EP0267568A2 - Schaltungsanordnung mit einem Schutzwiderstand zur Strombegrenzung bei Röntgenstrahlern - Google Patents

Schaltungsanordnung mit einem Schutzwiderstand zur Strombegrenzung bei Röntgenstrahlern Download PDF

Info

Publication number
EP0267568A2
EP0267568A2 EP87116532A EP87116532A EP0267568A2 EP 0267568 A2 EP0267568 A2 EP 0267568A2 EP 87116532 A EP87116532 A EP 87116532A EP 87116532 A EP87116532 A EP 87116532A EP 0267568 A2 EP0267568 A2 EP 0267568A2
Authority
EP
European Patent Office
Prior art keywords
protective resistor
circuit arrangement
arrangement according
ray
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87116532A
Other languages
English (en)
French (fr)
Other versions
EP0267568A3 (en
EP0267568B1 (de
Inventor
Bruno Mook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker AXS Analytical X Ray Systems GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0267568A2 publication Critical patent/EP0267568A2/de
Publication of EP0267568A3 publication Critical patent/EP0267568A3/de
Application granted granted Critical
Publication of EP0267568B1 publication Critical patent/EP0267568B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/54Protecting or lifetime prediction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/04Mounting the X-ray tube within a closed housing
    • H05G1/06X-ray tube and at least part of the power supply apparatus being mounted within the same housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details

Definitions

  • the invention relates to a circuit arrangement with a protective resistor for current limitation in X-ray emitters which are connected to a high-voltage generator via a high-voltage cable.
  • the X-ray tube is the X-ray tube arranged in a housing and provided with the connections necessary for operation for the electrical and the coolant supply.
  • Protective resistors of this type which are usually located together with the high-voltage generator and other switching and control devices in an apparatus called an X-ray generator, are required in order to limit the short-circuit current occurring in the event of a flashover in the tube.
  • the energy stored in the charging capacitor of the high-voltage generator would appear fully on the tube without a protective resistor, and this could be destroyed at the first flashover or contaminated spectrally by eruption-like melting at the anode.
  • the solution to the problem is seen in a circuit arrangement of the type mentioned in the introduction, in which the protective resistor is arranged on or in the X-ray emitter. This also limits the current resulting from the energy stored in the cable capacity in the event of a short circuit, which enables safe operation with increased high voltage and an associated increase in the limit power of the X-ray emitter.
  • the protective resistor can be a purely ohmic resistor or a low-capacitance, complex resistor in the form of an RL element.
  • the values of R and L are expediently chosen so that the aperiodic limit case is observed.
  • the inductor is constructed from a plurality of inductors connected in series, preferably in the form of disk windings.
  • the partial inductors can also have different frequency ranges with ferrite cores, so that the total inductance is effective over a wide frequency range.
  • the protective resistor is preferably installed in the radiator-side cable end connector or plug of the high-voltage cable, so that changes to already operated X-ray radiators are not necessary.
  • the protective resistor inside the emitter can be connected in series with the anode of the X-ray tube which is at high voltage and can be cooled with it. This allows a particularly high-resistance and thus space-saving design of the protective resistor.
  • electrical isolation for example in the form of an isolating transformer, must be provided in the radiator-side cable connection. This can also be designed as a heating transformer for tube heating.
  • FIGS. 1 and 2 exemplary embodiments of the circuit arrangement according to the invention are shown schematically in FIGS. 1 and 2.
  • FIG. 1 shows an X-ray emitter RS, in the housing G of which the actual X-ray tube RR of the end window type is arranged.
  • the high voltage of the order of magnitude between 20 and 100 kV required for the operation of the X-ray emitter RS is generated in the high-voltage generator HE and fed to the X-ray emitter RS via a high-voltage cable HK of up to 10 m in length.
  • a high-voltage cable HK of up to 10 m in length.
  • a radiator-side cable end connector or plug HV is used to connect the high-voltage cable HK and is inserted into the high-voltage socket HB of the X-ray emitter RS.
  • a protective resistor S is connected inside the X-ray emitter RS in series with the high-voltage-fed anode A and in its cooling water circuit. This makes it possible to design the protective resistor S with high resistance and thus to save space.
  • Another circuit option is to divide the protective resistor into two partial resistors, a protective resistor S ⁇ being arranged in the high-voltage generator HE as usual and the other part S in the X-ray emitter as shown.
  • the protective resistor located in the X-ray emitter RS can then be designed such that it mainly limits the discharge current surge of the cable capacitance C.
  • FIG. 2 shows an embodiment with a so-called side window tube RR in the X-ray emitter RS with a grounded and cooled anode A and a heated and high-voltage cathode K.
  • the high voltage generated in the high voltage generator HE is here also supplied via the high voltage cable HK with distributed cable capacity C to the high voltage socket HB of the X-ray emitter RS.
  • the heating current supply of the directly heated cathode K takes place via two high-voltage conductors of the high-voltage cable HK.
  • the heating circuit is very low-ohmic, approx. 1 to 3 ohms, so that a high-ohmic protective resistor cannot be arranged directly in the X-ray emitter RS.
  • the protective resistor S is installed in the radiator-side end connection HV of the high-voltage cable HK, together with an isolating transformer TT for electrical isolation.
  • the isolating transformer TT is designed as a heating transformer HT. If you choose the operating frequency of the heating transformer HT in the order of magnitude between 100 and 300 kHz, it can be built so small that it must be accommodated in the cable end connection HV together with the protective resistor S. In this embodiment too, the protective resistor S can be divided into two partial resistors S and S ⁇ , as already described for FIG.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • X-Ray Techniques (AREA)

Abstract

Der Schutzwiderstand (S) ist in oder an dem Strahler (RS) angeordnet, um im Überschlagsfall auch den aus der Kabelkapazität (C) des Hochspannungskabels (HK) zwischen Röntgengenerator (HE) und Röntgenstrahler (RS) herrührenden Strom zu begrenzen. Die Erfindung wird bei technischen Röntgeneinrichtungen angewandt, bei denen der Röntgenstrahler über ein bis zu 10 m langes Hochspannungskabel an den Röntgengenerator angegeschlossen ist.

Description

  • Die Erfindung bezieht sich auf eine Schaltungsanordnung mit einem Schutzwiderstand zur Strombegrenzung bei Röntgenstrah­lern, die über ein Hochspannungskabel an einen Hochspannungs­erzeuger angeschlossen sind. Als Röntgenstrahler wird die in einem Gehäuse angeordnete und mit den zum Betrieb notwendigen Anschlüssen für die elektrische und die Kühlmittelversorgung versehene Röntgenröhre bezeichnet.
  • Derartige Schutzwiderstände, die sich üblicherweise zusammen mit dem Hochspannungserzeuger und anderen Schalt- und Steuer­einrichtungen in einem Röntgengenerator genannten Gerät be­finden, sind erforderlich, um den bei einem Überschlag in der Röhre auftretenden Kurzschlußstrom zu begrenzen. Die im Lade­kondensator des Hochspannungserzeugers gespeicherte Energie würde ohne Schutzwiderstand voll an der Röhre auftreten, und diese könnte bereits beim ersten Überschlag zerstört oder durch eine eruptionsartige Ausschmelzung an der Anode spektral verunreinigt werden.
  • Es hat sich herausgestellt, daß bei höheren Spannungen, etwa ab 50 kV, die in der Kabelkapazität des Hochspannungskabels zwischen Röntgenstrahler und Hochspannungserzeuger gespei­cherte Energie nicht mehr vernachlässigt werden kann. Beson­ders kritisch wird der Betrieb bei Spannungen um 100 kV. Hier kann bereits bei unvorsichtiger Betriebsweise durch die in einem z. B. 5 m langen Hochspannungskabel gespeicherte elek­trische Energie bei einem einzigen Durchschlag zur Zerstörung der Röntgenröhre führen.
  • Es besteht somit die Aufgabe, die Strombegrenzung für den Überschlagsfall so zu verbessern, daß ein sicherer Betrieb bei hohen Spannungen und damit eine Erhöhung der Grenzlei­stung des Röntgenstrahlers möglich ist.
  • Die Lösung der Aufgabe wird in einer Schaltungsanordnung der eingangs genannten Art gesehen, bei welcher der Schutzwider­stand an oder in dem Röntgenstrahler angeordnet ist. Damit wird auch der aus der in der Kabelkapazität gespeicherten Energie herrührende Strom im Kurzschlußfall begrenzt, wodurch ein sicherer Betrieb bei gesteigerter Hochspannung und eine damit verbundene Erhöhung der Grenzleistung des Röntgenstrah­lers möglich wird. Der Schutzwiderstand kann ein rein ohm'scher Widerstand oder ein kapazitätsarmer komplexer Wider­stand in Form eines RL-Glieds sein. Die Werte von R und L werden zweckmäßigerweise so gewählt, daß der aperiodische Grenzfall eingehalten wird. In einer bevorzugten Ausführungs­form wird dabei die Induktivität aus mehreren in Reihe ge­schalteten Induktivitäten, vorzugsweise in Form von Scheiben­wicklungen, aufgebaut. Die Teilinduktivitäten können ferner mit Ferritkernen unterschiedliche Frequenzbereiche aufweisen, so daß die Gesamtinduktivität über einen weiten Frequenz­bereich wirksam ist.
  • Der Schutzwiderstand wird bevorzugt in den strahlerseitigen Kabelendanschluß oder -stecker des Hochspannungskabels einge­baut, so daß Änderungen an bereits betriebenen Röntgenstrah­lern nicht notwendig werden.
  • Bei Röntgenstrahlern mit Endfensterröhre kann der Schutz­widerstand innerhalb des Strahlers in Reihe mit der auf Hoch­spannung liegenden Anode der Röntgenröhre geschaltet und mit dieser gekühlt werden. Dies läßt eine besonders hochohmige und damit platzsparende Ausführung des Schutzwiderstandes zu.
  • Bei Röntgenstrahlern mit Seitfensterröhren mit geerdeter Anode ist im strahlerseitigen Kabelanschluß eine galvanische Trennung, beispielsweise in Form eines Trenntransformators, vorzusehen. Dieser kann auch als Heiztransformator für die Röhrenheizung ausgebildet werden.
  • Zur Erläuterung der Erfindung sind in den Figuren 1 und 2 Ausführungsbeispiele der erfindungsgemäßen Schaltungsanord­nung schematisch dargestellt.
  • Es zeigen
    • Figur 1 eine Schaltungsanordnung mit in den Röntgenstrahler eingebautem Schutzwiderstand,
    • Figur 2 eine Schaltungsanordnung mit in den strahlerseitigen Kabelendverschluß eingebautem Schutzwiderstand.
  • Figur 1 zeigt einen Röntgenstrahler RS, in dessen Gehäuse G die eigentliche Röntgenröhre RR vom Endfenstertyp angeordnet ist. Die von der mittels des Heiztransformators HT geheizten Kathode K austretenden Elektronen treffen auf die auf Hoch­spannung liegende Anode A. Die dabei entstehende Röntgenstrah­lung R tritt durch das Endfenster F nach außen. Da die Anode A gekühlt werden muß, ist sie in einem Kühlwasserkreislauf W im Röntgenstrahler angeordnet.
  • Die zu dem Betrieb des Röntgenstrahlers RS erforderliche Hoch­spannung in der Größenordnung zwischen 20 und 100 kV wird in dem Hochspannungserzeuger HE erzeugt und über ein bis zu 10 m langes Hochspannungskabel HK dem Röntgenstrahler RS zugeführt. Zwischen der Hochspannung führenden Leitung im Hochspannungs­kabel HK und seinem geerdeten Mantel besteht die verteilte Kabelkapazität C. Zum Anschluß des Hochspannungskabels HK dient ein strahlerseitiger Kabelendanschluß oder -stecker HV, der in die Hochspannungsbuchse HB des Röntgenstrahlers RS eingeführt ist.
  • Zur Begrenzung des Kurzschlußstroms bei einem in der Röhre auftretenden Überschlag zwischen Kathode und Anode ist ein Schutzwiderstand S im Innern des Röntgenstrahlers RS in Reihe mit der hochspannungsgespeisten Anode A und in deren Kühlwas­serkreislauf geschaltet. Damit ist es möglich, den Schutz­widerstand S hochohmig und damit raumsparend auszuführen.
  • Eine andere Schaltungsmöglichkeit besteht darin, den Schutz­widerstand in zwei Teilwiderstände aufzuteilen, wobei ein Schutzwiderstand Sʹ - wie bisher üblich - im Hochspannungser­zeuger HE angeordnet ist und der andere Teil S - wie gezeigt - ­im Röntgenstrahler. Der im Röntgenstrahler RS befindliche Schutzwiderstand kann dann so ausgelegt werden, daß er haupt­sächlich den Entladestromstoß der Kabelkapazität C begrenzt.
  • Figur 2 zeigt eine Ausführung mit einer sogenannten Seitfen­sterröhre RR im Röntgenstrahler RS mit einer geerdeten und gekühlten Anode A und einer geheizten und auf Hochspannung liegenden Kathode K.
  • Die in dem Hochspannungserzeuger HE erzeugte Hochspannung wird auch hier über das Hochspannungskabel HK mit verteilter Kabelkapazität C der Hochspannungsbuchse HB des Röntgenstrah­lers RS zugeführt. Die Heizstromversorgung der direkt geheiz­ten Kathode K erfolgt über zwei auf Hochspannung liegende Leiter des Hochspannungskabels HK. Der Heizkreis ist sehr niederohmig, ca. 1 bis 3 Ohm, so daß ein hochohmiger Schutz­widerstand direkt in dem Röntgenstrahler RS nicht angeordnet werden kann. Um eine wirksame Strombegrenzung im Überschlags­fall zu erhalten, ist hier der Schutzwiderstand S in den strahlerseitigen Endanschluß HV des Hochspannungskabels HK eingebaut, zusammen mit einem Trenntransformator TT zur gal­vanischen Trennung. In einer bevorzugten Ausführungsform ist der Trenntransformator TT als Heiztransformator HT ausgebil­det. Wählt man die Betriebsfrequenz des Heiztransformators HT in der Größenordnung zwischen 100 und 300 kHz, so kann dieser so klein gebaut werden, daß er in dem Kabelendanschluß HV zusammen mit dem Schutzwiderstand S unterzubringen ist. Auch bei dieser Ausführung kann der Schutzwiderstand S in zwei Teilwiderstände S und Sʹ aufgeteilt werden, wie bereits zu Figur 1 beschrieben.

Claims (10)

1. Schaltungsanordnung mit einem Schutzwiderstand zur Strom­begrenzung bei Röntgenstrahlern, die über ein Hochspannungs­kabel an einen Hochspannungserzeuger angeschlossen sind, dadurch gekennzeichnet, daß der Schutzwiderstand (S) an oder in dem Röntgenstrahler (RS) angeordnet ist.
2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß der Schutzwiderstand (S) ein eine Induktivität enthaltender und kapazitätsarm aufge­bauter komplexer Widerstand (RL-Glied) ist.
3. Schaltungsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Schutzwiderstand (S) in den strahlerseitigen Kabelendanschluß oder -stecker (HV) des Hochspannungskabels (HK) eingebaut ist.
4. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß bei Röntgenstrahlern (RS) mit Röntgenröhren (RR) vom Endfenstertyp der Schutzwiderstand (S) in Reihe mit der in Hochspannung liegenden Anode (A) ge­schaltet ist.
5. Schaltungsanordnung nach Anspruch 4, dadurch gekennzeichnet, daß der Schutzwiderstand (S) hochohmig ausgeführt und in den Kühlmittelkreislauf (W) für die Anode (A) eingeschaltet ist.
6. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß bei Röntgenstrahlern (RS) mit Röntgenröhren (RR) vom Seitfenstertyp mit geerdeter Anode (A) der Schutzwiderstand (S) zusammen mit einem Trenn- oder Heiztransformator (TT, HT) in den Kabelendanschluß (HV) des Hochspannungskabels (HK) eingebaut ist.
7. Schaltungsanordnung nach Anspruch 6, dadurch gekennzeichnet, daß die Betriebsfrequenz des Heiztransformators (HT) zwischen 100 und 300 kHz liegt.
8. Schaltungsanordnung nach Anspruch 2, dadurch gekennzeichnet, daß der induktive und der reelle Anteil des Schutzwiderstands (S) so ausgelegt sind, daß der aperiodische Grenzfall eingehalten wird.
9. Schaltungsanordnung nach Anspruch 2, dadurch gekennzeichnet, daß die Induktivität aus mehreren in Reihe geschalteten Teilinduktivitäten, vorzugs­weise in Form von Scheibenwicklungen, besteht.
10. Schaltungsanordnung nach Anspruch 9, dadurch gekennzeichnet, daß die Teilinduktivitäten Ferritkerne mit unterschiedlichen Frequenzbereichen auf­weisen.
EP87116532A 1986-11-14 1987-11-09 Schaltungsanordnung mit einem Schutzwiderstand zur Strombegrenzung bei Röntgenstrahlern Expired - Lifetime EP0267568B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3639088 1986-11-14
DE19863639088 DE3639088A1 (de) 1986-11-14 1986-11-14 Schaltungsanordnung mit einem schutzwiderstand zur strombegrenzung bei roentgenstrahlern

Publications (3)

Publication Number Publication Date
EP0267568A2 true EP0267568A2 (de) 1988-05-18
EP0267568A3 EP0267568A3 (en) 1989-12-06
EP0267568B1 EP0267568B1 (de) 1994-02-09

Family

ID=6314029

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87116532A Expired - Lifetime EP0267568B1 (de) 1986-11-14 1987-11-09 Schaltungsanordnung mit einem Schutzwiderstand zur Strombegrenzung bei Röntgenstrahlern

Country Status (2)

Country Link
EP (1) EP0267568B1 (de)
DE (2) DE3639088A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972459A (en) * 1988-06-06 1990-11-20 Siemens Aktiengesellschaft Arc-preventing high voltage cable for an x-radiator
EP0416696A2 (de) * 1989-09-05 1991-03-13 Philips Patentverwaltung GmbH Röntgeneinrichtung
EP0421720A2 (de) * 1989-10-05 1991-04-10 General Electric Company Unterdrückung von Transienten in Kabeln
WO1992010921A1 (en) * 1990-12-06 1992-06-25 Maxwell Laboratories, Inc. High voltage protection resistor
EP0497517A1 (de) * 1991-01-30 1992-08-05 General Electric Company Verfahren zur Reinigung einer Vakuumröhre zum Ausstrahlen von Röntgenstrahlen
EP0515198A1 (de) * 1991-05-22 1992-11-25 General Electric Company Gehäuse mit Widerstandsbeschichtung für hochfrequente elektromagnetische Abschirmung
US5229743A (en) * 1990-12-06 1993-07-20 Maxwell Laboratories, Inc. High voltage protection resistor
EP0592164A1 (de) * 1992-10-06 1994-04-13 Picker International, Inc. Leistungsversorgungen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE393871C (de) * 1921-08-09 1924-04-16 C H F Mueller Spezialfabrik Fu Einrichtung zur Daempfung von UEberspannungswellen in Roentgenanlagen mit in die Zufuehrungsleitung eingeschalteten Widerstaenden
DE610555C (de) * 1933-01-24 1935-03-14 Siemens Reiniger Werke Akt Ges Hochspannungskabel enthaltende Einrichtung zum Betrieb von Entladungsroehren
DE1809583A1 (de) * 1968-04-22 1969-11-06 Dunlee Corp Schutzschaltung bei der Energieversorgung einer Roentgenstrahlroehre
US3683191A (en) * 1970-05-18 1972-08-08 Machlett Lab Inc Modulator system
GB2100960A (en) * 1981-06-12 1983-01-06 Thomson Csf X-ray tube cathode multiple polarization device and a radiation source incorporating such a device
EP0198741A1 (de) * 1985-03-22 1986-10-22 General Electric Cgr S.A. Hochspannungsgenerator und Röntgengerät

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE393871C (de) * 1921-08-09 1924-04-16 C H F Mueller Spezialfabrik Fu Einrichtung zur Daempfung von UEberspannungswellen in Roentgenanlagen mit in die Zufuehrungsleitung eingeschalteten Widerstaenden
DE610555C (de) * 1933-01-24 1935-03-14 Siemens Reiniger Werke Akt Ges Hochspannungskabel enthaltende Einrichtung zum Betrieb von Entladungsroehren
DE1809583A1 (de) * 1968-04-22 1969-11-06 Dunlee Corp Schutzschaltung bei der Energieversorgung einer Roentgenstrahlroehre
US3683191A (en) * 1970-05-18 1972-08-08 Machlett Lab Inc Modulator system
GB2100960A (en) * 1981-06-12 1983-01-06 Thomson Csf X-ray tube cathode multiple polarization device and a radiation source incorporating such a device
EP0198741A1 (de) * 1985-03-22 1986-10-22 General Electric Cgr S.A. Hochspannungsgenerator und Röntgengerät

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972459A (en) * 1988-06-06 1990-11-20 Siemens Aktiengesellschaft Arc-preventing high voltage cable for an x-radiator
EP0416696A2 (de) * 1989-09-05 1991-03-13 Philips Patentverwaltung GmbH Röntgeneinrichtung
EP0416696A3 (en) * 1989-09-05 1991-08-14 Philips Patentverwaltung Gmbh X-ray apparatus
EP0421720A2 (de) * 1989-10-05 1991-04-10 General Electric Company Unterdrückung von Transienten in Kabeln
EP0421720A3 (en) * 1989-10-05 1991-10-16 General Electric Company Transient suppression in cables
WO1992010921A1 (en) * 1990-12-06 1992-06-25 Maxwell Laboratories, Inc. High voltage protection resistor
US5229743A (en) * 1990-12-06 1993-07-20 Maxwell Laboratories, Inc. High voltage protection resistor
EP0497517A1 (de) * 1991-01-30 1992-08-05 General Electric Company Verfahren zur Reinigung einer Vakuumröhre zum Ausstrahlen von Röntgenstrahlen
EP0515198A1 (de) * 1991-05-22 1992-11-25 General Electric Company Gehäuse mit Widerstandsbeschichtung für hochfrequente elektromagnetische Abschirmung
EP0592164A1 (de) * 1992-10-06 1994-04-13 Picker International, Inc. Leistungsversorgungen
US5347571A (en) * 1992-10-06 1994-09-13 Picker International, Inc. X-ray tube arc suppressor

Also Published As

Publication number Publication date
DE3789047D1 (de) 1994-03-24
DE3639088A1 (de) 1988-05-26
EP0267568A3 (en) 1989-12-06
EP0267568B1 (de) 1994-02-09

Similar Documents

Publication Publication Date Title
DE69816101T2 (de) Leistungstransformator/induktanz
EP0267568B1 (de) Schaltungsanordnung mit einem Schutzwiderstand zur Strombegrenzung bei Röntgenstrahlern
DE2201295B2 (de) Anregungsanordnung für optische Sender oder Verstärker
EP0285895B1 (de) Hochspannungsisolationsanordnung fuer Transformatoren und Drosselspulen, insbesondere zur Hochspannungs-Gleichstrom-Uebertragung (HGUE)
EP2271513B1 (de) Mehrsystemfahrzeugtransformator
EP0315835B1 (de) Hochspannungsspannungswandler
EP0515958A1 (de) Hochspannungs-Zündübertrager zum Zünden und Betreiben von Wechselstrom-Hochdruck-Gasentladungslampen in Kraftfahrzeugen
DE60108583T2 (de) Stromerzeugungssystem mit Statorspulen zur Spannungsverteilung zwischen inneren Kühlrohren und Wicklungssträngen sowie dazugehörige Verfahren
DE3929402A1 (de) Roentgeneinrichtung
US2254214A (en) Safety circuit for cathode ray tubes
EP0413110B1 (de) Kühlvorrichtung für elektrische Schaltungsanordnungen
EP0810815B1 (de) Röntgeneinrichtung
DE102015213810A1 (de) Hochspannungszuführung für einen Röntgenstrahler
EP0572427B1 (de) Stromwandler
EP0050091A1 (de) Wicklung für elektrische Maschinen oder Apparate
DE3029031A1 (de) Apparat zum reduzieren elektrischer stoerspannungen in elektrischen leitungen
EP0452643A1 (de) Durchführungsfilter bzw. - kondensator
DE333490C (de) UEberspannungsschutzspule
DE1143592B (de) Schaltungsanordnung zum Zufuehren einer Gleichspannung an die Regelelektrode einer Roentgenroehre und mit einer solchen Schaltungsanordnung versehene Einrichtung
DE3234024A1 (de) Hochspannungsfeste schmelzsicherungsanordnung
DE4222378C2 (de) Überspannungsschutz-Zwischenstecker für Antennenanlagen
DE526417C (de) Hochfrequenzspule, insbesondere fuer Induktionsoefen
DE2219393C3 (de) Einrichtung zum Schutz der Kathode einer Feldemissions-Elektronenkanone
EP0197370B1 (de) Schaltungsanordnung zur Energieversorgung eines elektrischen Gerätes
EP0162965B1 (de) Schaltungsanordnung zur Bedämpfung von Ein- und Ausschaltschwingungen, in einer Schaltanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19900126

17Q First examination report despatched

Effective date: 19920317

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19940209

Ref country code: GB

Effective date: 19940209

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940209

REF Corresponds to:

Ref document number: 3789047

Country of ref document: DE

Date of ref document: 19940324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19940520

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19940209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
NLS Nl: assignments of ep-patents

Owner name: BRUKER AXS ANALYTICAL X-RAY SYSTEMS GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991130

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991229

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010801