind.
  • Gemäß Figur 1 besteht die Vorrichtung zur Koronavorbehandlung von Folienbahnen aus einer erfindungsgemäßen Walzenelektrode 1, oberhalb von der eine metallische Entladungselektrode 2 angeordnet ist, die mit einem Hochspannungsgenerator 3 in Verbindung steht. Durch Beaufschlagung der Entladungselektrode 2 mit einem hochfrequenten Wechselstrom mittlerer bis hoher Spannung wird der Luftspalt zwischen der Walzenelektrode 1 und der Entladungselektrode 2 ionisiert, und es bildet sich eine Koronaentladung aus. Eine über die Walzenelektrode 1 geführte Folienbahn 7 erfährt beim Passieren der Entladungszone entsprechende physikalisch-chemische Veränderungen auf ihrer Oberfläche, die ihre Bedruckbarkeit bzw. Verbundfestigkeit mit Schichtmaterialien steigern.
  • Die in Fig. 1 dargestellte Walzenelektrode besteht aus einer inneren, elektrisch leitfähigen. vollflächigen Schicht 4 als Elektrodenschicht, einer darüber liegenden Isolierschicht 5 aus glasfaserverstärktem Material sowie einer äußeren Schutzschicht 6 auf Basis eines Silikonlackes. Zur Bildung der elektrisch leitfähigen Elektrodenschicht 4 eignen sich metallisierte Glas-, Aramid-oder Kohlenstoffasern, die in eine Matrix aus Epoxid-, Silikon-, ungesättigten Polyester-oder Polyimidharzen eingelagert sind. Erfahrungsgemäß erfüllen metallische Schichtdicken kleiner als 1 mm. bevorzugterweise um 0.5 mm, voll die Anforderungen an die elektrische Leitfähigkeit der metallisierten Fasern.
  • Bei der Isolierschicht 5 handelt es sich um eine etwa 2,5 bis 3,5 mm dicke Lage aus Glasfasern, die vergleichbar der Elektrodenschicht 4 in eine Matrix aus Epoxid-, Silikon-, ungesättigten Polyester-oder Polyimidharzen eingelagert sind.
  • Die nur einige wenige um betragende Schutzschicht 6 auf Basis eines Silikonlackes verhindert die Abrasion und somit die Zerstörung der Isolierschicht 5 durch die Koronaentladung.
  • Im Vergleich zur Figur 1 unterscheidet sich die Ausführungsform der Walzenelektrode 1 nach Figur 2 dadurch, daß die Elektrodenschicht 4 zwischen zwei Isolierschichten 5, einer inneren Trägerschicht und einer äußeren dielektrischen Schicht eingebettet ist. Diese Ausführungsform läßt verschiedene Ausgestaltungen der Elektrodenschicht 4 zu, wie sie anhand der Figuren 3, 4 und 5 noch erläutert werden. Dabei erfüllt die innere Isolierschicht 5 ausschließlich die Trägerfunktion für die Elektrodenschicht 4. Ein Vorzug dieser Walzenkonstruktion liegt darin, daß die aus teurem Werkstoff geformte Elektrodenschicht 4 unter Vernachlässigung ihrer mechanischen Festigkeitseigenschaften nur so dünn gewickelt werden muß, wie es die elektische Anforderung notwendig macht, während die innere Trägerschicht generell nur nach Festigkeitskriterien ausgelegt wird. Da die Harzkomponenten sowohl der beiden Isolierschichten 5,5 als auch der Elektrodenschicht 4 identisch sind, gibt es hinsichtlich der interlaminaren Verbundhaftung zwischen den Einzelschichten keine Schwierigkeiten.
  • In Figur 3 ist die elektrisch leitende Schicht 4 als Rohr ausgebildet, das eine achsparallel ausgerichtete Faseranordnung 10 in der Kunstharzmatrix aufweist. Die elektrisch leitende Schicht 4 bildet dabei eine homogene geschlossene Schicht in Rohrform, die auf jeder Seite von einer Isolierschicht 5 eingeschlossen ist.
  • Bei der Ausführungsform nach Figur 4 sind die Fasern als eine ein-oder mehrgängige Helix 8 in der elektrisch leitenden Schicht 4 eingebettet, die, wie bei Figur 3, als homogenes geschlossenes Rohr ausgebildet ist.
  • Figur 5 zeigt eine weitere Ausgestaltung der elektrisch leitenden Schicht 4, bei der die Fasern ein Netzwerk 9 in der Kunstharzmatrix der leitenden Schicht 4 bilden, die als homogenes geschlossenes Rohr geformt ist.
  • Es ist selbstverständlich, daß die metallisierten Fasern in der elektrisch leitenden Schicht 4, sowie Halbfabrikate oder Flächengebilde dieser Fasern in jeglicher Gestalt als Gelege, Gewebe, Gestricke, Gewirke, Vliese oder in sonstiger Form in die Kunstharzmatrix eingebunden sein können. Die in den Figuren 3 bis 5 dargestellten Aus führungsformen sind exemplarisch für die Vielzahl von möglichen Faseranordnungen in der Kunstharzmatrix.
  • Die Vorteile im Hinblick auf die Verbesserung der Verbundhaftung der metallisierten Faseranordnungen treffen sowohl auf die Elektrodenkonfigurationen gemäß den Figuren 3, 4 und 5 als auch auf die nicht dargestellten sonstigen Fasergebewebe und -gewirke zu, da diesen gemeinsam ist, daß sie keine homogene "Trennschicht" aufweisen. Ein weiterer Vorteil der in den Figuren 3, 4 und 5 dargestellten Elektrodenformen besteht darin, daß derartig aufgebaute Walzenkörper, in Anlehnung an die in der EP-PS 0 086 977 beschriebene Koronavorrichtung, mit Bohrungen perforiert und damit in Vakuumwalzen eingesetzt werden können.

Claims (9)

  1. Walzenelektrode zur Oberflächenbehandlung von Folienbahnen mittels einer elektrischen Koronaentladung, die eine Elektrodenanordnung und zumindest eine darauf aufgebrachte dielektrische Isolierschich aufweist, wobei die dielektrische Isolierschicht faserverstärkt ist dadurch gekennzeichnet, daß die Elektrodenanordnung eine Elektrodenschicht (4) aus Kunstharz ist, das eine geschlossene Matrix bildet, in die metallisierte Fasern zur Verbundfestigkeitserhöhung und als Elektrodenmaterial eingebettet sind, und daß die Matrix der Elektrodeschicht (4) und die Isolierschicht (5) das gleiche Kunstharz enthalten.
  2. Walzenelektrode nach Anspruch 1, dadurch gekennzeichnet, daß die Fasern der Elektrodenschicht (4) durch Metallisierung elektrisch leitfähige Glas-, Aramid-oder Kohlenstoffasern sind.
  3. Walzenelektrode nach Anspruch 1, dadurch gekennzeichnet, daß in die Isolierschicht (5) Glasfasern eingelagert sind.
  4. Walzenelektrode nach Anspruch 1, dadurch gekennzeichnet, daß die Elektrodenschicht (4) zwischen zwei Isolierschichten (5.5) eingebettet ist.
  5. Walzenelektrode nach den Ansprüchen 1 bis 4 dadurch gekennzeichnet, daß die Kunstharze für die Elektrodenschicht (4) und zumindest eine Isolierschicht (5) ungesättigte Polyester-, Epoxid-, Polyimid-oder Silikonharze sind.
  6. Walzenelektrode nach den Ansprüchen 1 bis 4 dadurch gekennzeichnet, daß auf der Oberfläche der Walzenelektrode (1) zum Schutz gegen die Abrasion durch eine Koronaentladung eine Schicht (6) auf der Basis von Silikonharzen aufgetragen ist.
  7. Walzenelektrode nach Ansprüch 1 oder 2 dadurch gekennzeichnet, daß die Fasern der Elektrodenschicht (4), als Halbfabrikate oder Flächengebilde in Gestalt von Gelegen, Geweben, Gestricken, Gewirken, Vliesen in die Kunstharzmatrix eingebunden sind.
  8. Walzenelektrode nach den Ansprüchen 2 und 6 dadurch gekennzeichnet, daß die Elektrodenschicht (4) als Rohr ausgebildet ist und, als homogen geschlossene Schicht, Fasern in Form einer ein-oder mehrgängigen Helix (8), eines Netzwerks (9) oder einer achsparallel ausgerichteten Fasernanordnung (7) in der Kunstharzmatrix aufweist.
  9. Vorrichtung zur Oberflächenbehandlung von Folienbahnen mittels einer elektrischen Koronaentladung, bestehend aus einer von einem Generator mit hochfrequenter Wechselspannung beaufschlagten Elektrode und einer Gegenelektrode, dadurch gekennzeichnet, daß die Gegenelektrode aus einer Walzenelektrode nach einem oder mehreren der Ansprüche 1 bis 7 besteht, wobei die Elektrodenschicht (4) geerdet ist.
EP87117347A 1986-12-02 1987-11-25 Walzenelektrode und Vorrichtung zur Oberflächenvorbehandlung von Folienbahnen mittels elektrischer Koronaentladung Expired - Lifetime EP0274043B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863641169 DE3641169A1 (de) 1986-12-02 1986-12-02 Walzenelektrode und vorrichtung zur oberflaechenvorbehandlung von folienbahnen mittels elektrischer koronaentladung
DE3641169 1986-12-02

Publications (2)

Publication Number Publication Date
EP0274043A1 EP0274043A1 (de) 1988-07-13
EP0274043B1 true EP0274043B1 (de) 1994-05-11

Family

ID=6315294

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87117347A Expired - Lifetime EP0274043B1 (de) 1986-12-02 1987-11-25 Walzenelektrode und Vorrichtung zur Oberflächenvorbehandlung von Folienbahnen mittels elektrischer Koronaentladung

Country Status (4)

Country Link
US (1) US4839517A (de)
EP (1) EP0274043B1 (de)
DE (2) DE3641169A1 (de)
DK (1) DK631087A (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2901838B2 (ja) * 1992-05-20 1999-06-07 プラクスエア・エス・ティー・テクノロジー・インコーポレイテッド コロナ装置
US6423259B1 (en) * 1997-12-01 2002-07-23 Eastman Kodak Company Process for finishing the surface of a corona discharge treatment roller
DE202004016083U1 (de) * 2004-10-15 2006-02-23 Softal Electronic Erik Blumenfeld Gmbh & Co. Kg Vorrichtung zur Koronabehandlung von elektrisch isolierenden Materialien, insbesondere Kunststofffolien
US20120103568A1 (en) * 2010-10-28 2012-05-03 Tessera, Inc. Layered Emitter Coating Structure for Crack Resistance with PDAG Coatings
US8545599B2 (en) 2010-10-28 2013-10-01 Tessera, Inc. Electrohydrodynamic device components employing solid solutions

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024038A (en) * 1972-01-18 1977-05-17 Jane Luc Adhesive processes
DE2643772C2 (de) * 1976-09-29 1985-01-17 Hoechst Ag, 6230 Frankfurt Coronaeinrichtung
DE2743768C3 (de) * 1977-09-29 1980-11-13 Bayer Ag, 5090 Leverkusen Metallisiertes Textilmaterial
DE2753750C2 (de) * 1977-12-02 1982-12-23 Hoechst Ag, 6000 Frankfurt Vorrichtung zur Oberflächenbehandlung von Folienbahnen mittels elektrischer Coronaentladung
DE2754425A1 (de) * 1977-12-07 1979-06-13 Klaus Kalwar Verfahren und vorrichtung zum kontinuierlichen herstellen von zwei- oder mehrlagigen bahnfoermigen verbundwerkstoffen
US4281247A (en) * 1979-11-05 1981-07-28 Schuster Samuel J Roller electrode for use in apparatus for treating plastic film with high voltage corona discharge
DE3203806A1 (de) * 1982-02-04 1983-08-11 Hoechst Ag, 6230 Frankfurt Verfahren und vorrichtung zur oberflaechenbehandlung von folienbahnen mittels elektrischer coronaentladung
CA1190593A (en) * 1983-02-01 1985-07-16 Paul E. Plasschaert Corona device

Also Published As

Publication number Publication date
DK631087A (da) 1988-06-03
EP0274043A1 (de) 1988-07-13
DE3789804D1 (de) 1994-06-16
DK631087D0 (da) 1987-12-01
DE3641169A1 (de) 1988-06-09
US4839517A (en) 1989-06-13

Similar Documents

Publication Publication Date Title
DE3029288C2 (de) Mit einem elastomeren Material bedeckte Walze
DE3341468C2 (de)
DE3750609T2 (de) Verfahren zur Herstellung eines kohlenstoffaserverstärkten thermoplastischen Harzgegenstandes.
AT504247A1 (de) Statorstäbe
WO2001019599A1 (de) Kohlenstofffaserverstärktes smc für multiaxial verstärkte bauteile
EP0379012B1 (de) Verfahren zur Herstellung des Stators einer elektrischen Grossmaschine
DE3333015C2 (de) Ferrit-Verbundstruktur sowie Verfahren zu deren Herstellung
WO2019158429A1 (de) Spaltrohr für eine elektrische maschine aus einem faserverbundwerkstoff, elektrische maschine sowie herstellungsverfahren
EP2390885B1 (de) Verfahren zur Herstellung von Wicklungen für einen Trockentransformator
DE10060653A1 (de) Elektrischer Doppelschicht-Kondensator
EP0274043B1 (de) Walzenelektrode und Vorrichtung zur Oberflächenvorbehandlung von Folienbahnen mittels elektrischer Koronaentladung
DE19949318A1 (de) Kohlenstoffaserverstärktes SMC für multiaxial verstärkte Bauteile
WO2009124862A1 (de) Materialverbund, bestehend aus einer metallischen matrix, in der cnt-filamente verteilt sind, sowie verfahren zur herstellung eines solchen materialverbundes
EP2113036A2 (de) Faserverbundwerkstoff mit metallischer matrix und verfahren zu seiner herstellung
DE2345366A1 (de) Faserbeschichtetes thermoplast
DE3127505C2 (de) Verfahren zum Herstellen eines Schichtstoffes
EP1813419A1 (de) Elektroisoliermaterial
DE3012288C2 (de) Faden mit einem präparierten Kernfaden
EP0095051A1 (de) Vorrichtung zur Elektrischen Vorbehandlung von nichtleitenden Folien
WO2015121002A1 (de) Verfahren zum herstellen eines thermoplastischen kunststoffhalbzeugs zur abschirmung von elektromagnetischer strahlung und thermoplastisches kunststoffhalbzeug zur abschirmung von elektromagnetischer strahlung
EP3607564B1 (de) Elektroisolationsband, elektrische hochspannungsmaschine sowie verfahren zum herstellen eines elektroisolationsbands und einer elektrischen hochspannungsspannungsmaschine
DE102014104266A1 (de) Multiaxiales textiles Gelege zur Herstellung eines elektrisch leitfähigen Faserverbundbauteils
DE3631584C2 (de) Vorrichtung zur Oberflächenbehandlung von Folienbahnen mittels elektrischer Koronaentladung
DE3421123A1 (de) Verbundmaterial
EP2952338B1 (de) Verfahren zum herstellen eines bauteils aus faserverstärktem verbundmaterial, vorform und herstellvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB SE

17P Request for examination filed

Effective date: 19881122

17Q First examination report despatched

Effective date: 19900103

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940511

REF Corresponds to:

Ref document number: 3789804

Country of ref document: DE

Date of ref document: 19940616

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19940511

EAL Se: european patent in force in sweden

Ref document number: 87117347.2

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951026

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970619

Year of fee payment: 10

EUG Se: european patent has lapsed

Ref document number: 87117347.2

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990528

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

REG Reference to a national code

Ref country code: FR

Ref legal event code: IC

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO