EP0272250B1 - Procédé de fabrication d'alliages de néodyme - Google Patents

Procédé de fabrication d'alliages de néodyme Download PDF

Info

Publication number
EP0272250B1
EP0272250B1 EP88100014A EP88100014A EP0272250B1 EP 0272250 B1 EP0272250 B1 EP 0272250B1 EP 88100014 A EP88100014 A EP 88100014A EP 88100014 A EP88100014 A EP 88100014A EP 0272250 B1 EP0272250 B1 EP 0272250B1
Authority
EP
European Patent Office
Prior art keywords
bis
dadurch gekennzeichnet
daß
die
verfahren nach
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88100014A
Other languages
German (de)
English (en)
Other versions
EP0272250A1 (fr
Inventor
Françoise Seon
Bernard Boudot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhone Poulenc Chimie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8311139A external-priority patent/FR2548687B1/fr
Application filed by Rhone Poulenc Chimie SA filed Critical Rhone Poulenc Chimie SA
Priority to AT88100014T priority Critical patent/ATE81156T1/de
Publication of EP0272250A1 publication Critical patent/EP0272250A1/fr
Application granted granted Critical
Publication of EP0272250B1 publication Critical patent/EP0272250B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00

Definitions

  • the present invention relates to a method for manufacturing neodymium alloys.
  • ceric rare earth metals a designation which includes lanthanum, cerium, praseodymium and neodymium, the latter is the only metal that cannot be manufactured industrially by electrolysis of these salts. Indeed, it is mentioned in the article by T. KURITA (Denki Kagaku, 1967, 35 (7) p.496-501) that yields of 6 to 20% of pure neodymium are obtained by electrolysis in a molten bath - neodymium chloride, potassium chloride -.
  • neodymium alloys more particularly neodymium and magnesium alloys, which consists in using neodymium chloride, an alkali metal and magnesium, all the reagents being introduced and kept in the molten state throughout the duration of the reaction.
  • the objective of the present invention is to provide an industrial process for manufacturing neodymium and iron alloys, with a high neodymium content, which is easy to carry out.
  • neodymium and iron alloys of the type consisting in reducing a neodymium fluoride using calcium, in the presence of iron, and characterized in that the quantity of iron is defined so that the neodymium-iron alloy has an iron content of 5 at 30%, and in that calcium chloride is added to the reaction medium.
  • neodymium fluoride is used.
  • Neodymium fluoride is available in an anhydrous state because it is a low hygroscopic product.
  • the drying time can vary between 2 and 24 hours.
  • drying conditions are not critical and are given on a preferential basis.
  • the particle size of neodymium fluoride can vary. It is commercially available in the form of a powder, the particle size of which varies from 40 to 150 ⁇ m. The particle size influencing the reduction speed, it is recommended that the powder is fine which can lead to a grinding operation so that the average diameter of the neodymium fluoride particles is less than 100 ⁇ m. There is no lower diameter limit.
  • the reducing metal used in the process of the invention is calcium.
  • the reducing metal is used in the form in which it is sold, whether it is in the solid state or in the form of pellets or balls.
  • calcium chloride is added to the reaction medium in order to lower the melting point and the density of the slag formed in the reaction so that the neodymium-iron formed alloy separates more easily.
  • the method of the invention consists in mixing a neodymium fluoride, calcium. iron and calcium chloride in the proportions given below.
  • the amount of calcium can vary within wide limits. However, it is advantageous to use an amount sufficient to reduce the neodymium fluoride but it should not be too large if one does not wish to find it, in an important way, in the final alloy.
  • the amount of reducing metal is at least equal to the stoichiometric amount or even in slight excess, up to 20% of the stoichiometric amount.
  • the amount of iron is adjusted according to the desired composition of the alloy. It is such that a fusible alloy with neodymium is obtained at the reaction temperature. It is calculated so that iron represents from 5 to 30% of the weight of the alloy obtained.
  • the amount of calcium chloride added is adjusted in order to obtain a slag containing from 30 to 70% by weight of calcium chloride and preferably 60 to 70%.
  • the different neodymium and calcium halides and iron constitute "a filler" having the desired weight composition.
  • the constituents of this charge can be reacted in any order: by simultaneous mixing of all the constituents or by making premixes, on the one hand, the neodymium and calcium halides and on the other hand calcium and iron.
  • the reaction is carried out at a temperature between 800 ° C and 1100 ° C.
  • the upper limit of temperature is not critical and can reach a value as high as 1400 ° C.
  • a temperature between 900 ° C and 1100 ° C is chosen.
  • the reaction is carried out at atmospheric pressure but in an inert gas atmosphere.
  • the air is excluded by lowering from pressure to a non-critical value, for example between 1 mm and 100 mm of mercury, then a scan of inert gases is carried out: rare gases, in particular argon. It is desirable to subject the rare gas to a dehydration and deoxygenation treatment carried out according to the usual techniques, for example by passage through a molecular sieve.
  • the inert atmosphere is maintained throughout the reduction.
  • the duration of the reaction depends on the capacity of the apparatus and its ability to rapidly rise in temperature. Generally once the desired temperature has been reached, it is maintained for a variable period of approximately 30 minutes to 3 hours.
  • a metallic phase consisting of the neodymium-iron alloy on which floats a slag consisting of CaF2-CaCl2 having a density lower than that of the alloy.
  • the alloy can be immediately separated from the slag by hot casting or allowed to cool under an inert gas atmosphere at room temperature (15 to 25 ° C) so that the alloy solidifies and can then be removed from the mold.
  • the yield of neodymium in the alloy expressed relative to the neodymium contained in the halide varies from 80 to 96%.
  • the method of the invention as described, can be implemented in an apparatus of conventional type, used in metallurgy.
  • the reduction is carried out in a crucible placed in a reactor made of a material resistant to hydrofluoric and hydrochloric vapors. It can be chosen from refractory steel, for example, steel containing 25% chromium and 20% nickel, but preferably inconel which is an alloy containing nickel, chromium (20%), iron (5%), molybdenum (8-10%).
  • Said reactor is equipped with a temperature control device (eg thermocouple), an inlet and outlet of inert gases. It is provided in its upper part with a double envelope in which circulates a coolant.
  • This reactor is placed in an induction furnace or in an furnace heated by electrical resistances.
  • a crucible in which the temperature control device is immersed is placed at the bottom of the reactor. It must be made of a material resistant to neodymium fluoride or have a coating resistant to them.
  • a tantalum crucible is used.
  • the molten alloy can be cast in molds, for example, cast iron.
  • the alloys obtained according to the present invention are very rich in neodymium since they can contain up to 95%.
  • They can be used as master alloys in particular in the manufacture of permanent magnets.
  • a premix is then made containing 382.2 g of calcium chloride in the dry state and 281.4 g of neodymium fluoride having an average particle diameter of 60 ⁇ m.
  • the previously defined load is then ready for use.
  • the calciothermic reduction reaction of neodymium fluoride is carried out in a tantalum crucible of about 1 liter placed at the bottom of an inconel reactor which is equipped with an inlet and an argon outlet and a thermocouple introduced into a thermometric sheath which is immersed in the reaction medium contained in the crucible: the upper part of the reactor is provided with a double jacket in which cold water circulates (about 10 ° C).
  • a temperature rise is carried out at the same time until the temperature fixed at 1100 ° C. is obtained; this temperature being kept constant for another 30 minutes.
  • neodymium-iron alloy 562 g are collected and 188 g of a neodymium-iron alloy are recovered by hot casting in a cast iron ingot mold.
  • the neodymium yield in the alloy expressed relative to the neodymium contained in the neodymium fluoride is 81%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • La présente invention a trait à un procédé de fabrication d'alliages de néodyme.
  • Parmi les métaux des terres rares cériques, appellation qui regroupe le lanthane, le cérium, le praséodyme et le néodyme, ce dernier est le seul métal qui ne puisse être fabriqué industriellement par électrolyse de ces sels. En effet, il est mentionné dans l'article de T. KURITA (Denki Kagaku, 1967, 35 (7) p.496-501) que l'on obtient des rendements de 6 à 20 % de néodyme pur par électrolyse en bain fondu - chlorure de néodyme, chlorure de potassium -.
  • Par conséquent, l'obtention d'alliages de néodyme à partir de néodyme métallique n'apparait pas comme une voie valable industriellement.
  • Un procédé de ce type a été utilisé pour l'élaboration du diagramme fer-néodyme [cf. "Iron-Binary Phase Diagrams" 0. Kubaschewski (1982) p. 101 et 102].
  • Il est également connu, selon AT-328 884, un procédé de fabrication d'alliages de néodyme, plus particulièrement d'alliages de néodyme et de magnésium, qui consiste à mettre en oeuvre un chlorure de néodyme, un métal alcalin et du magnésium, tous les réactifs étant introduits et maintenus à l'état fondu pendant toute la durée de la réaction.
  • Il est également connu du document "CHIMIE ET INDUSTRIE, Vol. 77, no 2, fev. 1957, P. 277-288" de préparer des terres rares, ou des mélanges terres rares - métal, par réaction de fluorures de terres rares, en présence éventuellement dudit métal, avec du calcium.
  • L'objectif de la présente invention est de proposer un procédé industriel de fabrication d'alliages de néodyme et de fer, à titre élevé en néodyme, et qui soit de mise en oeuvre aisée.
  • Selon la présente invention, il est maintenant proposé un procédé de fabrication d'alliages de néodyme et de fer, du type consistant à réduire un fluorure de néodyme à l'aide de calcium, en présence de fer, et caractérisé en ce que la quantité de fer est définie de telle sorte que l'alliage néodyme-fer ait une teneur en fer de 5 à 30 %, et en ce que l'on ajoute au milieu réactionnel du chlorure de calciun.
  • Conformément à l'invention, on fait appel au fluorure de néodyme.
  • Il est souhaitable qu'il soit d'une grande pureté c'est-à-dire exempt d'oxyde résiduaire et d'oxyhalogénure et qu'il soit sec : sa teneur en eau doit être inférieure à 5 % et de préférence inférieure à 2 %.
  • Le fluorure de néodyme est disponible à l'état anhydre car c'est un produit peu hygroscopique.
  • Il est également possible, si nécessaire, de soumettre le fluorure à une étape de séchage à une température comprise entre 100°C et 500°C mais de préférence entre 200°C et 250°C. Cette opération peut être faite à l'air ou sous pression réduite comprise par exemple entre 1 mm de mercure (= 133,322 Pa) et 100 mm de mercure (= 13 332,2 Pa).
  • La durée de séchage peut varier entre 2 et 24 heures.
  • Les conditions énoncées ci-dessus de séchage ne présentent aucun caractère critique et sont données à titre préférentiel.
  • La taille des particules du fluorure de néodyme peut varier. On le trouve dans le commerce sous forme de poudre dont la taille des particules varie de 40 à 150 µm.
    La taille des particules influençant la vitesse de réduction, il est recommandé que la poudre soit fine ce qui peut entraîner une opération de broyage afin que le diamètre moyen des particules de fluorure de nèodyme soit inférieur à 100 µm. Il n'y a aucune limite inférieure de diamètre.
  • Le métal réducteur utilisé dans le procédé de l'invention est le calcium.
  • Le métal réducteur est mis en oeuvre sous la forme sous laquelle il est commercialisé, qu'il soit à l'état massif ou sous forme de grenailles ou billes.
  • En ce qui concerne le fer qui intervient dans l'alliage avec le néodyme, il donne un alliage fusible à basse température ce qui rend le procédé industriellement avantageux.
  • On le met en oeuvre sous sa forme telle que commercialisée, poudre ou écailles.
  • Selon l'invention, on ajoute au milieu réactionnel, du chlorure de calcium afin d'abaisser le point de fusion et la densité de la scorie formée dans la réaction de sorte que l'ailiage formé néodyme-fer se sépare plus facilement.
  • On peut utiliser, selon l'invention, les halogénures de calcium disponibles sur le marché : chlorure de calcium anhydre, chlorure de calcium dihydraté qui doit être séché entre 300°C et 400°C sous pression réduite de l'ordre de 1 mm de mercure (= 133,322 Pa) à 100 mm de mercure (= 13 332,2 Pa).
  • La procédé de l'invention consiste à mélanger un fluorure de néodyme, le calcium. le fer et un chlorure de calcium dans les proportions données ci-dessous.
    La quantité de calcium peut varier dans de larges limites. Cependant, il y a intérêt à mettre en oeuvre une quantité suffisante pour réduire le fluorure de néodyme mais elle ne doit pas être trop grande si l'on ne souhaite pas en retrouver, d'une manière importante, dans l'alliage final. La quantité de metal réducteur est au moins égale à la quantité stoechiomètrique voire-même en léger excès, pouvant atteindre 20 % de la quantité stoechiomètrique.
    La quantité de fer est réglée suivant la composition désirée de l'alliage. Elle est telle que l'on obtienne un alliage fusible avec le néodyme à la température de réaction. Elle est calculée de sorte que le fer représente de 5 à 30 % du poids de l'alliage obtenu.
    La quantité de chlorure de calcium ajoutée est ajustée afin d'obtenir une scorie contenant de 30 à 70 % en poids de chlorure de calcium et de préférence 60 à 70 %.
  • Les différents halogénures de néodyme et de calcium et le fer constituent "une charge" ayant la composition pondérale souhaitée. Les constituants de cette charge peuvent être mis à réagir dans n'importe quel ordre : par mélange simultané de tous les constituants ou en faisant des pré-mélanges, d'une part, les halogénures de néodyme et de calcium et d'autre part le calcium et le fer.
  • La réaction est effectuée à une température comprise entre 800°C et 1100°C. La borne supérieure de température n'a aucun caractère critique et peut atteindre une valeur aussi élevée que 1400°C. D'une manière préférentielle, on choisit une température comprise entre 900°C et 1100°C.
  • On effectue la réaction sous pression atmosphérique mais en atmosphère de gaz inerte. A cet effet, on exclut l'air par abaissement de la pression jusqu'à une valeur non critique, par exemple comprise entre 1 mm et 100 mm de mercure puis on assure un balayage de gaz inertes : gaz rares notamment l'argon. Il est souhaitable de soumettre le gaz rare à un traitement de déshydratation et de désoxygénation réalisé selon les techniques usuelles par exemple par passage au travers d'un tamis moléculaire.
  • On maintient l'atmosphère inerte tout au cours de la réduction.
  • La durée de la réaction est fonction de la capacité de l'appareillage et de son aptitude à monter rapidement en température. Généralement une fois la température souhaitée atteinte, on la maintient pendant une durée variable d'environ 30 minutes à 3 heures.
  • Au cours du chauffage, il se forme deux phases dans le milieu réactionnel : une phase métallique constituée par l'alliage néodyme-fer sur laquelle surnage une scorie constituée de CaF₂-CaCl₂ ayant une densité inférieure à celle de l'alliage.
  • Au bout du temps de chauffage précité, on arrête le chauffage.
  • On peut immédiatement séparer l'alliage de la scorie par coulée à chaud ou le laisser refroidir sous atmosphère de gaz inerte à température ambiante (de 15 à 25°C) de sorte que l'alliage se solidifie et peut être alors démoulé.
  • On constate que le rendement en néodyme dans l'alliage exprimé par rapport au néodyme contenu dans l'halogénure varie de 80 à 96 %.
  • Le procédé de l'invention tel que décrit, peut être mis en oeuvre dans un appareillage de type classique, utilisé en métallurgie.
  • La réduction est conduite dans un creuset placé dans un réacteur constitué par un matériau résistant aux vapeurs fluorhydrique et chlorhydrique.
    Il peut être choisi en acier réfractaire, par exemple, en acier contenant 25 % de chrome et 20 % de nickel mais de préférence en inconel qui est un alliage contenant du nickel, du chrome (20 %), du fer (5 %), du molybdène (8-10 %).
    Ledit réacteur est équipé d'un dispositif de contrôle de température (par exemple thermocouple), d'une arrivée et d'une sortie de gaz inertes. Il est muni dans sa partie supérieure d'une double enveloppe dans laquelle circule un liquide de refroidissement.
    Ce réacteur est placé dans un four à induction ou dans un four chauffé par résistances électriques.
    Un creuset dans lequel plonge le dispositif de contrôle de température est placé au fond du réacteur. Il doit être constitué d'un matériau résistant au fluorure de néodyme ou posséder un revêtement leur résistant. D'une manière préférentielle, on utilise un creuset en tantale.
  • Une fois la réaction effectuée, l'alliage fondu peut être coulé en lingotières, par exemple, en fonte.
  • Les alliages obtenus selon la présente invention ont la composition pondérale suivante :
    • de 70 à 95 % de néodyme
    • de 5 à 30 % de fer
    • moins de 3 % de métal réducteur
  • On donne, ci-après, à titre illustratif et non limitatif, des compositions préférées des alliages nèodyme-fer abtenus :
    • . de 83 à 91 % de néodyme
    • . de 9 à 16 % de fer
    • . moins de 1 % de calcium
  • Les alliages obtenus selon la présente invention sont très riches en néodyme puisqu'ils peuvent en contenir jusqu'a 95%.
  • Ils peuvent être utilisés comme alliages-mères notamment dans la fabrication d'aimants permanents.
  • Avant de détailler les exemples concrétisant la réalisation pratique de l'invention, on exposera succinctement les méthodes de dosage des différents constituants de l'alliage par les techniques suivantes :
    • le néodyme est dosé, selon la méthode chimique exposée ci-après et consiste :
      • . à dissoudre l'échantillon d'alliage en milieu acide,
      • . à porter à ébullition la solution obtenue,
      • . à précipiter le métal réducteur, le fer et le néodyme sous la forme de leur hydroxyde à pH 9, par traitement à l'ammoniaque, puis à filtrer et laver les précipités obtenus,
      • . à redissoudre le précipité d'hydroxyde de néodyme en milieu acide,
      • . à ajouter à ébullition à la solution obtenue, de l'oxalate d'ammonium afin d'obtenir l'oxalate de néodyme,
      • . à calciner l'oxalate de néodyme à 900°C pendant 1 heure pour le transformer en oxyde,
      • . à peser la quantité d'oxyde obtenu permettant ainsi de calculer la quantité de néodyme contenu dans l'alliage.
    • les autres métaux, métal réducteur et fer sont titrés par absorption atomique.
  • On donne, ci-après, un exemple de réalisation de l'invention.
  • Les pourcentages mentionnés dans les exemples sont exprimés en poids.
  • EXEMPLE 1 Préparation d'un alliage néodyme-fer contenant 12 % de fer
  • On commence par broyer, grossièrement, 382,2 g de chlorure de calcium puis on le sèche pendant 3 heures, à une température de 350°C-400°C et sous pression réduite de 1 mm de mercure (= 133,322 Pa).
  • On fait ensuite un prémélange contenant 382,2 g de chlorure de calcium a l'état sec et 281,4 g de fluorure de néodyme ayant un diamètre moyen de particules de 60 µm. On réalise le séchage dudit mélange pendant 24 heures dans une étuve à vide à une température de 225°C et sous pression réduite de 1 mm de mercure (= 133,322 Pa). La charge précédemment définie est alors prête à l'emploi.
  • La réaction de réduction calciothermique du fluorure de néodyme est réalisée dans un creuset en tantale de 1 litre environ placé au fond d'un réacteur en inconel qui est équipé d'une arrivée et d'une sortie d'argon et d'un thermocouple introduit dans une gaine thermomètrique qui est plongée dans le milieu réactionnel contenu dans le creuset : la partie supérieure du réacteur est munie d'une double enveloppe dans laquelle circule de l'eau froide (environ 10°C).
  • On définit la proportion des constituants de la charge de telle sorte que les conditions énoncées, ci-après, soient remplies:
    • que l'on obtienne un alliage contenant 12 % de fer
    • que l'on ait un excès de calcium de 20 % par rapport au poids stoechiomètrique requis
    • que l'on forme une scorie contenant 70 % de chlorure de calcium.
  • On introduit successivement au fond du creuset 27,5 g de fer sous forme d'écailles, 101 g de calcium sous forme de grenailles et la charge précitée contenant 382,2 g de chlorure de calcium et 281,4 g de fluorure de néodyme.
  • Une fois le creuset replacé dans le réacteur que l'on ferme, on abaisse la pression aux environs de 100 mm de mercure (= 13 332,2 Pa) pour chasser l'air puis on établit un balayage à l'argon sec qui sera maintenu tout au long de la réaction.
  • On effectue en même temps une montée en température jusqu'à obtention de la température fixée à 1100°C ; cette température étant tenue constante encore 30 minutes.
  • On recueille 562 g de scorie et on récupère 188 g d'un alliage néodyme-fer par coulage à chaud dans une lingotière en fonte. Le rendement en néodyme dans l'alliage exprimé par rapport au néodyme contenu dans le fluorure de néodyme est de 81 %.
  • L'analyse de l'alliage obtenu est la suivante :
    • 87,4 % de néodyme
    • 12 % de fer
    • 0,6 % de calcium.

Claims (12)

  1. Procédé de fabrication d'alliages de néodyme et de fer, du type consistant à réduire un fluorure de néodyme à l'aide de calcium, en présence de fer, caractérisé en ce que la quantité de fer est définie de telle sorte que l'alliage néodyme-fer ait une teneur en fer de 5 à 30 %, et en ce que l'on ajoute au milieu réactionnel du chlorure de calcium.
  2. Procédé selon la revendication 1 caractérisé par le fait que le fluorure de néodyme est soumis à un séchage entre 100°C et 500°C, à l'air ou sous pression réduite comprise entre 1 et 100 mm de mercure.
  3. Procédé selon l'une des revendications 1 ou 2 caractérisé par le fait que le chlorure de calcium est soumis à un séchage entre 300°C et 400°C, sous pression réduite de 1 à 100 mm de mercure.
  4. Procédé selon l'une des revendications 1 à 3 caractérisé par le fait que la quantité de calcium est égale à la quantité stoechiométrique ou en léger excès pouvant atteindre 20 % de la quantité stoechiomètrique.
  5. Procédé selon l'une des revendications 1 à 4 caractérisé par le fait que la quantité de fer est telle que l'on obtienne un alliage contenant de 9 à 16 % de fer.
  6. Procédé selon l'une des revendications 1 à 5 caractérisé par le fait que la quantité de chlorure de calcium ajoutée est telle que l'on obtienne une scorie contenant de 30 à 70 % de chlorure de calcium.
  7. Procédé selon la revendication 6 caractérisé par le fait que la quantité de chlorure de calcium ajoutée est telle que l'on obtienne une scorie contenant de 60 à 70 % de chlorure de calcium.
  8. Procédé selon l'une des revendications 1 à 7 caractérisé par le fait que la réaction est effectuée entre 800°C et 1100°C sous pression atmosphérique, mais en atmosphère de gaz inerte.
  9. Procédé selon la revendication 8 caractérisé par le fait que la réaction est effectuée entre 900°C et 1100°C.
  10. Procédé selon la revendication 8 caractérisé par le fait que l'on réalise une atmosphère de gaz inerte par exclusion de l'air, puis, par balayage d'argon sec.
  11. Procédé selon la revendication 8 ou 9 caractérisé par le fait que l'on maintient la température choisie pendant une durée allant de 30 minutes à 3 heures.
  12. Procédé selon l'une des revendications 1 à 11 caractérisé par le fait que l'on sépare, en fin de réaction, l'alliage obtenu de la scorie, soit par coulée à chaud, soit par démoulage après refroidissement sous atmosphère de gaz inerte.
EP88100014A 1983-07-05 1984-06-22 Procédé de fabrication d'alliages de néodyme Expired - Lifetime EP0272250B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88100014T ATE81156T1 (de) 1983-07-05 1984-06-22 Verfahren zur herstellung von neodymlegierungen.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR8311139A FR2548687B1 (fr) 1983-07-05 1983-07-05 Alliages de neodyme et leur procede de fabrication
FR8311139 1983-07-05
FR8314392 1983-09-09
FR838314392A FR2551769B2 (fr) 1983-07-05 1983-09-09 Alliages de neodyme et leur procede de fabrication

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP84401307.8 Division 1984-06-22

Publications (2)

Publication Number Publication Date
EP0272250A1 EP0272250A1 (fr) 1988-06-22
EP0272250B1 true EP0272250B1 (fr) 1992-09-30

Family

ID=26223515

Family Applications (2)

Application Number Title Priority Date Filing Date
EP84401307A Expired EP0134162B1 (fr) 1983-07-05 1984-06-22 Alliages de néodyme et leur procédé de fabrication
EP88100014A Expired - Lifetime EP0272250B1 (fr) 1983-07-05 1984-06-22 Procédé de fabrication d'alliages de néodyme

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP84401307A Expired EP0134162B1 (fr) 1983-07-05 1984-06-22 Alliages de néodyme et leur procédé de fabrication

Country Status (9)

Country Link
US (1) US4636353A (fr)
EP (2) EP0134162B1 (fr)
JP (1) JPS6046346A (fr)
KR (1) KR920006603B1 (fr)
AU (1) AU579579B2 (fr)
BR (1) BR8403289A (fr)
CA (1) CA1253721A (fr)
DE (2) DE3479595D1 (fr)
FR (1) FR2551769B2 (fr)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612047A (en) * 1985-10-28 1986-09-16 The United States Of America As Represented By The United States Department Of Energy Preparations of rare earth-iron alloys by thermite reduction
US4837109A (en) * 1986-07-21 1989-06-06 Hitachi Metals, Ltd. Method of producing neodymium-iron-boron permanent magnet
FR2607520B1 (fr) * 1986-11-27 1992-06-19 Comurhex Procede d'elaboration par metallothermie d'alliages purs a base de terres rares et de metaux de transition
US4917724A (en) * 1988-10-11 1990-04-17 General Motors Corporation Method of decalcifying rare earth metals formed by the reduction-diffusion process
US4992096A (en) * 1989-06-09 1991-02-12 The Dow Chemical Company Metallothermic reduction or rare earth metals
US5073337A (en) * 1990-07-17 1991-12-17 Iowa State University Research Foundation, Inc. Rare earth/iron fluoride and methods for making and using same
US5174811A (en) * 1990-10-01 1992-12-29 Iowa State University Research Foundation, Inc. Method for treating rare earth-transition metal scrap
US5087291A (en) * 1990-10-01 1992-02-11 Iowa State University Research Foundation, Inc. Rare earth-transition metal scrap treatment method
US5242508A (en) * 1990-10-09 1993-09-07 Iowa State University Research Foundation, Inc. Method of making permanent magnets
US5240513A (en) * 1990-10-09 1993-08-31 Iowa State University Research Foundation, Inc. Method of making bonded or sintered permanent magnets
US5129945A (en) * 1990-10-24 1992-07-14 The United States Of America As Represented By The Secretary Of The Interior Scrap treatment method for rare earth transition metal alloys
US5314526A (en) * 1990-12-06 1994-05-24 General Motors Corporation Metallothermic reduction of rare earth fluorides
US5238489A (en) * 1992-06-30 1993-08-24 The United States Of America As Represented By The Secretary Of The Interior Leaching/flotation scrap treatment method
US6755924B2 (en) 2001-12-20 2004-06-29 General Electric Company Method of restoration of mechanical properties of a cast nickel-based super alloy for serviced aircraft components
US8109349B2 (en) 2006-10-26 2012-02-07 Schlumberger Technology Corporation Thick pointed superhard material
US9145742B2 (en) 2006-08-11 2015-09-29 Schlumberger Technology Corporation Pointed working ends on a drill bit
US8590644B2 (en) * 2006-08-11 2013-11-26 Schlumberger Technology Corporation Downhole drill bit
US7637574B2 (en) 2006-08-11 2009-12-29 Hall David R Pick assembly
US8567532B2 (en) 2006-08-11 2013-10-29 Schlumberger Technology Corporation Cutting element attached to downhole fixed bladed bit at a positive rake angle
US8215420B2 (en) * 2006-08-11 2012-07-10 Schlumberger Technology Corporation Thermally stable pointed diamond with increased impact resistance
US8714285B2 (en) * 2006-08-11 2014-05-06 Schlumberger Technology Corporation Method for drilling with a fixed bladed bit
US8622155B2 (en) * 2006-08-11 2014-01-07 Schlumberger Technology Corporation Pointed diamond working ends on a shear bit
US9051795B2 (en) 2006-08-11 2015-06-09 Schlumberger Technology Corporation Downhole drill bit
US8960337B2 (en) 2006-10-26 2015-02-24 Schlumberger Technology Corporation High impact resistant tool with an apex width between a first and second transitions
US9068410B2 (en) 2006-10-26 2015-06-30 Schlumberger Technology Corporation Dense diamond body
US8540037B2 (en) * 2008-04-30 2013-09-24 Schlumberger Technology Corporation Layered polycrystalline diamond
EP2321832A1 (fr) * 2008-07-08 2011-05-18 Technical University of Denmark Réfrigérateurs magnétocaloriques
WO2010117765A1 (fr) * 2009-03-30 2010-10-14 Schlumberger Canada Limited Eléments de découpe en diamant polycristallin thermiquement stable à double frittage
DK2748139T3 (en) 2011-10-20 2017-08-07 Akzo Nobel Chemicals Int Bv METHOD FOR HYDRODECHLORINATION OF A LIQUID SUPPLY INCLUDING DICHLORO ACETIC ACID
US9505694B2 (en) 2011-10-20 2016-11-29 Akzo Nobel Chemicals International B.V. Process for the purification of a liquid feed comprising MCA and DCA
RU2596563C1 (ru) * 2015-04-23 2016-09-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения магнитотвердого материала
CN114891953B (zh) * 2022-03-31 2024-03-08 包头市英思特稀磁新材料股份有限公司 一种提高烧结钕铁硼出材率的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR489155A (fr) * 1917-04-19 1918-12-28 Maurice Duburguet Préparation des métaux des terres rares
US1648954A (en) * 1921-09-29 1927-11-15 Westinghouse Lamp Co Production of rare metals and alloys thereof
FR986924A (fr) * 1943-12-11 1951-08-07 Procédé de préparation de métaux des terres rares
US3186834A (en) * 1961-03-02 1965-06-01 Dow Chemical Co Preparation of rare earth metal sponge
FR1336858A (fr) * 1962-07-27 1963-09-06 Pechiney Prod Chimiques Sa Alliages contenant des métaux des terres rares
AT329884B (de) * 1973-07-19 1976-06-10 Treibacher Chemische Werke Ag Verfahren zur herstellung von lanthan-, cer-,praseodym- und neodym-metall und -legierungen derselben sowie von mischmetallen
JPS5696834A (en) * 1979-12-28 1981-08-05 Mitsubishi Monsanto Chem Co Compound semiconductor epitaxial wafer and manufacture thereof
US4496395A (en) * 1981-06-16 1985-01-29 General Motors Corporation High coercivity rare earth-iron magnets
JPS5976A (ja) * 1982-06-22 1984-01-05 日本電気株式会社 放射線治療用高エネルギct
DE3379131D1 (en) * 1982-09-03 1989-03-09 Gen Motors Corp Re-tm-b alloys, method for their production and permanent magnets containing such alloys
JPS6263642A (ja) * 1986-09-12 1987-03-20 Sumitomo Special Metals Co Ltd 磁石素材用希土類合金及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
O.Kubaschewski, "Iron-Binary Phase Diagrams", 1982, pages 101 et 102 *

Also Published As

Publication number Publication date
DE3485950D1 (de) 1992-11-05
FR2551769A2 (fr) 1985-03-15
KR920006603B1 (ko) 1992-08-10
BR8403289A (pt) 1985-06-18
AU3008184A (en) 1985-01-10
JPH0224902B2 (fr) 1990-05-31
EP0272250A1 (fr) 1988-06-22
DE3485950T2 (de) 1993-02-25
US4636353A (en) 1987-01-13
EP0134162A1 (fr) 1985-03-13
FR2551769B2 (fr) 1990-02-02
KR850001297A (ko) 1985-03-18
AU579579B2 (en) 1988-12-01
JPS6046346A (ja) 1985-03-13
CA1253721A (fr) 1989-05-09
DE3479595D1 (en) 1989-10-05
EP0134162B1 (fr) 1989-08-30

Similar Documents

Publication Publication Date Title
EP0272250B1 (fr) Procédé de fabrication d'alliages de néodyme
CA1286507C (fr) Procede de preparation de lithiothermie de poudres metalliques
EP1409406B1 (fr) Silicium metallurgique de moyenne purete et procede d'elaboration
FR2589763A1 (fr) Procede de production d'une poudre d'alliage contenant des metaux de terres rares.
FR2582019A1 (fr) Procede pour la production de metaux par reduction de sels metalliques, metaux ainsi obtenus et dispositif pour sa mise en oeuvre
EP0273835B1 (fr) Procédé d'élaboration par métallothermie d'alliages purs à base de terres rares et de métaux de transition
EP0102892A1 (fr) Procédé de fabrication de métaux ou d'alliages de pureté élevée
FR2555611A1 (fr) Procede de preparation d'alliages d'aluminium et de terres rares
EP0161975B1 (fr) Procédé de fabrication de produits poreux en bore ou en composés du bore
EP0318362B1 (fr) Procédé de préparation de borures de terres rares
FR2548687A1 (fr) Alliages de neodyme et leur procede de fabrication
FR2487378A1 (fr) Procede pour produire par aluminothermie du chrome et des alliages de chrome a faible teneur en azote
FR2677798A1 (fr) Procede de vitrification reductrice de volume de dechets hautement radioactifs.
FR2514786A1 (fr) Procede de debismuthage du plomb
JP2926280B2 (ja) 稀土類−鉄合金の製造方法
FR2561665A1 (fr) Procede pour l'elaboration d'un alliage a absorption d'hydrogene contenant du titane
FR2608146A1 (fr) Procede de fabrication d'une poudre de nitrure d'aluminium
Ono et al. Fundamental Study on the Production of Niobium by the Carbothermic Reduction-Electron Beam Melting Combination Method
BE570219A (fr)
BE522487A (fr)
BE461124A (fr)
CA2092815A1 (fr) Procede de purification de magnesium
BE538989A (fr)
FR2519026A1 (fr) Procede d'affinage de plomb impur
FR2581397A1 (fr) Procede de reduction thermique de preparation de calcium avec utilisation d'aluminium comme reducteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 134162

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19881011

17Q First examination report despatched

Effective date: 19901207

RTI1 Title (correction)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

ITF It: translation for a ep patent filed
AC Divisional application: reference to earlier application

Ref document number: 134162

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920930

REF Corresponds to:

Ref document number: 81156

Country of ref document: AT

Date of ref document: 19921015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3485950

Country of ref document: DE

Date of ref document: 19921105

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930630

Ref country code: LI

Effective date: 19930630

Ref country code: CH

Effective date: 19930630

Ref country code: BE

Effective date: 19930630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
BERE Be: lapsed

Owner name: RHONE-POULENC CHIMIE

Effective date: 19930630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930622

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 88100014.5

Effective date: 19940110