EP0271071B1 - Système de surveillance pour pylônes d'une ligne aérienne - Google Patents

Système de surveillance pour pylônes d'une ligne aérienne Download PDF

Info

Publication number
EP0271071B1
EP0271071B1 EP87118185A EP87118185A EP0271071B1 EP 0271071 B1 EP0271071 B1 EP 0271071B1 EP 87118185 A EP87118185 A EP 87118185A EP 87118185 A EP87118185 A EP 87118185A EP 0271071 B1 EP0271071 B1 EP 0271071B1
Authority
EP
European Patent Office
Prior art keywords
pole
signal
stations
station
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87118185A
Other languages
German (de)
English (en)
Other versions
EP0271071A2 (fr
EP0271071A3 (en
Inventor
Johannes Reilhofer
Manfred Dr. Lehmann
Konrad Dr. Krien
Walter Melzer
Klaus Ruthrof
Peter Dr. Jax
Rainer Meier
Bela Bechtold
Klaus Franze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19873706680 external-priority patent/DE3706680A1/de
Priority claimed from DE19873717523 external-priority patent/DE3717523C1/de
Priority claimed from DE19873735994 external-priority patent/DE3735994A1/de
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT87118185T priority Critical patent/ATE87095T1/de
Publication of EP0271071A2 publication Critical patent/EP0271071A2/fr
Publication of EP0271071A3 publication Critical patent/EP0271071A3/de
Application granted granted Critical
Publication of EP0271071B1 publication Critical patent/EP0271071B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • E04H12/10Truss-like structures
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/16Actuation by interference with mechanical vibrations in air or other fluid
    • G08B13/1654Actuation by interference with mechanical vibrations in air or other fluid using passive vibration detection systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/10Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes

Definitions

  • the invention relates to a device for monitoring masts of an overhead line to prevent acts of sabotage.
  • Overhead lines for the supply of electrical energy are usually supported by masts, which are designed in steel mesh construction.
  • Such a steel lattice mast rests on up to four supports, which are connected to concrete foundations anchored in the ground.
  • the invention is therefore based on the object of developing a device for monitoring masts of an overhead line which can be operated with few personnel.
  • An attack should be detected and located automatically, quickly and reliably, so that the perpetrators can still be arrested at the scene of the crime before a great deal of damage can occur.
  • a monitoring circuit for protecting overhead line masts is known from DE-OS 31 25 981. Mechanical vibrations are measured there with piezoelectric transducers. After an evaluation, an alarm message is sent via an antenna. With the known device, only structure-borne noise is measured. In addition, a control center must be accessible from each individual mast via an antenna. On the one hand, this requires a high transmission power and, in order to avoid mutual interference, a large number of different transmission frequencies.
  • the invention is therefore based on the object of developing a device which not only detects structure-borne noise. In addition, it should always be possible to transmit information to a central office reliably and with simple means.
  • the object is achieved in that at least one sensor for detecting vibrations or movements is arranged on each mast, that an evaluation unit is connected to the sensors arranged on a mast, which via an amplifier unit with a signal delivery station arranged on the mast for coded signals in There is a connection that a signal reception station is arranged on a mast for receiving signals from the signal delivery stations of other masts and that this signal reception station is connected via an amplifier unit to a signal delivery station arranged on the same mast and that a central signal reception station which is connected to an alarm transmitter is in a monitoring center is arranged as defined in claim 1 Suitable sensors on the mast in conjunction with an evaluation unit indicate whether an attack is being carried out. The signaling station on the mast is only activated by the evaluation unit if the mast is at risk. The signal emitted is then received in the monitoring center. The deployment of security forces is then initiated from there.
  • Signal receiving stations are also arranged on some or all masts. Such a signal receiving station is connected via an amplifier unit to the signal delivery station arranged on the same mast. Signals coming from another mast are received, amplified and sent again. This has the advantage that the range of the signals sent by the attacked mast does not have to directly bridge the distance to the monitoring center. The range of a signal delivery station only has to be dimensioned such that the signal delivered reaches the next signal reception station arranged on a mast. This is advantageous for a low output power of the signal output stations. In addition, by passing the signals from one mast to another, the risk that a signal will not arrive at the monitoring center is largely eliminated. All signals to be transmitted that come from a certain direction arrive in the monitoring center one after the other. Therefore, they have to be recorded optimally.
  • the advantage of the invention is that reliable monitoring of overhead line pylons can be carried out with little personnel. Apart from the security guards, only personnel in the monitoring center are required. Such monitoring centers can be responsible for a large area, so that the personnel requirements remain low.
  • the signal delivery stations are each arranged, for example, in the area of the mast tip.
  • the incoming signals are then displayed in the monitoring center, for example with an oscillograph.
  • the output power of a signal delivery station on a mast is selected, for example, in such a way that a signal transmission to the neighboring and to the next but one signal reception stations is ensured. This has the advantage that after the failure of a station the next but one receiving station is always reached. The transmission chain from mast to mast is retained even if a mast station fails.
  • the signal transmission from neighboring signal delivery stations takes place, for example, with different transmission frequencies. This prevents mutual interference between the individual transmission sections in the transmission chain.
  • Various types of sensors can be used on a mast to be monitored.
  • a combination of several sensors that work in different ways can also be used.
  • a sensor on a mast consists, for example, of one or more coupled structure-borne noise transducers in a storm, water and fire-protected design.
  • Structure-borne noise is easily transmitted over long distances in metallic structures and can be easily detected with piezoelectric sensors, so-called structure-borne noise sensors.
  • KÜS structure-borne noise monitoring systems
  • the use of structure-borne noise sensors for monitoring masts of an overhead line is in accordance with the invention derive the cause of the structure-borne noise in the evaluation unit from signal patterns of the structure-borne noise signal. For this purpose, a comparison of measured signal patterns with known signal patterns is carried out.
  • This has the advantage that noises that are typical of an act of sabotage can be clearly recognized. For example, a sawing noise can be clearly distinguished from a harmless knocking noise.
  • the evaluation unit on the mast is operated in such a way that only noises that exceed a natural background level are examined for their cause. This eliminates false alarms caused by natural background noise, e.g. the wind noise, largely avoided.
  • a targeted listening to the signals coming from that mast is carried out, for example, before an alarm is triggered.
  • the alarm is only triggered when the analysis of these signals shows that it is a sawing noise, for example. Due to the described procedure, false alarms are largely excluded.
  • At least two structure-borne noise sensors with signal paths parallel to one another are provided to the downstream evaluation unit. Your signals control the evaluation unit in the sense of an OR condition.
  • the sensors on the masts are infrared detectors. These emit a signal when there are heat-emitting machines. Sensitive infrared detectors are also able to detect the presence of people at the foot of the Mastes can be recognized safely. In this case, however, a combination of the infrared detector with a detector based on a different principle is required to avoid false alarms.
  • the sensor arranged on the mast can also be a television camera.
  • the senor has a wire or a hose which is arranged on the mast in such a way that it is damaged when the mast is attacked. In this case, a signal is given to the mast's signaling station.
  • Such a sensor wire is arranged, for example, spanning the inner surface of a concrete cover.
  • the concrete cover comprises a support on a mast.
  • Overhead lines for the supply of electrical energy are usually supported by masts, which are designed in steel mesh construction.
  • Such a steel lattice mast rests on up to four supports, which are connected to concrete foundations anchored in the ground.
  • the foundations only protrude several meters from the ground in exceptional cases. As a rule, the foundations are flush with the surrounding area or end less than 1 m above the level of the surrounding area.
  • overhead line masts are located in areas that are difficult to access. This is especially true for heavy vehicles.
  • the object is achieved in that prefabricated shells supported on the foundation of each support of the steel lattice mast, the support are comprehensively assembled and in that the space within the assembled shells is filled with a hardening material.
  • prefabricated shells has the advantage that the protective device is manufactured at least partially in the factory.
  • the dimensions of the shells are adapted to the shape of a steel lattice mast.
  • the prefabricated trays are relatively light and can be transported individually to their destination on a small vehicle.
  • the shells are also attached to the steel lattice mast with a few light technical aids.
  • the intended filling with hardening material after assembly of the shells requires only a few technical aids.
  • a pump is usually sufficient.
  • the hardening material can be processed over a longer period of time. It is not necessary to deliver a large amount of material at the same time. Rather, it is sufficient if the hardening material is delivered one after the other with small transporters. It is also possible to manufacture the hardening material at the place of use.
  • the support comprising, for example, two shells are joined together, the first shell comprising two thirds and the second shell one third of the circumference of the support.
  • the shells are adapted to the usual arrangement of the cross struts on a steel lattice mast. Notches for the cross struts must be made in the area of the butt edges in the shells.
  • the prefabricated shells in the region of the abutting edges at which they are to be joined are thinner than usual. This has the advantage that openings for the cross struts of the mast can be easily made in the prefabricated shells during assembly on the mast. After the shells have been arranged on the mast, the thinner area is reinforced before the hardening material is poured in.
  • the shells are made of reinforced concrete, for example, which has the desired strength and can be processed quickly and inexpensively by the factory.
  • the prefabricated shells are connected to one another, for example by threaded rods provided with nuts and penetrating the space between the shells.
  • Turnbuckles ensure a stable connection.
  • Reinforcing steel is suitable for reinforcing the initially thinner area of the prefabricated shells in the area of the cross struts.
  • a hardening material suitable for filling the space within the assembled shells is concrete, which can be reinforced with reinforcing steel.
  • concrete is a material suitable for a casing that is resistant to external influences.
  • other curing materials can also be used.
  • the part of the steel lattice mast that is enclosed by hardening material is previously coated with bitumen. This protects the steel mesh construction from corrosion.
  • the steel lattice mast can be covered with a rubber layer under the hardening material.
  • This rubber layer is e.g. glued with the bitumen of the bitumen layer.
  • the rubber layer protects the mast when pouring hardening material, such as concrete, into the assembled shells.
  • Similar prefabricated shells that have been joined together and filled with hardening material can also be used on the main cross struts of a steel lattice mast, which emanate from a support, with the appropriate dimensions. These shells are positively connected to the shells that comprise the support.
  • the described protective device for a steel lattice tower has the advantage that a steel lattice tower can be made fast and reliable even in poorly accessible terrain and at the same time with little technical effort and inexpensive to make it resistant to external influences.
  • electrical lines are arranged on the inner surface of prefabricated shells, which are connected to the alarm transmitter.
  • This alarm device triggers an alarm if one of the lines is damaged. This has the advantage that damage to the protective device can be recognized immediately before the steel lattice mast can be damaged.
  • the electrical lines are arranged, for example, on prefabricated wire grids, which simplifies their assembly.
  • the Wire grids can also be assembled during the manufacture of the prefabricated shells.
  • the message is transmitted either wirelessly or via a line.
  • the signal delivery stations are designed as transmitters and the signal receiving stations as receivers for, for example, radio, infrared or ultrasonic signals.
  • Ultrasonic transmitters and ultrasonic receivers are also connected, for example, to an existing line, the ground wire or a phase conductor of the overhead line for ultrasound transmission.
  • the signal delivery stations are connected to signal receiving stations, for example by an additional line, which is held by the masts at a height that cannot be reached from the ground.
  • This additional line is, for example, an optical waveguide, which is particularly suitable for the transmission of information.
  • the signal delivery stations and the signal reception stations for transmitting information between the masts of an overhead line are connected to their earth cable.
  • the earth rope of an overhead line initially serves as a lightning arrester and, according to the invention, is suitable for signal transmission.
  • the signal delivery stations and the signal reception stations are inductively coupled to the earth rope, for example. In this way, interference-free signal transmission is ensured.
  • the use of the earth rope as a transmission line may be surprising at first. This is because the earth rope running at the top of the masts is conductively connected to each mast in order to be earthed at these points.
  • the masts themselves represent impedances that do not lead to a complete derivation to earth, especially with higher frequency information. Rather, the earth rope and the masts form impedance networks in chain form, which can be characterized by a ⁇ or T-shaped equivalent circuit diagram. Experiments have shown that a transmission of higher frequency information is actually possible in this way.
  • a signal transmission path is particularly advantageous, which is formed redundantly twice, both by a radio connection and by cabling.
  • the devices and systems arranged on a mast for monitoring require electrical energy for operation.
  • This can be provided in different ways.
  • the devices and systems are also inductively connected to the ground wire of the overhead line for energy supply. This is because equalizing currents always flow through the earth rope. According to the invention, these compensating currents can be used for the energy supply of the devices and systems.
  • the above-mentioned solution is based on the knowledge that the asymmetry of the high-voltage lines in the earth rope produces compensating currents which can have a considerable current. If this compensating current is coupled out inductively, one can draw enough power to supply the transmission devices. The transmission devices are thereby independent of an external supply, such as solar cells or the like.
  • One way of decoupling the compensating current for obtaining the supply voltage from the earth rope at the desired point can be that the earth rope is surrounded at this point by a magnetic hollow body which carries a secondary winding.
  • the hollow body can, for example, in the manner of a transformer, consist of a U part and an I part placed against the legs.
  • the secondary winding is expediently arranged on the I part.
  • the U-part and the I-part can be formed by transformer sheets in order to keep eddy current losses low.
  • the earth rope acts as a primary winding.
  • the current for supplying the devices can then be taken from the secondary winding.
  • the transmission devices are attached to the masts, it is expedient to decouple the equalizing current of the earth rope on both earth rope sections starting from the mast in question.
  • the information can be extracted and injected from the earth rope and into the earth rope in the same way as the compensation current is extracted.
  • the hollow body can be provided with an additional secondary winding, by means of which the information can be coupled in and out.
  • This additional secondary winding should expediently have a smaller number of turns than the first-mentioned secondary winding in order to make its inductance lower for the transmission of high frequency.
  • This additional secondary winding is expediently connected to the device via a selective series resonance circuit. This series resonance circuit can then be tuned to the radio frequency to be transmitted.
  • the energy supply can also be ensured via an inductive or capacitive connection with live conductors.
  • solar cells are arranged on each mast of an overhead line, which supply the electrical energy for the devices and systems arranged on the mast.
  • a photovoltaic battery-buffered energy supply is particularly suitable.
  • energy supply does not require any additional lines which run from mast to mast.
  • the evaluation units arranged on each mast encode the signals to be emitted.
  • binary-coded information can be transmitted frequency-modulated to the signal receiving stations from the signal delivery stations.
  • each mast has a code number.
  • the masts can be selected in cyclical order.
  • a mast station selection unit in the control center prevents premature switching to the next mast before the signals of a mast are registered.
  • the advantage of the invention is that a large number of overhead line masts, which are widely distributed in a large area, can be monitored effectively with little use of personnel.
  • the attempt by a violent perpetrator to damage a mast is immediately registered and localized. Measures to take the perpetrator at the crime scene or in the vicinity thereof can be initiated in good time when using the device according to the invention for monitoring masts of an overhead line.
  • the invention provides effective, comprehensive protection of overhead lines for public energy supply.
  • a structure-borne noise sensor 2 which is connected to an evaluation unit 3, is arranged on the upper section of the mast 1 as a sensor for a possible offender. With this system, structure-borne noise can be analyzed for its cause. It can be clearly seen whether actions are taken that can damage the mast 1.
  • an infrared detector 4 which is also connected to the evaluation unit 3, is arranged as a second sensor in the upper section of the mast 1. Heat sources at the foot of the mast 1 are detected with the infrared detector 4. These heat sources are due, for example, to the use of tools. However, it is also possible to detect the presence of people with the infrared detector 4.
  • a third sensor is provided by a sensor tube 5, which is arranged on the inner surface of a concrete shell 6, which surrounds a support 7 of the mast 1.
  • Sensor hose 5 is also connected to evaluation unit 3 via a line (not shown).
  • the steel lattice mast 1 is built with supports 7 on concrete foundations 8. In order to protect the mast 1 from attack from the ground to approximately a height of 5 meters, the steel lattice supports 7 are arranged comprising concrete shells 6. These are more resistant than the steel grid construction. In addition, damage to a concrete shell 6 is detected by means of a sensor hose 5.
  • Further sensors can be installed on the mast 1.
  • the evaluation unit 3 is connected to a transmitter 10 via an amplifier 9. If signals indicating an assassination are supplied to the evaluation unit 3 by the sensors 2, 4, 5, a coded signal is emitted from there to the transmitter 10.
  • the signals are recorded in a monitoring center 11 with a receiver 12 and fed to an alarm device 13.
  • the personnel in the monitoring center 11 immediately recognize which mast is affected on the basis of the coding. Countermeasures are then initiated immediately. So that the transmitter 10 manages with the lowest possible output power, a receiver 14 is also arranged on the mast 1 and is connected to the transmitter 10 via an amplifier 15.
  • the receiver 14 on the mast 1 receives signals from neighboring masts, which are then forwarded by the transmitter 10.
  • the transmitter 10 on the mast 1 no longer has to reach the receiver 12 of the monitoring center 11 directly, but only receivers of other masts.
  • the information from the evaluation unit 3 can also be transmitted wirelessly via the transmitter 10 via a line attached to the masts of the overhead line is.
  • An inductive coupling of the output of the evaluation unit 3 to the earth cable 16, which connects the tips of the masts to one another as lightning protection, is also possible.
  • the alarm transmitter 13 of the monitoring center 11 must also be coupled to the line, for example to the earth cable 16, just like the evaluation unit 3.
  • a carrier which carries solar cells 17 is arranged on the tip of the mast 1.
  • the solar cells 17 are connected to the various sensors 2, 4 and 5, to the evaluation unit 3, the transmitter 10, the receiver 14 and to the amplifiers 9 and 15 via supply lines (not shown).
  • supply lines not shown.
  • the devices and systems on the mast 1 can be supplied with energy by inductive or capacitive coupling to an overhead line or by inductive coupling to the earth cable 16.
  • a steel lattice tower 1 for an overhead line has four supports 7 which are connected to concrete foundations 8 anchored in the ground. Each of these four supports 7 are constructed in the same way and are protected in the same way by protective devices against external influences. In FIG 2, therefore, only one support 7 of the steel lattice mast 1 is shown. In cross section, it has two legs arranged at an angle of 90 ° to one another. Several cross struts extend from the support 7, through which the support 7 is connected to an adjacent support.
  • a protective device consists of two prefabricated shells 103 and 104 made of reinforced concrete.
  • the shells 103 and 104 together comprise the support 7.
  • the first shell 103 comprises two thirds and the second shell 104 a third of the circumference of the support 7.
  • Both shells 103 and 104 are on the Foundation 8 of the support 7 supported. Openings for transverse struts of the support 7 in the shells 103 and 104 are to be provided in the region of the abutting edges 105. Due to the arrangement of the cross struts on the support 7 and the size ratio of the two shells 103 and 104, all cross struts are guided through the shells 103 and 104 in the region of the abutting edges 105.
  • the shells 103 and 104 are firmly connected to one another by threaded rods 107 provided with nuts.
  • the support 7 is coated with bitumen within the protective device.
  • a rubber layer 100 is glued to the bitumen layer.
  • Prefabricated wire grids 108 are arranged on the inner surface of the two shells 103 and 104 and hold electrical lines. These lines are electrically connected to a signal transmitter, for example to the transmitter 10 in FIG. 1. If one of the lines on a wire grid 108 is damaged, the signal transmitter is activated.
  • the remaining space 109 within the two shells 103 and 104 is filled with concrete, in which reinforcing steel is located.
  • the entire protective device is simple and inexpensive to manufacture and assemble and reliably protects the support 7 of the steel lattice mast 1 against external influences.
  • a largely similar protective device according to FIG. 3 has shells 103 and 104, which are made thinner than usual in the area of the abutting edges 102. This makes openings for transverse struts in the shells 103 and 104 in the area of the abutting edges 102 particularly easy when mounted on the mast 1 to attach. After the installation of the two shells 103 and 104, the thinned areas were reinforced with reinforcing steel 106.
  • the mast shown in FIG. 4 carries six high-voltage overhead lines with three-phase phases R, S and T on insulators. At the top of the mast there is an earth cable 16 which runs parallel to the high-voltage lines and is conductively connected to the mast.
  • FIG 5 shows another mast which carries only three high-voltage overhead lines on insulators which carry different three-phase phases R, S, T.
  • the earth rope 16 is again guided over the top of the mast.
  • the earth rope 16 serves as a lightning rod. Because of the asymmetrical arrangement of the high-voltage overhead lines carrying various three-phase phases, 16 compensating currents are induced in the earth rope, which is made of metal, preferably steel, and which flow down to the earth via the masts.
  • FIG. 6 shows two masts 1, 200, to each of which a device 203 is attached.
  • This device can be, for example, an amplifier with a sound detector.
  • the sound detector responds, for example, when sawing on its mast.
  • the earth rope 16 is surrounded on both sides of the connection point, at which it sits on a mast, by a hollow body 204, which consists of magnetically conductive material.
  • Each hollow body 204 has two secondary windings (not visible in FIG. 6) which are connected to the device 203.
  • a supply current for the device 203 is derived from the one secondary winding. Via the other secondary winding, information signals are injected into or out of the earth rope 16.
  • FIG. 7 shows the hollow body 204 in more detail. It consists of a U-part 205 and an I-part 206 placed against its leg.
  • the U-part 205 and the I-part 206 are formed from transformer sheets in order to avoid eddy current losses.
  • a supply current for the device 203 is derived from the first-mentioned secondary winding 207. This low-frequency supply current is due to the compensating current flowing in the earth rope 16.
  • the second secondary winding 208 serves to couple information signals into and out of the earth rope 16 or from the earth rope 16.
  • Information signals can be generated, for example, by the detector located in the device 203. It is also possible that the device 203 only serves to amplify information signals which are generated by another device 203 on a different mast.
  • the device 203 contains a series resonance circuit 209 which is selectively tuned to the high frequency of the information signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Emergency Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Alarm Systems (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Claims (46)

  1. Dispositif pour contrôler des pylônes (1) d'une ligne aérienne, pour empêcher des actes de sabotage, caractérisé par le fait que sur chaque pylône (1) est disposé au moins un capteur (2,4,5) servant à détecter des secousses ou des déplacements,
    qu'à au moins un capteur (2,4,5) situé sur chaque pylône (1) est raccordée respectivement une unité d'évaluation (3) qui est raccordée, par l'intermédiaire d'une unité formant amplificateur (9), à un poste d'émission de signaux (10) qui est raccordé au pylône (1), pour des signaux codés,
    que pour la réception de signaux des postes d'émission de signaux d'autres pylônes, respectivement un poste (14) de réception de signaux est disposé sur au moins un pylône (1),
    que ce poste (14) de réception de signaux est raccordé, par l'intermédiaire d'une unité formant amplificateur (15) à un poste (10) d'émission de signaux, monté sur le même pylône (1), et
    qu'un poste central (12) de réception de signaux, qui est raccordé à un générateur d'alarme (13), est disposé dans un central de contrôle (11).
  2. Dispositif suivant la revendication 1, caractérisé par le fait que les postes (10) d'émission de signaux sont fixés respectivement au voisinage de la pointe du sommet des pylônes.
  3. Dispositif suivant la revendication 1, caractérisé par un appareil servant à représenter optiquement, notamment sur un oscillographe à faisceau cathodique, des signaux acoustiques analogiques transmis par la structure et détectés par un capteur (2).
  4. Dispositif suivant la revendication 1, caractérisé par le fait qu'un poste (10) d'émission de signaux, situé sur un pylône (1), possède une puissance de sortie pour la transmission de signaux à des postes de réception de signaux qui sont disposés sur des pylônes voisins et sur les pylônes suivants en second, ce qui permet une retransmission redondante de signaux d'un pylône à un autre.
  5. Dispositif suivant la revendication 4, caractérisé par le fait que des signaux ayant des fréquences différentes de transmission peuvent être retransmis par des postes voisins (10) d'émission de signaux.
  6. Dispositif suivant la revendication 1, caractérisé par le fait que dans une forme de réalisation protégée contre les tempêtes, l'eau et l'incendie, sur le pylône (1) respectivement contrôlé est fixé un poste de pylône, qui comprend au moins un enregistreur (2) du son transmis par la structure, qui est installé sur l'ossature du pylône, et au moins un module électronique, branché en aval de cet enregistreur et qui est constitué par l'unité d'évaluation (3) et par un amplificateur (9) et par des première et seconde sections de préparation de signaux, qui sont branchées dans deux canaux en aval de l'amplificateur (9).
  7. Dispositif suivant la revendication 6, caractérisé par le fait qu'il est prévu au moins deux enregistreurs (2) du son transmis par la structure avec des voies parallèles de transmission de signaux avec des voies de transmission de signaux parallèles entre elles et aboutissant à l'unité d'évaluation (3) branchée en aval et que leurs signaux commandent le dispositif d'évaluation (3) dans le sens d'une condition OU.
  8. Dispositif suivant la revendication 1, caractérisé par le fait qu'un capteur comporte un détecteur à infrarouge (4).
  9. Dispositif suivant la revendication 1, caractérisé par le fait qu'un capteur est une caméra de télévision.
  10. Dispositif suivant la revendication 1, caractérisé par le fait qu'un capteur possède un fil ou un tuyau (5), auquel cas, lors d'un endommagement du fil ou du tuyau (5), un signal est envoyé au poste (10) d'émission de signaux, situé sur le pylone (1).
  11. Dispositif suivant la revendication 10, caractérisé par le fait qu'un capteur comporte un fil ou un tuyau (5), qui est disposé sur une coque en béton (6), qui entoure un support (7) d'un pylône (1), de manière à couvrir la surface intérieure de cette coque.
  12. Dispositif suivant la revendication 11, caractérisé par le fait que sur la surface intérieure de la coque (6) sont disposés des conducteurs électriques, qui sont raccordés à un générateur de signaux, un signal étant émis lors d'au moins un conducteur.
  13. Dispositif suivant la revendication 12, caractérisé par le fait que les conducteurs électriques sont disposés sur des grilles préfabriquées formées de fils (108).
  14. Dispositif suivant la revendication 11, dans lequel des supports (7) d'un pylône (1) sont en appui sur des socles (8), caractérisé par le fait que sur le socle (8) de chaque support (7) du pylône en charpente métallique prennent appui des coques préfabriquées (103 et 104), qui sont constituées notamment de béton armé et sont réunies de manière à entourer le support (7), la première coque (3) entourant deux tiers et la seconde coque (103) un tiers de la périphérie du support (7), et que l'espace (30) situé à l'intérieur des coques réunies (103 et 104) est rempli par un matériau durcissable, notamment par du béton armé ou non armé.
  15. Dispositif suivant la revendication 14, caractérisé par le fait que les coques préférabriquées (103 et 104) sont plus minces dans la zone des bords en aboutement (102), au niveau desquels ils doivent être réunis, en sorte que des ouvertures pour des traverses du pylône en charpente métalliques doivent être ménagées en cet endroit dans les coques préfabriquées (103 et 104), et que la zone plus mince des coques (103 et 104) doit être renforcée, après la mise en place des coques (103 et 104) sur le support (7) et avant l'introduction du matériau durcissable.
  16. Dispositif suivant la revendication 14, caractérisé par le fait que les coques (103 et 104) sont reliées entre elles par des tiges filetées (107) pourvues d'écrous et traversant l'espace (109) situé entre les coques (103 et 104).
  17. Dispositif suivant la revendication 14, caractérisé par le fait que les supports (7) sont pourvus d'un revêtement.
  18. Dispositif suivant la revendication 14, caractérisé par le fait que des coques préfabriquées identiques, assemblées et remplies par un matériau durcissable, sont disposées de manière à entourer des traverses principales du pylône en charpente métalliques.
  19. Dispositif suivant la revendication 1, caractérisé par le fait qu'au moins deux capteurs (2,4,5), dont les modes de fonctionnement sont différents, sont disposés sur un pylône (1).
  20. Dispositif suivant la revendication 1, caractérisé par le fait que les postes (10) d'émission de signaux sont des émetteurs radioélectriques et que les postes (12,14) de réception de signaux sont des récepteurs radioélectriques.
  21. Dispositif suivant la revendication 1, caractérisé par le fait que les postes (10) d'émission de signaux sont des émetteurs à infrarouge et que les postes (12,14) de réception de signaux sont des récepteurs à infrarouge.
  22. Dispositif suivant la revendication 1, caractérisé par le fait que les postes (10) d'émission de signaux sont des émetteurs à ultrasons et que les postes (12,14) de réception de signaux sont des récepteurs à ultrasons, la transmission étant une transmission par ultrasons sans fil.
  23. Dispositif suivant la revendication 1, caractérisé par le fait qu'un poste (10) d'émission de signaux est raccordé à un poste (12,14) de réception de signaux par une ligne.
  24. Dispositif suivant la revendication 23, caractérisé par le fait que la ligne est un guide d'ondes optiques.
  25. Dispositif suivant la revendication 23, caractérisé par le fait que les postes (10) d'émission de signaux sont des émetteurs à ultrasons et les postes (10,14) de réception de signaux sont des récepteurs à ultrasons, qui sont accouplés à un conducteur de phase pour la transmission des ultrasons.
  26. Dispositif suivant la revendication 23, caractérisé par le fait qu'un câble de mise à la terre (16), qui constitue un dispositif de dérivation de la foudre, est utilisé comme ligne de transmission.
  27. Dispositif suivant la revendication 26, caractérisé par le fait que les postes (10) d'émission de signaux sont des émetteurs à ultrasons et que les postes (12,14) de réception de signaux sont des récepteurs à ultrasons, qui sont accouplés au câble de mise à la terre (16) pour la transmission d'ultrasons.
  28. Dispositif suivant la revendication 26, caractérisé par le fait que les postes d'émission de signaux et les postes (12,14) de réception de signaux sont couplés de façon inductive au câble de raccordement à la terre (16).
  29. Dispositif suivant la revendication 23, caractérisé par le fait qu'une section de transmission de signaux est formée par un câble de transmission d'énergie et de transmission de signaux, qui relient les différents postes des pylônes entre eux et au central (11) de contrôle des pylônes.
  30. Dispositif suivant la revendication 1, caractérisé par le fait qu'une section de transmission de signaux est formée de manière à être doublement redondante aussi bien par une liaison hertzienne que par une liaison câblée.
  31. Dispositif suivant la revendication 1, caractérisé par le fait que la tension d'alimentation pour des appareils de transmission (203), comme par exemple des émetteurs (10), des récepteurs (14), des capteurs (2,4,5) et analogues, prévus dans une section de transmission de signaux, est obtenue à partir du courant de compensation induit dans un câble (16) de raccordement à la terre.
  32. Dispositif suivant la revendication 1, caractérisé par le fait que des appareils des systèmes, tels que les capteurs (2,4,5), l'unité d'évaluation (3), des unités formant amplificateurs (9,15), des postes (10) d'émission de signaux et un poste (14) de réception de signaux, qui sont installés sur un pylône (1), sont raccordés inductivement à un câble (16) de raccordement à la terre de la ligne aérienne pour réaliser l'alimentation en énergie.
  33. Dispositif suivant la revendication 31, caractérisé par le fait que le câble (16) de raccordement à la terre est entouré, à l'emplacement de la sortie désirée des courants de compensation, par un corps creux magnétiquement conducteur (204), comportant au moins un enroulement secondaire (207, 208).
  34. Dispositif suivant la revendication 33, caractérisé par le fait que le corps creux (204) est constitué, à la manière d'un transformateur, par une partie en U (205) et par une partie en I (206) placée contre les branches du U.
  35. Dispositif suivant la revendication 34, caractérisé par le fait que la partie en I (206) porte des enroulements secondaires (207, 208).
  36. Dispositif suivant la revendication 34, caractérisé par le fait que la partie en U (205) et la partie en I (206) sont formées par des tôles de transformateur.
  37. Dispositif suivant la revendication 31, caractérisé par le fait qu'un découplage du courant de compensation du câble (16) de raccordement à la terre dans les deux sections du câble de raccordement à la terre, qui partent du pylône considéré, s'effectue au niveau de pylônes équipés d'appareils de transmission (203).
  38. Dispositif suivant la revendication 31, caractérisé par le fait que le découplage des informations à partir du câble (16) de raccordement à la terre et l'injection des informations dans le câble (16) de raccordement à la terre, s'effectuent de la même manière que le découplage du courant de compensation.
  39. Dispositif suivant les revendications 33 et 38, caractérisé par le fait que le corps creux (204) possède deux enroulements secondaires (207,208), dont le premier (207) sert au découplage du courant de compensation et dont le second (208) sert à l'injection et au découplage de signaux d'informations.
  40. Dispositif suivant la revendication 39, caractérisé par le fait que le second enroulement secondaire (208) est raccordé à l'appareil (203) par l'intermédiaire d'un circuit résonnant sélectif (209).
  41. Dispositif suivant la revendication 1, caractérisé par le fait que les appareils et systèmes montés sur un pylône (1) sont raccordés inductivement ou capacitivement à des conducteurs de la ligne aérienne, qui sont placés sous tension, pour l'alimentation en énergie.
  42. Dispositif suivant la revendication 1, caractérisé par le fait que pour l'alimentation en énergie, des appareils et systèmes montés sur un pylône sont raccordés à des piles solaires (17) montées sur le pylône (1).
  43. Dispositif suivant la revendication 42, caractérisé par une alimentation en énergie photovoltaïque tamponnée par des accumulateurs pour les postes des pylônes et la transmission des premier et second signaux de sortie du poste du pylône au central (11) de contrôle du pylône ou inversement, par voie hertzienne.
  44. Dispositif suivant la revendication 1, caractérisé par le fait que des informations codées en binaire sont transmises par des postes (10) d'émission de signaux aux postes (12,14) de réception de signaux, en étant modulées en fréquence.
  45. Dispositif suivant la revendication 44, comportant une multiplicité de pylônes insérés dans le système de contrôle des pylônes et dont chacun possède un poste, caractérisé par le fait qu'à chacun des postes des pylônes est associé un signal indicatif de pylône particulier, par exemple un numéro de code, et un scanner d'alarme et de codage est agencé de manière à délivrer périodiquement une série de signaux d'exploration, respectivement l'un des signaux d'exploration coïncidant avec respectivement l'un des signaux d'identification de pylônes, en sorte que les postes des pylônes contrôlés peuvent être sélectionnés, par exemple selon une séquence cyclique, et les signaux normaux utilisés pour contrôler le fonctionnement, du poste respectivement sélectionné du pylône ou ses signaux d'alarme, peuvent être reçus par le central (11) de contrôle des pylônes.
  46. Dispositif suivant la revendication 44, caractérisé par le fait qu'une unité de sélection de postes de pylônes situés dans le central de contrôle (11) est agencée de manière à délivrer un signal de maintien qui est délivré conjointement avec le signal de sélection et empêche une nouvelle commutation automatique sur la réception des signaux par le poste de pylône immédiatement suivant tant que la poursuite de la commutation n'est pas libérée par actionnement d'un générateur d'instructions, par exemple une touche de libération.
EP87118185A 1986-12-12 1987-12-08 Système de surveillance pour pylônes d'une ligne aérienne Expired - Lifetime EP0271071B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87118185T ATE87095T1 (de) 1986-12-12 1987-12-08 Einrichtung zur ueberwachung von masten einer freileitung.

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE3642598 1986-12-12
DE3642598 1986-12-12
DE19873706680 DE3706680A1 (de) 1987-03-02 1987-03-02 Verfahren und einrichtung zur ueberwachung von strommasten gegen absichtliche beschaedigung
DE3706680 1987-03-02
DE19873717523 DE3717523C1 (en) 1987-05-25 1987-05-25 Protective means for a steel lattice mast
DE3717523 1987-05-25
DE3735994 1987-10-23
DE19873735994 DE3735994A1 (de) 1987-10-23 1987-10-23 Einrichtung zur ueberwachung von masten einer freileitung

Publications (3)

Publication Number Publication Date
EP0271071A2 EP0271071A2 (fr) 1988-06-15
EP0271071A3 EP0271071A3 (en) 1990-07-11
EP0271071B1 true EP0271071B1 (fr) 1993-03-17

Family

ID=27433773

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87118185A Expired - Lifetime EP0271071B1 (fr) 1986-12-12 1987-12-08 Système de surveillance pour pylônes d'une ligne aérienne

Country Status (3)

Country Link
EP (1) EP0271071B1 (fr)
DE (1) DE3784866D1 (fr)
ES (1) ES2041673T3 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129752B (zh) * 2010-01-12 2013-05-08 西安英诺视通信息技术有限公司 室外设施人为破坏在线监测报警系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106643913A (zh) * 2017-02-24 2017-05-10 共友时代(北京)科技股份有限公司 电力塔架施工监控装置及系统
CN109345740B (zh) * 2018-12-06 2023-08-15 国网辽宁省电力有限公司鞍山供电公司 电磁机械双锁扣的自取能输电线路防外力破坏警示装置
DE102019216561B4 (de) * 2019-10-28 2021-11-04 Forschungs- und Transferzentrum Leipzig e.V. an der Hochschule für Technik, Wirtschaft und Kultur Leipzig (FH) Vorrichtung und Verfahren zur Ermittlung eines Leiterseildurchhangs einer Freileitung
CN110888359A (zh) * 2019-11-25 2020-03-17 王清 用于智能家居安装有传感设备的监控装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1416346A (en) * 1972-03-02 1975-12-03 Emi Ltd Security fences and systems embodying them
FR2448716A1 (fr) * 1979-02-08 1980-09-05 Spie Batignolles Systeme pour detecter la rupture effective des ouvrages d'art
DE3125981A1 (de) * 1981-07-01 1983-03-03 German Dipl.-Ing. 8061 Hebertshausen Grimm Ueberwachungsschaltung zum schutz von auf einer mehrzahl von fuessen abgestuetzten einrichtungen, insbesondere hochspannungsleitungsmasten
US4630035A (en) * 1985-01-04 1986-12-16 Motorola, Inc. Alarm system having alarm transmitter indentification codes and acoustic ranging
DE8705963U1 (de) * 1987-04-24 1987-06-19 Robert Bosch Gmbh, 7000 Stuttgart Funkmeldevorrichtung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129752B (zh) * 2010-01-12 2013-05-08 西安英诺视通信息技术有限公司 室外设施人为破坏在线监测报警系统

Also Published As

Publication number Publication date
EP0271071A2 (fr) 1988-06-15
EP0271071A3 (en) 1990-07-11
ES2041673T3 (es) 1993-12-01
DE3784866D1 (de) 1993-04-22

Similar Documents

Publication Publication Date Title
EP0975511B1 (fr) Dispositif de surveillance d'ancre ou de chaine d'ancre
DE3490076C1 (fr)
EP2432693A1 (fr) Procédé de commande de feux d'obstacle
EP0271071B1 (fr) Système de surveillance pour pylônes d'une ligne aérienne
DE10041160B4 (de) Containerstation
DE2712498A1 (de) Verfahren und anordnung fuer die funkverbindung bzw. funksignalisierung in begrenzten raeumen mit vorwiegend laenglicher ausbildung
DE2301356A1 (de) Detektorleitung, insbesondere fuer einbruchsicherungsanlagen
EP0018619B1 (fr) Installation de sécurité avec au moins un filet métallique pour la protection d'objets placés derrière cette installation
DE3735994A1 (de) Einrichtung zur ueberwachung von masten einer freileitung
DE102006013248A1 (de) Verfahren und Vorrichtung zum Erfassen der Last auf Oberlandleitungen
EP0907260B1 (fr) Dispositif d' émission et de réception de signaux à hautes fréquences
CN105205962A (zh) 一种电网地下管线设施安全监测系统
DE19539312A1 (de) Verfahren zur Erhöhung der Übertragungssicherheit bei Funkalarmanlagen
DE19522113C1 (de) Anlage zum Überwachen und Alarmieren bei Störungen innerhalb eines überwachten Bereichs
DE3000958C2 (de) Hausnotrufsystem mit Fernauslösung
DE20112800U1 (de) System zur Fernüberwachung von Schächten, insbesondere von Schächten eines Fernwärmeleitungsnetzes
EP2797802B1 (fr) Dispositif de détection permettant de détecter une roue se déplaçant sur un rail de roulement
EP0298203B1 (fr) Dispositif électrique de surveillance pour la détection des dommages mettant en cause la stabilité de pylônes de lignes aériennes
DE102017130375B4 (de) Verfahren und Vorrichtung eines Kurzschluss- und Blitzanzeigers
DE8705963U1 (de) Funkmeldevorrichtung
DE4408268C2 (de) Verfahren zur Erhöhung der Störsicherheit einer Funkalarmanlage
EP1548874A1 (fr) Parafoudre pour les dispositifs d'antenne
DE3706680A1 (de) Verfahren und einrichtung zur ueberwachung von strommasten gegen absichtliche beschaedigung
DE3611077C2 (de) Anordnung zur drahtlosen Informationsübertragung mittels elektromagnetischer Wellen extrem niedriger Frequenzen
DE102007039451A1 (de) System zur Ortung beweglicher Objekte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19901220

17Q First examination report despatched

Effective date: 19910717

RTI1 Title (correction)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 87095

Country of ref document: AT

Date of ref document: 19930415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3784866

Country of ref document: DE

Date of ref document: 19930422

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930623

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2041673

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 87118185.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950217

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950317

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951123

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19951129

Year of fee payment: 9

Ref country code: AT

Payment date: 19951129

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19951213

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951221

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951226

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951230

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951231

Ref country code: CH

Effective date: 19951231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961208

Ref country code: AT

Effective date: 19961208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961209

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19961209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19961231

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19961231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970829

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970701

EUG Se: european patent has lapsed

Ref document number: 87118185.5

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051208