EP0264315B1 - Wellenfortpflanzungsstrukturen für die Überspannungsunterdrückung und die Absorbierung von vorübergehenden Wellen - Google Patents

Wellenfortpflanzungsstrukturen für die Überspannungsunterdrückung und die Absorbierung von vorübergehenden Wellen Download PDF

Info

Publication number
EP0264315B1
EP0264315B1 EP87402086A EP87402086A EP0264315B1 EP 0264315 B1 EP0264315 B1 EP 0264315B1 EP 87402086 A EP87402086 A EP 87402086A EP 87402086 A EP87402086 A EP 87402086A EP 0264315 B1 EP0264315 B1 EP 0264315B1
Authority
EP
European Patent Office
Prior art keywords
dielectric
structure according
linear
dielectric material
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87402086A
Other languages
English (en)
French (fr)
Other versions
EP0264315A1 (de
Inventor
Ferdy Mayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0264315A1 publication Critical patent/EP0264315A1/de
Application granted granted Critical
Publication of EP0264315B1 publication Critical patent/EP0264315B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1834Construction of the insulation between the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/12Arrangements for exhibiting specific transmission characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors

Definitions

  • SiC silicon carbide surge arresters
  • ZnO zinc oxide
  • An object of the present invention is to produce wave propagation structures (in opposition to a non-linear dipole component), in which the non-linear medium is incorporated along the direction of propagation of an electromagnetic wave (characterizing the disturbance by overvoltage), as a dielectric.
  • the non-linear medium intervenes in the distributed electrical elements of the structure.
  • Another object of the invention is to produce such a structure, which due to its distribution, does not exhibit parasitic effects (parasitic inductance, parasitic capacitance), characterizing the components with dipolar structure.
  • Another object of the invention is to produce such a structure, where the non-linear medium is not stressed when the applied electric voltage is normal: in other words this dielectric acts normally, as a conventional insulator. Only in the event of disturbing overvoltages appearing, this dielectric conducts and "short-circuits" these overvoltages (to ground, or to another conductor).
  • Another object of the invention is to produce such a structure, in which the dielectric constant, as well as the dielectric losses of this non-linear dielectric increase with the overvoltage. More particularly, the distributed (lossy) capacity increases significantly, introducing a low-pass filter effect (RC line), and a change in characteristic impedance ⁇ L / C, of the structure, and the corresponding reflections of the waves. electromagnetic.
  • RC line low-pass filter effect
  • Another object of the invention is to produce such a structure, in which such non-linear effects are obtained with a dielectric and magnetic composite, that is to say where one grafts on the characteristics described above , magnetic effects with magnetic losses, as described for example in French patent n ° 78 33385.
  • Another object of the invention is to produce such a structure, in which the effects of suppressing overvoltages (suppression in the time domain) are combined with the effects of filtering by dielectric and / or magnetic absorption and by reflection (in the frequency domain).
  • Such a structure therefore acts both as a distributed voltage limiter and as a distributed low-pass filter (insofar as the losses increase with frequency).
  • the practical interest of the invention lies in the concept of a distributed overvoltage suppression, making it possible to distribute the dissipated power (overvoltages conducted to ground or to another conductor) and to eliminate the drawbacks of the components (dipoles) conventional nonlinear, such as unfavorable responses in fast transient conditions.
  • the dielectric used is represented by a non-linear composite, that is to say behaving essentially as an insulator at normal voltages (applied to the quadrupole (tripole), but becoming essentially conductive, when overvoltages appear at the terminals. quadrupole (tripole).
  • FIG. 2 represents the elementary distributed diagram of the structure according to the invention, in which a variable conductivity G (U) is introduced by increasing conduction with the voltage U applied, and in which C (U) and r (U) describe the permittivity and the increasing dielectric losses with this same voltage U.
  • FIG. 3 represents the elementary distributed diagram of another structure according to the invention, in which a conventional insulator (that is to say independent of the voltage) is interposed between the non-linear dielectric and the ground (or other conductor ), introducing a capacity C ', considered without loss.
  • a conventional insulator that is to say independent of the voltage
  • FIG. 4 represents the application of the principles according to the invention to a coaxial structure (such as a line element, a cable etc.), in which the non-linear dielectric is placed between the "hot" conductor and a sheath or external braid.
  • a coaxial structure such as a line element, a cable etc.
  • FIG. 5 represents the application of the principles according to the invention to a multiconductor cable, with protection against overvoltages of common mode and of symmetrical mode.
  • FIG. 6 represents the application of the principles according to the invention to a flat line element or a multicore ribbon cable.
  • FIG. 7 represents the application of the principles, according to the invention, to an insulated medium or high-voltage cable, comprising a discontinuity in one of the electrodes.
  • FIG. 8 represents the application of the principles according to the invention to a medium or high-voltage cable, with protection by distribution of the gradient of the electric field, combined with a low-pass filter function.
  • FIG. 9 represents the application of the principles, according to the invention, to a case of free wave propagation (plane wave, guided or non-guided).
  • FIG. 10 represents the application of the principles, according to the invention, to a quadrupole (tripole) capacity.
  • non-linear dielectrics used: it goes without saying that these examples are not limiting , where, in particular, the non-linear dielectrics described can be applied without distinction to the various embodiments, as the non-linear dielectric media can be compact, or made of thermoplastic or thermosetting composites. The examples chosen are typical; it goes without saying also that the principles used can be applied to all other structures with free or guided wave propagation.
  • FIG. 4 which describes a typical coaxial cable, according to the invention
  • 1 represents the central conductor, made of conductive material (metal or alloy), solid, stranded, or in layers.
  • This conductor can possibly be covered with a thin conductive layer, chemically compatible with the non-linear dielectric layer 2.
  • This last layer in fact, must be in direct contact of good quality, so as not to introduce parasitic conduction effects. (speaking on G).
  • a layer 3 can be provided for this purpose, consisting, for example, of a metallization of the dielectric 2 (Silvering , Indium deposition, Conductive polymer, Metallic thin foil, Colamine, etc.).
  • Layer 4 can be a conventional metal braid, a sheet of conductive wires, a metal tube, etc., intended to make the electrical connection.
  • Layer 5 represents a mechanical protection of the line element or the cable, such as a layer of plastic, polymer, armor, etc. It can also, or additionally represent a more or less conductive, more or less absorbent dielectric layer (according to the techniques described in French patent n ° 78 33335), or even be produced with a non-linear dielectric of the same kind as that of layer 2, to suppress currents / overvoltages of external common mode.
  • the medium 2 is produced, in a first example, by a flexible non-linear dielectric, produced according to known means, described in the references in the preambles.
  • a mixture of a sintered SiC powder, with high conductivity (NORTON 254® type, from Carborundum) by n or p doping, crushed to a grain size (multi-crystalline aggregates, comprising multiple active interfaces) in the range from 30 to 200 ⁇ , optionally selected in particle size distribution, is integrated, by mixing, in a flexible matrix material, such as plastic (PVC, etc.) or polymer (Silicone, EPDM etc.) with an SiC concentration of volume from 15% to 75%, equivalent to about 20% to 94% by weight, depending on the density of the matrix material.
  • NORTON 254® type from Carborundum
  • the mixture is then extruded / injected, and crosslinked, if necessary, around the central conductor.
  • the dielectric of the cable is essentially insulating; while under 1000 v (overvoltage) the dielectric is essentially conductive.
  • One of the characteristics of the invention consists in the distribution of the Joule effects, in the case of significant overvoltages, of appreciable duration: therefore, much higher powers can be allowed, compared with the conventional SiC and ZnO protection components. Particular effects may appear in the case of composite dielectrics, according to the invention.
  • a non-linear dielectric based on agglomerates of zinc oxide crystals as used in varistors (MOV's) (electronic components protection).
  • MOV's varistors
  • These agglomerates are obtained by crushing sintered parts, for example, and placed in a matrix material as described above, with a mass load of at least 30% of agglomerates, containing at least half of grains of dimensions greater than 100 ⁇ .
  • a low charge (a few%) of conductive graphite is added to promote the number of contacts between agglomerates.
  • the exponent of non-linearity obtained is approximately 5.1, with conductivities (coefficients k) of an order of magnitude greater.
  • a non-linear dielectric suitable for currents of an order of magnitude still beyond (i.e. even lower operating voltages) a non-linear dielectric, using agglomerates of SiC and carbide crystals of titanium, with additions of very fine conductive particles, intended to perfect the contacts between agglomerates.
  • This composite is known commercially as CHOTRAP R (Chomerics), already mentioned. It allows exponents of non-linearity n of the order of 7 to be reached.
  • the relative permittivity of this composite is approximately 15 (100 Hz), decreasing to 13 (1 MHz), at low test voltage.
  • the current, for 1 m of cable described, is 3.7 A at a maximum voltage U of 120 V (essentially conductive condition). Under the normal operating voltage of 24 V, the current is 47 ⁇ A in an insulating condition.
  • the dielectric constant in the event of overvoltage is multiplied by a coefficient of 50 to 100, and the same is true for intrinsic dielectric losses (not due to conduction).
  • a non-linear dielectric medium will be indicated, with additional magnetic characteristics, as well as some typical examples of the constitution of such a composite, describing one of the important characteristics of the invention.
  • ad hoc ferrites can be produced, in which the interstices are optimized for the application according to the invention: for this, it is first necessary to introduce a certain conductivity in the crystals themselves, so as to be able to obtain good conduction under a high electric field (where the Tunnel effect and / or Schottky eliminate the effect of the insulating gaps). It is then necessary to introduce, by weak additions of metals or salts metallic, which do not integrate into the magnetic structure of crystals (or domains), but which segregate in the form of compounds with little or no conductivity, in the interstices between crystals.
  • a second technique according to the invention consists in producing afterwards (after the sintering of the ferrite) such interstices by an ad hoc treatment of the ferrite, which is put into powder form.
  • these additives composed of strongly basic conductive oxides, with insulating acid oxides favor the formation of interstitial layers which are not very conductive or not, and the known factors intervening on the size of the ferrite crystals (such as CaO, for example) make it possible to define, the number of Schottky junctions, ie the voltage where the nonlinear effects take place.
  • x corresponds to the amount of Mno, typically in the range of a mole percentage of 20 to 50% and y to the amount of Zno in the range of a mole percentage of 0 to 40%.
  • Such a typical artificial ferrite serving as an example thereafter contains a mole percentage of 40% of MnO and of 14% of ZnO (i.e. 25% and 10% by weight), with 2% in moles of TiO2 and 0, 6% by moles of Co, as additives, for the formation of the deserted interstitial layers.
  • Ferrite provides high permeability, with high magnetic losses, for use as an HF absorbent; its dielectric losses show a maximum in HF, characteristic of the Maxwell-Wagner effect, due to a conductive phase and a quasi-insulating phase.
  • This ferrite can be used in compact form, or in composite, according to the invention.
  • a composite produced, with 85% by weight of ferrite (crushed, with a distribution of linear particle size, between 50 and 200 ⁇ in size of agglomerates), and 15% by weight of polyvinyl chloride ( PVC), a conductivity close to that of the cited example of the SiC composite is obtained, with an exponent of non-linearity n 4 to 4.5 for 4 decades of current.
  • the electric cable leads in shunt 0.6 mA at 200 v (essentially insulating condition) and 0.45 A at 1000 v (essentially conducting condition).
  • An "artificial ferrite" of the second type uses, for example, an Mn-Zn ferrite powder of the conventional type, (without special interfacial layer).
  • This powder is surface treated in an aqueous or alcoholic solution of silane (such as for example vinyl-tri ( ⁇ -methoxy-etoxy-silane) ("A-172®) then dried with heat, and annealed at 150 °. for 2 hours The resulting material is then compacted in a press or mold to be integrated into a plastic or polymer (composite) matrix.
  • silane such as for example vinyl-tri ( ⁇ -methoxy-etoxy-silane)
  • A-172® vinyl-tri ( ⁇ -methoxy-etoxy-silane)
  • the number of active gaps (depleted areas) determines the overall voltage drop (for a given thickness of non-linear material), and the use of larger, more conductive grains, makes it possible to increase the non-linear current, for a given field, electric.
  • a commercial product, H7C4 power ferrite (TDK), using additions of SiO2 and CaO in the interstices, with adequate heat treatment (in a controlled atmosphere) to obtain large crystals, is suitable for increasing the conductivity by an order of greatness, compared to the example above.
  • ferrites large crystals, conductive crystals etc.
  • additions of agglomerates of coarse SiC and / or ZnO, and fine metallic additions, possibly ferromagnetic (carbonyl iron , coprecipitated iron-nickel alloys, etc.) may be suitable.
  • Such magnetic structures are particularly suitable for the suppression of parasites, by clipping (in the time domain) and by HF absorption (in the frequency domain): they represent an ideal solution for interference suppression and immunization EMC where high overvoltages can appear (EMP, lightning strike, inductive cutoff on automobile network), with fast wave fronts (HEMP), with possible transients of very short duration (Corona, automobile ignition parasites , electrostatic discharges).
  • EMC interference suppression and immunization
  • FIG. 5 one of the multiple variants of electric cable that can be produced is described, with the principles described with the aid of FIG. 4. It is a multiconductor cable (typically a low electric power distribution cable). -tension), with two phases and earth, or with 3 phases.
  • a multiconductor cable typically a low electric power distribution cable.
  • the non-linear dielectric 2 intervenes, between phases, for a double thickness, that is to say a double voltage (voltage between phases), where it occurs in single , with respect to the earth:
  • the metallic / metallized layer 3 defines the electric field, which determines the non-linear current due to the differential overvoltages.
  • a common mode protection can be provided by the external layer 5.
  • Figure 6 which describes a flat line, as it can be used in flat cables, hybrid circuits, propagation structures on printed circuits, or surface mounted components (SMD).
  • SMD surface mounted components
  • the conductors 1 and 3 define the electrodes of the line; the non-linear dielectric 2 can use any of the compact or composite materials according to the invention.
  • FIG 7 representing an insulated cable, 1 corresponds to the bare central conductor, 2 to the "insulating" dielectric, 3 'and 3' 'to the localized presence of a ground.
  • the dielectric 2 is made completely (or partially, in the radial direction of the cable) by a non-linear dielectric: any local high field gradient, will give rise to a weak conduction, and consequently, to a spreading field lines, avoiding breakdown.
  • a typical application case corresponds to that of the ignition cable of an automobile engine.
  • the conductor 1 can be straight (made of conductive or resistant metal, or of a more or less conductive composite, such as a carbon composite) or even be constituted by a helix around a core non-magnetic or magnetic absorbent, according to France patents 78,333.85 and 86,000,617.
  • the thickness of the dielectric 2, in conventional insulation is limited in practice (for example, by standards, or by questions of cost price), the point of weakness of the insulation is located at the place 7 where the ignition cable is near or touches a metal part, such as an accelerator control cable, engine part, etc. : the fact of the embodiment according to the invention reduces the safety margin of the insulation.
  • a non-linear dielectric for the case of a very thin conductor 1 (straight or helical), the peak effect specific to this conductor can be "spread" by a non-linear dielectric according to the invention.
  • a conventional absorbent ignition wire on the market uses a helix with a diameter of 2.5 mm, made of metal wire with a diameter of 0.10 mm, with a pitch of about 30 turns per centimeter.
  • An internal layer (or the total layer) in non-linear dielectric, this time reduces the internal electrical stress.
  • Such ignition cables have electrical connections (attached to wire 1) at the ends, with insulating caps 6, made of rubber, plastic or polymer, to protect the connection with the spark plug or with the distributor.
  • non-linear function can be combined with the magnetic absorption effect (by the use of a non-linear magnetic compound / composite), giving the structure l absorbent low pass filter effect.
  • a typical combination consists in using a central core (for the helix) with nonlinear magnetic dielectric (protecting against the gradients of the fine wire of the helix), and an external "insulating" layer using one of the nonlinear composites little conductors described (magnetic or non-magnetic), suitable for the high voltages involved.
  • the non-linear magnetic dielectric 2 '' is superimposed concentrically with a conventional dielectric 2 '.
  • the low-pass absorbing effect is joined to that of non-linearity, but it is also obvious that its non-linear effects can only intervene for variations in voltage-overvoltage. Diagram of figure 3).
  • the nonlinear magnetic dielectric 2 '' plays the classic role of "equipotential sleeve” (references cited in the preamble), it will cover the stripped part (of the connection), with therefore an analogous configuration to that of the previous example.
  • the nonlinear magnetic dielectric can fill the entire cross section of the dielectric, where we therefore return to an embodiment according to the diagram in FIG. 1.
  • FIG. 9 the application of the principles of the invention to a free wave propagation structure is shown.
  • a plane em wave 8 is incident on the metal surface 3 of a mechanical structure 4, such as an airplane, vessel etc., this wave coming for example from a Radar beam and the surface being an object to be detected, or else representing a lure.
  • an absorbent dielectric layer 2 is applied to the surface of the object 3, the characteristics of which are chosen to absorb the wave as well as possible (in its crossing of the layer 2) and to reflect this wave as little as possible, directly.
  • the embodiments of such dielectric layers are known, and generally use absorbent magnetic materials.
  • the dielectric layer 2 is made in part or completely of non-linear absorbent magnetic material, of ad-hoc characteristic impedance.
  • the reflectivity of the structure can be controlled between total absorption (disappearance of the object vis with respect to RADAR, this is at minimum RCS) and almost total reflection (maximum RCS), analogous to the mismatch effects for cables, described above.
  • FIG. 10 another application of the invention to a component for electronic circuits is shown, in which the concentration of the capacitive, absorption and non-linearity effects makes it possible to obtain useful practical filter components.
  • the conductor 1 can be made to include the terminal solder connections of the hot conductor, through. It can also be represented, by an internal metallization of the passage in the dielectric 2, allowing the passage of a wire, a connection plug etc.
  • the dielectric 2 is made of non-linear magnetic absorbent material, as described above ("artificial ferrite"). This gives the effect of a low-pass absorption filter, with shunt conduction protection, under the effect of an overvoltage. Any metallization 3 ensures contact with the ground electrode 4, forming the quadrupole / tripole.
  • the component according to the invention can be produced in a multiple form, that is to say where the parallel conductors 1 form a filter connector or else where metallized holes 1, as described, form a filter base for integrated circuits, connectors, the connections of which then pass through the filter base.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Insulating Materials (AREA)
  • Emergency Protection Circuit Devices (AREA)

Claims (20)

  1. Elektromagnetische Wellenfortpflanzungsstruktur, die ein Dielektrikum (2) umfaßt,
    dadurch gekennzeichnet, daß
    - die elektromagnetische Welle durch das Dielektrikum tritt;
    - das Dielektrikum entlang der gesamten Struktur in Wellenfortpflanzungsrichtung verteilt ist und eine bestimmte elektrische Länge für die sich ausbreitende Welle darstellt;
    - das Dielektrikum insofern ein nichtlineares Ohm'sches Verhalten aufweist, als es für die normalen Gebrauchsspannungen dieser Struktur im wesentlichen nicht leitend ist, und daß es bei anormalen elektrischen Überspannungen im wesentlichen leitend wird;
    - das Dielektrikum ein polykristallines Material mit dünnen Zwischenschichten ist, das unter dem Einfluß des durch diese Überspannungen verursachten hohen Wertes des elektrischen Feldes einen Tunnel- oder Schottky-Effekt bewirkt.
  2. Struktur gemäß Anspruch 1,
    bei der das polykristalline Material ein nichtmagnetischer Festkörper mit relativ leitfähigen Kristallen ist, die durch interkristalline, dünne und im wesentlichen nichtleitende Schichten getrennt sind.
  3. Struktur gemäß Anspruch 2,
    dadurch gekennzeichnet,
    daß das polykristalline Material aus der Gruppe gewählt wird, in der kristallines Silizium enthalten ist; die Metalloxide wie beispielsweise Zinkoxid, Aluminium-, Magnesium-, Titan- oder Wismuthoxid; Silizium-, Titan- und Borcarbid; Barium und Strontiumtitanat; die ferroelektrischen Verbindungen wie die ferroelektrischen Verbindungen auf der Basis von Barium und Strontium und die Polyethylen-Glimmer-Verbindungen; Zinksulfid; oder weiterhin die im wesentlichen leitfähigen Pulver, die oberflächenbehandelt werden, um Schichten zu ergeben, die im wesentlichen isoliert sind.
  4. Struktur gemäß einem der Ansprüche 1 bis 3,
    bei der das polykristalline Material in Form von Körnern in das nicht oder kaum leitfähige, steife oder flexible Bindermaterial eingebracht wird, und zwar in ausreichender Konzentration, um einen zumindest teilweisen Kontakt zwischen den verschiedenen Körnern in der Verbindung zu gewährleisten, und dies gegebenenfalls unter Beimengung geringer Mengen leitfähiger Körner, um die Leitfähigkeit zu erhöhen.
  5. Struktur gemäß einem der Ansprüche 1 bis 4,
    bei der das Dielektrikum mit nichtlinearem Verhalten eine Dielektrizitätskonstante und einen Verlustwinkel aufweist, die mit der angelegten Spannung steigen und so eine gestreute Kapazität und eine zunehmende dielektrische Absorption einführen.
  6. Struktur gemäß einem der Ansprüche 1 bis 5,
    bei der jede Überspannung, die sich in der Struktur fortpflanzt, teilweise durch Leitung zur Masse beseitigt wird, teilweise durch die Erhöhung der Kapazität zur Masse und die Erhöhung der dielektrischen Verluste gespeichert und absorbiert wird, und teilweise durch Fehlanpassung der Struktur aufgrund dieser Erhöhung der gestreuten Kapazität zur Quelle reflektiert wird.
  7. Struktur gemäß Anspruch 1,
    bei der das nichtlineare Dielektrikum aus einem festen, dielektromagnetischen und polykristallinen Material besteht, das aus relativ leitfähigen Magnetkristallagglomeraten besteht, die dünne, interkristalline und im wesentlichen nichtleitende Schichten enthalten.
  8. Struktur gemäß Anspruch 7,
    dadurch gekennzeichnet,
    daß das polykristalline Material aus der Gruppe der ferromagnetischen Keramiken ausgewählt wird, die als Besonderheit spezielle Verunreinigungen enthalten, die die Bildung derartiger intergranularer Schichten begünstigt mit im wesentlichen isolierenden Phasen oder ferromagnetischen Pulvern, die im wesentlichen leitend sind und oberflächenbehandelt werden, um besagte dünne und im wesentlichen isolierende Schichten aufzuweisen.
  9. Struktur gemäß Anspruch 7 oder Anspruch 8,
    bei der das polykristalline magnetische Material in Form von Körnern in ein nicht oder kaum leitendes, steifes oder flexibles Bindermaterial eingebracht wird, und zwar in einer ausreichenden Konzentration, um einen zumindest teilweisen Kontakt zwischen den verschiedenen Körnern in diesem Verbund zu gewährleisten, gegebenenfalls unter Beimengung geringer Mengen von leitfähigen Körnern, um die Leitfähigkeit zu optimieren.
  10. Struktur gemäß einem der Ansprüche 7 bis 9,
    bei der das nichtlineare Dielektrikum eine Dielektrizitätskonstante und einen Verlustwinkel hat, die mit der angelegten Spannung steigen und so eine gestreute Kapazität und eine zunehmende elektrische Absorption einleiten, sowie eine Permeabilität und einen magnetischen Verlustwinkel, die spannungsunabhängig sind, aber mit zunehmender Frequenz steigen.
  11. Struktur gemäß einem der Ansprüche 7 bis 10,
    bei der jede sich fortpflanzende Überspannung teilweise durch Leitung zur Masse beseitigt wird, teilweise durch Erhöhung der Kapazität in der Masse und durch Erhöhung der Dielektrizitätsverluste gespeichert und absorbiert wird, teilweise durch Fehlanpassung der Struktur infolge dieser Kapazitätserhöhung zur Quelle reflektiert wird und teilweise durch die magnetische Permeabilität und die magnetischen Verluste absorbiert wird.
  12. Struktur gemäß einem der Ansprüche 7 bis 11,
    bei der zwei Effekte zur Wellenfortpflanzung kombiniert werden:
    - die Unterdrückung von Störspannungen oberhalb eines bestimmten Amplitudenschwellenwertes;
    - die Unterdrückung schneller und vorübergehender Wellenformen, die eine bestimmte Frequenz überschreiten, aufgrund magnetischer Verluste im Spektrum der verwendeten magnetischen Materialien.
  13. Struktur gemäß einem der vorgenannten Ansprüche,
    bei der das nichtlineare Dielektrikum einen Nichtlinearitätskoeffizienten von größer oder gleich 2 aufweist, um je nach Fall eine Ad-hoc-Näherung des im wesentlichen isolierenden Verhaltens bei Nennbetriebsspannungen und ein im wesentlichen leitendes Verhalten bei störenden Überspannungen aufzuweisen.
  14. Struktur gemäß einem der vorgenannten Ansprüche,
    bei der mindestens eine klassische Isolierschicht in das nichtlineare Dielektrikum eingelagert ist.
  15. Struktur gemäß einem der vorgenannten Ansprüche,
    dargestellt durch eine Leitung, ein Leitungselement oder ein Elektrokabel mit konzentrischer, flacher oder Spiralform, mit mindestens zwei Leitern oder mindestens einem Leiter und einer Masse.
  16. Struktur gemäß einem der Ansprüche 1 bis 14,
    bei der das nichtlineare Dielektrikum von einer sich frei fortpflanzenden Welle oder einer leitungsgebundenen Welle durchdrungen wird und bei der der nichtlineare Effekt gesteuert werden kann.
  17. Struktur gemäß Anspruch 15,
    bei der die Leitung, das Leitungselement oder das Elektrokabel innen einen normalen Isolator und außen das magnetische, absorbierende und nichtlineare Dielektrikum umfaßt, und bei der eine bestimmte Länge dieses Dielektrikums an den Endstücken dieser Struktur als Verteilermuffe für den Feldgradienten verwendet wird.
  18. Struktur gemäß Anspruch 15 oder Anspruch 17,
    bei der das Kabel ein Zündkabel für Verbrennungsmotoren mit Isoliereinsätzen ist, bei dem der Isolator des Kables und/oder der Einsätze ganz oder teilweise aus einem nichtlinearen Delektrikum besteht, da so die dielektrischen Beanspruchungen an den Stellen vermindert werden, die an oder in der Nähe von Massen liegen, oder aber zwischen Kabelwindungen im Fall eines Spiralleiters.
  19. Struktur gemäß einem der vorstehenden Ansprüche,
    bei der die Struktur ein induktives oder kapazitives elektronisches Schutzelement mit drei oder vier Polen darstellt, oder aber eine Einheit, die mindestens eine Induktanz und eine Kapazität kombiniert, von denen mindestens eine aus einem drei- oder vierpoligen Bauelement besteht, zur Realisierung komplexer Filter.
  20. Struktur gemäß einem der vorstehenden Ansprüche,
    bei der die Kontrolle der möglichen Dehnung des nichtlinearen Dielektrikums unter der thermischen Last einer Überspannung es ermöglicht, die Effekte positiver, neutraler oder negativer Temperaturkoeffizienten zu erzielen.
EP87402086A 1986-09-18 1987-09-18 Wellenfortpflanzungsstrukturen für die Überspannungsunterdrückung und die Absorbierung von vorübergehenden Wellen Expired - Lifetime EP0264315B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8613093A FR2604286B1 (fr) 1986-09-18 1986-09-18 Structures a propagation d'onde pour la suppression de surtensions et l'absorption de transitoires
FR8613093 1986-09-18

Publications (2)

Publication Number Publication Date
EP0264315A1 EP0264315A1 (de) 1988-04-20
EP0264315B1 true EP0264315B1 (de) 1993-12-01

Family

ID=9339084

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87402086A Expired - Lifetime EP0264315B1 (de) 1986-09-18 1987-09-18 Wellenfortpflanzungsstrukturen für die Überspannungsunterdrückung und die Absorbierung von vorübergehenden Wellen

Country Status (4)

Country Link
US (1) US4841259A (de)
EP (1) EP0264315B1 (de)
DE (1) DE3788335D1 (de)
FR (1) FR2604286B1 (de)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172108A (en) * 1988-02-15 1992-12-15 Nec Corporation Multilevel image display method and system
DE3938240A1 (de) * 1989-11-17 1991-05-23 Telefunken Systemtechnik Spannungsabhaengiger widerstand (varistor) fuer hochfrequenz-/hochenergieanwendungen
US5500629A (en) * 1993-09-10 1996-03-19 Meyer Dennis R Noise suppressor
GB9424306D0 (en) * 1994-12-01 1995-01-18 Chelton Electrostatics Ltd A lightning diverter
US5742223A (en) * 1995-12-07 1998-04-21 Raychem Corporation Laminar non-linear device with magnetically aligned particles
FR2753300B1 (fr) * 1996-09-09 1998-10-09 Alcatel Cable Conducteur electrique protege contre les perturbations electromagnetiques depassant un seuil
US6559376B2 (en) * 1996-09-30 2003-05-06 Nology Engineering, Inc. Combustion initiation device and method for tuning a combustion initiation device
US5745324A (en) * 1996-11-20 1998-04-28 Greenspring Computers, Inc. Electrostatic discharge and excessive voltage protection circuit
DE19737759A1 (de) * 1997-08-29 1999-03-04 Alsthom Cge Alcatel Koaxiales Hochfrequenz-Kabel
US5999398A (en) * 1998-06-24 1999-12-07 Avx Corporation Feed-through filter assembly having varistor and capacitor structure
US6469636B1 (en) 1998-12-02 2002-10-22 Halliburton Energy Services, Inc. High-power well logging method and apparatus
JP4156512B2 (ja) * 2001-09-14 2008-09-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電磁結合現象を抑制するための装置
US6683256B2 (en) * 2002-03-27 2004-01-27 Ta-San Kao Structure of signal transmission line
KR20050014884A (ko) * 2002-06-25 2005-02-07 타이코 일렉트로닉스 코포레이션 데이터 버스 인터페이스에 과전류와 과전압 보호 및 공통모드 필터링을 제공하는 집적 장치
WO2004064452A1 (fr) * 2003-01-09 2004-07-29 Zhengkai Yin Cable electroluminescent et procede de fabrication associe
US20040199069A1 (en) * 2003-04-02 2004-10-07 Connelly Patrick R. Device and method for preventing magnetic resonance imaging induced damage
SE527008C2 (sv) * 2003-11-07 2005-12-06 Abb Research Ltd System för överföring av elektrisk kraft
ATE430336T1 (de) * 2005-05-23 2009-05-15 Chih-Yang Su Kfz-erdungssystem mit spannungsstabilisierungs- und überspannungsschutzschaltung
US20060271144A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271142A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7801625B2 (en) * 2005-05-27 2010-09-21 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7551966B2 (en) * 2005-05-27 2009-06-23 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7539545B2 (en) * 2005-05-27 2009-05-26 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271139A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7555350B2 (en) * 2005-05-27 2009-06-30 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7529591B2 (en) * 2005-05-27 2009-05-05 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US8121705B2 (en) * 2007-06-27 2012-02-21 Medtronic, Inc. MRI-safe defibrillator electrodes
US8564385B2 (en) * 2007-08-23 2013-10-22 Lockheed Martin Corporation Coaxial concentric nonlinear transmission line
US8086321B2 (en) * 2007-12-06 2011-12-27 Cardiac Pacemakers, Inc. Selectively connecting the tip electrode during therapy for MRI shielding
US8571661B2 (en) 2008-10-02 2013-10-29 Cardiac Pacemakers, Inc. Implantable medical device responsive to MRI induced capture threshold changes
EP2398553B1 (de) 2009-02-19 2015-07-22 Cardiac Pacemakers, Inc. Systeme zur bereitstellung einer therapie für arrhythmien in mrt-umgebungen
AU2010328622B2 (en) 2009-12-08 2014-09-11 Cardiac Pacemakers, Inc. Implantable medical device with automatic tachycardia detection and control in MRI environments
CN102354876A (zh) * 2011-06-21 2012-02-15 太仓南极风能源设备有限公司 抗干扰电器插座
CN102982932B (zh) * 2012-12-20 2016-12-07 武汉芯宝科技有限公司 具有吸收瞬间电脉冲能量的电压诱变阻膜包线及制作方法和用途
US10036361B2 (en) * 2014-08-12 2018-07-31 Imagineering, Inc. Ignition device
JP5933664B2 (ja) * 2014-10-23 2016-06-15 三菱電機株式会社 内燃機関用点火コイル装置
US10791656B1 (en) * 2019-11-01 2020-09-29 Advanced Fusion Systems Llc Method and device for separating high level electromagnetic disturbances from microwave signals

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1143259B (de) * 1953-08-13 1963-02-07 Siemens Ag Von der Aussentemperatur unabhaengiger elektrischer Halbleiterwiderstand
FR1330480A (fr) * 1961-08-04 1963-06-21 Int Standard Electric Corp Ligne de transmission d'informations sans perte
US4388632A (en) * 1980-10-03 1983-06-14 Sprague Electric Company Signal limiting integrated circuit
US4344047A (en) * 1981-02-12 1982-08-10 The United States Of America As Represented By The Secretary Of The Army Millimeter-wave power limiter
US4495482A (en) * 1981-08-24 1985-01-22 General Electric Company Metal oxide varistor with controllable breakdown voltage and capacitance and method of making
FR2553583B1 (fr) * 1983-10-14 1986-03-21 Thomson Csf Limiteur de puissance elevee a diodes pin pour ondes millimetriques et procede de realisation des diodes
FR2560442B1 (fr) * 1984-02-24 1987-08-07 Thomson Csf Dispositif de commutation et de limitation a ligne a fente, fonctionnant en hyperfrequences

Also Published As

Publication number Publication date
FR2604286A1 (fr) 1988-03-25
DE3788335D1 (de) 1994-01-13
FR2604286B1 (fr) 1988-11-10
US4841259A (en) 1989-06-20
EP0264315A1 (de) 1988-04-20

Similar Documents

Publication Publication Date Title
EP0264315B1 (de) Wellenfortpflanzungsstrukturen für die Überspannungsunterdrückung und die Absorbierung von vorübergehenden Wellen
US4924340A (en) Circuit protection device
US6124549A (en) Electrical stress control
EP1128395B1 (de) Hoch und Höchstspannungsgleichstromenergiekabel
CA1153828A (en) Thin film varistor
JPH11317113A (ja) 静電放電保護用のポリマ―複合材料
Nahm The electrical properties and dc degradation characteristics of Dy2O3 doped Pr6O11-based ZnO varistors
TWI322566B (de)
CA2211813A1 (fr) Varistances a base de poudres nanocristallines produites par broyage mecanique intense
JPS61259559A (ja) 回路保護装置
JPS61258625A (ja) 過電圧保護装置
EP0196891B1 (de) Schutzeinrichtung für elektrische Schaltungen
Kharchouche et al. Non‐linear coefficient of BaTiO3‐doped ZnO varistor
US5530206A (en) Telecommunication cable
EP0126984B1 (de) Verschmutzungsunempfindlicher elektrischer Isolator
EP1280167B1 (de) Halbleitende Abschirmung für Energiekabel
Tabrizi et al. Dielectric characteristics and nonlinear properties of ZnO–polypyrrole composites
JP2005302937A (ja) 積層型電子部品及びその製造方法
US4860155A (en) Overvoltage protection device
JPS63102302A (ja) 回路保護装置
WO1990000826A1 (en) Circuit protection arrangement
FR2558661A1 (fr) Ensemble connecteur
EP0667628B1 (de) Supraleitende Spule mit allgemeinen Übergang
JP3874862B2 (ja) 直流架橋ポリエチレン絶縁電力ケーブル
KR101569624B1 (ko) 몰리브덴 아레스터

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19881020

17Q First examination report despatched

Effective date: 19910704

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19931201

Ref country code: DE

Effective date: 19931201

Ref country code: GB

Effective date: 19931201

Ref country code: SE

Effective date: 19931201

Ref country code: NL

Effective date: 19931201

REF Corresponds to:

Ref document number: 3788335

Country of ref document: DE

Date of ref document: 19940113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19940312

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19931201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19940930

Ref country code: LI

Effective date: 19940930

Ref country code: BE

Effective date: 19940930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19941208

Year of fee payment: 8

BERE Be: lapsed

Owner name: MAYER FERDY

Effective date: 19940930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: AUV

Free format text: LE BREVET CI-DESSUS EST TOMBE EN DECHEANCE, FAUTE DE PAIEMENT, DE LA 8E ANNUITE.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST