EP0264148A1 - Système de mesure de débit et de surveillance pour pompes à déplacement positif et pompes munies de ce système - Google Patents

Système de mesure de débit et de surveillance pour pompes à déplacement positif et pompes munies de ce système Download PDF

Info

Publication number
EP0264148A1
EP0264148A1 EP87201707A EP87201707A EP0264148A1 EP 0264148 A1 EP0264148 A1 EP 0264148A1 EP 87201707 A EP87201707 A EP 87201707A EP 87201707 A EP87201707 A EP 87201707A EP 0264148 A1 EP0264148 A1 EP 0264148A1
Authority
EP
European Patent Office
Prior art keywords
pump
discharge
pressure
detection
pumps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87201707A
Other languages
German (de)
English (en)
Other versions
EP0264148B1 (fr
Inventor
Paul Dancer
Jean Moncharmont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PUMPTECH NV
Original Assignee
PUMPTECH NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PUMPTECH NV filed Critical PUMPTECH NV
Publication of EP0264148A1 publication Critical patent/EP0264148A1/fr
Application granted granted Critical
Publication of EP0264148B1 publication Critical patent/EP0264148B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0201Position of the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/03Pressure in the compression chamber

Definitions

  • This Invention consists of an automatic system for the measurement of flow rate and monitoring of positive-displacement pumps.
  • the Invention makes use of the volumetric pumping characteristics of positive-displacement pumps.
  • a technique commonly used is to count the number of pump strokes and to multiply this number by the theoretical volume discharged by one stroke. This method of measurement remains accurate so long as the pump and pumping conditions remain good.
  • the Invention uses this technique of counting the number of pump strokes and corrects it by measuring the volume of fluid actually discharged at each stroke. In this way correct measurement of the flow rate is obtained regardless of pumping conditions or the condition of the pump.
  • Monitoring is performed by the microcomputer. If certain parameters reach or exceed pre-determined values, the microcomputer will make the required calculations to monitor correct pump operation. It checks the sensors and then checks over several cycles that the fault is real. If the fault is confirmed the microcomputer transmits the data and takes the measurements required for flow correction.
  • the data transmitted are generally the values for the flow and the volume of fluid actually discharged from the pump, as well as a value given by a " pumping conditions and state-of-pump" indicator.
  • the latter is in fact the volumetric efficiency of the pump, i.e. the ratio between the volume actually discharged, over the volume theoretically discharged under perfect pumping conditions with a perfect pump.
  • This indicator is extremely useful for observing the reactions of the pump to variations in pumping conditions.
  • the operator of a pump knows in real time if the pumping conditions have been improved or worsened due to his actions or to external actions. Valve or sleeve leaks, spring-breaks and sensor malfunctions are also transmitted.
  • item 1 is a central display and checking unit providing real-time monitoring of a set of positive-displacement pumps and recording the pumping operations.
  • Items 2 are the local monitoring elements intended for use by the pump operators.
  • Items 3 are microcomputer units, part of the Invention. Depending on their configurations, these microcomputers can be connected to one or several positive-displacement pumps. In Figure 1, they are connected successively from left to right to two triplex pumps 4, a quintuplex pump 5 and then to two triplex pumps 4 again.
  • the use of a multipoint serial data bus between parts 1 and 2 simplifies the addition or removal of a particular equipment item.
  • a similar bus is used between parts 2 and 3, allowing for connection of other sensors in series with microcomputer 3, plus the use of a single line to local monitoring unit 2.
  • the number of pressure sensors 6 connected to microcomputer 3 is equal to the sum of the number of discharge chambers 7 of pumps 4 or 5 to which microcomputer 3 is connected.
  • the number of proximity sensors 8 is equal to the number of pumps 4 or 5 connected. In other words, there must be a pressure sensor 6 for each discharge chamber 7 and a proximity sensor 8 per pump 4 or 5.
  • a preferential mode for realisation of the Invention consists of sensor 8 detecting the passage of a ring (B) attached to the piston and providing a position reference.
  • a ring B
  • the nature of the reference willl be selected to suit the sensor; the preferred example would be a steel ring detected by an inductive proximity sensor 8.
  • Another example consists of an optical sensor associated with an optical reference on the piston or a Hall-effect sensor associated with a reference consisting of a magnet.
  • the pump phase reference can also be obtained, for example, by detecting passage of a referenced tooth on a piston drive wheel or similar part mechanically linked to the piston, or by a sensor as described above.
  • FIG. 2 is the cross-section through a discharge chamber 7 of an example of a positive-displacement pump 4 or 5.
  • the principal characteristic of positive-displacement pumps 4 or 5 is that discharge chamber 7 is filled by the alternating action of slide 9, and then evacuated into discharge circuit 10.
  • the direction of fluid flow is established by valve 11, known as the suction valve, and valve 12, known as the discharge valve. Movement of valves 11 and 12 is determined by the action of suction valve spring 13 and discharge valve spring 14, and by the forces exerted by the moving fluid and the pressures in discharge circuit 10, the discharge chamber and suction circuit 15.& ⁇ /PAR>
  • the preferred configuration is with pressure sensor 6 mounted on the inner side of flap P to chamber 7. In this way the sensor does not weaken the pump body. However, if this solution is technically too complex, the sensor may be installed flush on another flat part of the chamber.
  • Normal pump operation is as follows: when slide 9 advances into discharge chamber 7 from its stationary position (point which corresponds to maximum withdrawal), the fluid in the chamber is firstly expelled into suction circuit 15 until suction anti-return valve 11 closes, cutting off the fluid flow.
  • discharge valve 12 opens and the fluid is expelled into the discharge circuit.
  • the volume of fluid delivered into discharge circuit 10 is equal to the volume displaced by slide 9 as the latter advances into chamber 7 from the position it occupied at the moment discharge valve 12 opened, up to its stationary position corresponding to maximum penetration into chamber 7.
  • FIG. 3 is a block diagram of a microcomputer unit.
  • Item 15 is a microprocessor system with its clock, bus and memories.
  • a safeguarded memory 16 provides for storage of a certain quantity of data, in particular the calibration values of pumps 4 and 5 which are connected to the microcomputer. These values allow in particular for the calculation of the volumes displaced by slide 9 betweem its stationary position and its position at the moments of opening and closing of discharge valve 12.
  • Items 17 are connecting parts providing links with the multipoint serial bus.
  • pressure sensors 6 are connected to microcomputer 15 via adapters 18.
  • proximity detectors 8 are connected to microprocessor system 15 by adapters 19. Items 6, 18, and 19 are sufficient in number to provide for a pressure sensor 6 and an adapter 18 per discharge chamber 7, and for a proximity detector 8 and an adapter 19 per pump 4 or 5.
  • FIG. 4 shows three curves plotted against time.
  • Curve 21 shows the variations in the output signal from a discharge sensor which measures the position of discharge valve 12. At the origin point, valve 12 is at rest on its seat: the curve is at maximum. As the curve begins to drop this indicates that valve 12 is moving away from its seat. The fluid then begins to be discharged into the discharge circuit 10.
  • Curve 22 represents the signal from a sensor 6 placed in discharge chamber 7 corresponding to discharge valve 12 whose position is observed.
  • Curve 23 is the derivative in relation to time, of curve 22.
  • Part of the Invention consists in using a pressure sensor 6 to detect opening and closing of discharge valves 12: use of movement sensor is not always suitable for meas ment of the movement of valve 12 inside the pump, whereas a pressure sensor has no moving parts and resists the pressures created by the pumps.
  • pressure sensor 6 gives more information on the operational state of the pump than would a movement sensor measuring the movement of discharge valve 12.
  • the highest point of curve 23 corresponds to the exact moment of opening of valve 12: this is used in the software of microcomputer 3 to determine the moment of opening of valve 12 from the form of the signal representing the pressure in the chamber.
  • the moment of closing of discharge valve 12 is calculated in a similar way.
  • Another technique used to determine the moment of opening and closing of discharge valves 12 in another configuration of the Invention makes use of the comparison between the signals from a pressure sensor 6 in discharge chamber 7 and a pressure sensor of the same type in discharge circuit 10: when the signals are equal, discharge valve 12 is open. If the pressure in the discharge chamber is lower than the pressure in discharge circuit 10, discharge valve 12 will be closed.
  • volumetric efficiency of the pump takes place slowly in relation to the operating speed of the pumps plus the calculations performed by microcomputer 3. In such cases it is often the case that the volumetric efficiency of the pump does not vary during several pumping cycles. It is therefore necessary to perform the efficiency calculations every n cycles only, and to connect several pumps to a given microcomputer 3.
  • Microcomputer 3 calculates the volumetric efficiency of each pump in turn. This value is stored in memory and used as often as necessary, (e.g. every second), along with the pump operating speed, for flow-rate calculation for each pump (the volumetric efficiency value being assumed to be constant since it was calculated for the last time).
  • Figure 5 shows signals 24 and 25 from two pressure sensors 6 in two discharge chambers 7.
  • the pressure sensor 6 whose signal is represented by curve 24 is located in a discharge chamber 7 whose discharge valve 12 is in good working order.
  • the pressure sensor 6 whose signal is represented by curve 25 is in a discharge chamber 7 whose discharge valve 12 is defective so that there is a leak from discharge circuit 10 to discharge chamber 7 when discharge valve 12 is at rest on its seat.
  • the pressure in discharge circuit 10 is greater than the pressure in suction circuit 15.
  • the vertical lines represent the moments when the respective discharge chamber slides 9 are stationary.
  • curve 24 shows that the pressure in discharge chamber 7 does not increase before immobilising of slide 9, the pressure in discharge chamber 7 with a faulty discharge valve 12 does increase before the slide stops.
  • microcomputer runs a program stored in memory which contains a number of tasks which may be as listed be low (but not necessarily in the given order): - Energizing and initialisation of microprocessor (15). - Acquisition of data from pressure sensors 6 and proximity detectors 19. - Calculation of moments of opening and closing of discharge valve 12 of each discharge chamber 7 by one of the methods indicated above. - Detection of the state of the pump (running or stopped), and calculation of operating speed according to the case. - Calculation of moments of immobilisation of slide 9 of each discharge chamber 7 by analysis of signals from proximity detectors 8. - Calculation of volumes of fluid actually discharged and volumes re-introduced into each discharge chamber 7.
  • Microcomputer 3 can perform numerous other calculations and run other programs; those listed above are given by way of example.
  • the system resulting from the Invention is designed to be sufficiently flexible in application to allow it to be used with different types of positive-displacement pumps.
  • Appended Figure 6 represents the display panel for the unit, per the Invention. This shows more clearly the progress represented by the Invention, since in addition to accurate and precise measurement of flow and volume, it provides a direct reading of volumetric efficiency and indicates operating faults.
  • the "Chamber" window equipped with LEDs indicates the chamber in which the fault has appeared as well as the valve concerned. This allows an operator to intervene immediately and with maximum effectiveness which is not possible with presently existing systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
EP87201707A 1986-10-08 1987-09-09 Système de mesure de débit et de surveillance pour pompes à déplacement positif et pompes munies de ce système Expired - Lifetime EP0264148B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8614088A FR2605059B1 (fr) 1986-10-08 1986-10-08 Systeme de mesure de debit et de surveillance pour pompes a deplacement positif et pompes munies de ces systemes
FR8614088 1986-10-08

Publications (2)

Publication Number Publication Date
EP0264148A1 true EP0264148A1 (fr) 1988-04-20
EP0264148B1 EP0264148B1 (fr) 1991-04-17

Family

ID=9339728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87201707A Expired - Lifetime EP0264148B1 (fr) 1986-10-08 1987-09-09 Système de mesure de débit et de surveillance pour pompes à déplacement positif et pompes munies de ce système

Country Status (8)

Country Link
EP (1) EP0264148B1 (fr)
JP (1) JPS63105291A (fr)
CN (1) CN1021129C (fr)
BR (1) BR8705330A (fr)
DE (1) DE3769429D1 (fr)
FR (1) FR2605059B1 (fr)
NO (1) NO874201L (fr)
SU (1) SU1556547A3 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990002066A1 (fr) * 1988-08-26 1990-03-08 Alfred Teves Gmbh Procede pour controler le fonctionnement ou la capacite fonctionnelle d'un dispositif, d'une installation ou de composants de celle-ci
US4976144A (en) * 1988-08-25 1990-12-11 Fisher Controls International, Inc. Diagnostic apparatus and method for fluid control valves
US5109692A (en) * 1988-08-25 1992-05-05 Fisher Controls International Inc. Diagnostic apparatus and method for fluid control valves
US5111690A (en) * 1990-07-09 1992-05-12 Westinghouse Electric Corp. Valve stem load monitoring system with means for monitoring changes in the valve yoke elongation
DE4040919A1 (de) * 1990-12-20 1992-06-25 Krupp Maschinentechnik Messeinrichtung zur erfassung charakteristischer kenngroessen, welche die arbeitsweise hydraulischer aggregate erkennbar machen
EP0508823A1 (fr) * 1991-04-10 1992-10-14 Sanden Corporation Compresseur à plateau en biais avec dispositif à déplacement variable
WO1992017339A1 (fr) * 1989-12-18 1992-10-15 Master Flo Technology Inc. Mesure du debit d'un liquide
WO1992019867A1 (fr) * 1991-05-03 1992-11-12 Hans Willi Meinz Procede et dispositif pour le dosage controle d'au moins un composant coulant
AU632759B2 (en) * 1988-08-25 1993-01-14 Fisher Controls International Inc. Diagnostic apparatus and method for fluid control valves
US5197328A (en) * 1988-08-25 1993-03-30 Fisher Controls International, Inc. Diagnostic apparatus and method for fluid control valves
EP0751446A2 (fr) * 1996-09-28 1997-01-02 Maag Pump Systems AG Méthode et dispositif de surveillance d'unités d'un système
WO2006084468A1 (fr) * 2005-02-10 2006-08-17 Sauer-Danfoss Aps Procede et dispositif de determination de parametres d'une hydromachine
WO2007072385A2 (fr) * 2005-12-20 2007-06-28 Schlumberger Canada Limited Systeme et procede pour determiner le debut de modes de defaillance dans une pompe volumetrique
WO2008018040A2 (fr) * 2006-08-11 2008-02-14 Schlumberger Canada Limited Dispositif de contrôle de pompe
EP2723982A4 (fr) * 2011-07-18 2015-12-30 Services Petroliers Schlumberger Commande adaptative de pompe pour mode de défaillance d'une pompe à déplacement positif
US10378537B2 (en) 2016-10-06 2019-08-13 Caterpillar Inc. System for detecting failure location in a pump
US11009424B2 (en) 2014-05-15 2021-05-18 Nordson Corporation Dense phase pump diagnostics

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4209679A1 (de) * 1992-03-25 1993-12-16 Schwing Gmbh F Dickstoffpumpe
ITMI20022642A1 (it) * 2002-12-16 2004-06-17 Nuovo Pignone Spa Metodo e sistema per monitorare un compressore alternativo.
TWI402423B (zh) * 2006-02-28 2013-07-21 Entegris Inc 用於一幫浦操作之系統及方法
CN101782061A (zh) * 2010-03-14 2010-07-21 苏州工业园区华西泵业有限公司 一种纺丝泵试验台
CN105928585B (zh) * 2016-04-15 2019-02-19 徐州徐工施维英机械有限公司 输送缸输送量计量方法和计量装置以及输送系统
CN106996850A (zh) * 2017-03-30 2017-08-01 杭州石林自动化工程有限公司 一种活塞压力计全自动压力源
CN107939661A (zh) * 2017-12-04 2018-04-20 西南石油大学 一种压裂泵液力端工作参数实时监控系统
CN108303243A (zh) * 2018-01-31 2018-07-20 嘉兴林众电子科技有限公司 微量泵流量测试系统
CN108757425A (zh) * 2018-05-16 2018-11-06 四川宏华电气有限责任公司 一种压裂泵健康状态监视系统及方法
DE102018121760A1 (de) * 2018-09-06 2020-03-12 Brinkmann Pumpen K.H. Brinkmann Gmbh & Co. Kg Verfahren zur Feststellung von Leckagen einer Verdrängerpumpe
DE102020127285B3 (de) 2020-10-16 2022-01-20 K.H. Brinkmann GmbH & Co Kommanditgesellschaft Verfahren zur Feststellung von Leckagen einer Verdrängerpumpe
CN115506762B (zh) * 2021-06-03 2024-09-06 中国石油天然气集团有限公司 压裂泵液力端故障检测方法及其检测装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0183295A1 (fr) * 1984-11-15 1986-06-04 Dowell Schlumberger Corp. Procédé pour déterminer les caractéristiques de pompage d'une pompe à déplacement positif et une pompe à laquelle ce procédé peut être appliqué

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779457A (en) * 1971-06-28 1973-12-18 Trw Inc Data normalizing method and system
US4526513A (en) * 1980-07-18 1985-07-02 Acco Industries Inc. Method and apparatus for control of pipeline compressors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0183295A1 (fr) * 1984-11-15 1986-06-04 Dowell Schlumberger Corp. Procédé pour déterminer les caractéristiques de pompage d'une pompe à déplacement positif et une pompe à laquelle ce procédé peut être appliqué

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU632759B2 (en) * 1988-08-25 1993-01-14 Fisher Controls International Inc. Diagnostic apparatus and method for fluid control valves
US4976144A (en) * 1988-08-25 1990-12-11 Fisher Controls International, Inc. Diagnostic apparatus and method for fluid control valves
US5109692A (en) * 1988-08-25 1992-05-05 Fisher Controls International Inc. Diagnostic apparatus and method for fluid control valves
US5197328A (en) * 1988-08-25 1993-03-30 Fisher Controls International, Inc. Diagnostic apparatus and method for fluid control valves
EP0487507A2 (fr) * 1988-08-26 1992-05-27 ITT Automotive Europe GmbH Procédé de surveillance d'un système hydraulique de freinage et système de freinage pour sa mise en oeuvre
EP0487507A3 (fr) * 1988-08-26 1992-06-03 ITT Automotive Europe GmbH Procédé de surveillance d'un système hydraulique de freinage et système de freinage pour sa mise en oeuvre
WO1990002066A1 (fr) * 1988-08-26 1990-03-08 Alfred Teves Gmbh Procede pour controler le fonctionnement ou la capacite fonctionnelle d'un dispositif, d'une installation ou de composants de celle-ci
WO1992017339A1 (fr) * 1989-12-18 1992-10-15 Master Flo Technology Inc. Mesure du debit d'un liquide
US5111690A (en) * 1990-07-09 1992-05-12 Westinghouse Electric Corp. Valve stem load monitoring system with means for monitoring changes in the valve yoke elongation
DE4040919A1 (de) * 1990-12-20 1992-06-25 Krupp Maschinentechnik Messeinrichtung zur erfassung charakteristischer kenngroessen, welche die arbeitsweise hydraulischer aggregate erkennbar machen
US5168753A (en) * 1990-12-20 1992-12-08 Krupp Maschinentechnik Gesellschaft Mit Beschrankter Haftung Measuring device for detecting parameters charterizing the operating behavior of hydraulic assembles
EP0508823A1 (fr) * 1991-04-10 1992-10-14 Sanden Corporation Compresseur à plateau en biais avec dispositif à déplacement variable
WO1992019867A1 (fr) * 1991-05-03 1992-11-12 Hans Willi Meinz Procede et dispositif pour le dosage controle d'au moins un composant coulant
EP0751446A2 (fr) * 1996-09-28 1997-01-02 Maag Pump Systems AG Méthode et dispositif de surveillance d'unités d'un système
EP0751446A3 (fr) * 1996-09-28 1997-05-07 Maag Pump Systems Ag Méthode et dispositif de surveillance d'unités d'un système
US5988986A (en) * 1996-09-28 1999-11-23 Maag Pump Systems Textron Ag Method and device for monitoring system units based on transmission of lumped characteristic numbers
WO2006084468A1 (fr) * 2005-02-10 2006-08-17 Sauer-Danfoss Aps Procede et dispositif de determination de parametres d'une hydromachine
WO2007072385A3 (fr) * 2005-12-20 2007-10-18 Schlumberger Ca Ltd Systeme et procede pour determiner le debut de modes de defaillance dans une pompe volumetrique
WO2007072385A2 (fr) * 2005-12-20 2007-06-28 Schlumberger Canada Limited Systeme et procede pour determiner le debut de modes de defaillance dans une pompe volumetrique
EA015138B1 (ru) * 2005-12-20 2011-06-30 Шлюмбергер Текнолоджи Б.В. Система и способ определения начала режимов отказа в поршневом насосе прямого вытеснения
US8366402B2 (en) 2005-12-20 2013-02-05 Schlumberger Technology Corporation System and method for determining onset of failure modes in a positive displacement pump
WO2008018040A2 (fr) * 2006-08-11 2008-02-14 Schlumberger Canada Limited Dispositif de contrôle de pompe
WO2008018040A3 (fr) * 2006-08-11 2008-07-10 Schlumberger Ca Ltd Dispositif de contrôle de pompe
EP2723982A4 (fr) * 2011-07-18 2015-12-30 Services Petroliers Schlumberger Commande adaptative de pompe pour mode de défaillance d'une pompe à déplacement positif
US9243628B2 (en) 2011-07-18 2016-01-26 Schlumberger Technology Corporation Adaptive pump control for positive displacement pump failure modes
US11009424B2 (en) 2014-05-15 2021-05-18 Nordson Corporation Dense phase pump diagnostics
US10378537B2 (en) 2016-10-06 2019-08-13 Caterpillar Inc. System for detecting failure location in a pump

Also Published As

Publication number Publication date
JPS63105291A (ja) 1988-05-10
NO874201L (no) 1988-04-11
FR2605059B1 (fr) 1991-02-08
DE3769429D1 (de) 1991-05-23
EP0264148B1 (fr) 1991-04-17
BR8705330A (pt) 1988-05-24
CN87106757A (zh) 1988-08-10
CN1021129C (zh) 1993-06-09
SU1556547A3 (ru) 1990-04-07
FR2605059A1 (fr) 1988-04-15
NO874201D0 (no) 1987-10-07

Similar Documents

Publication Publication Date Title
EP0264148B1 (fr) Système de mesure de débit et de surveillance pour pompes à déplacement positif et pompes munies de ce système
RU2395433C2 (ru) Способ эксплуатации летательного аппарата, способ индикации количества топлива, компьютерная система для расчета количества топлива, узел топливных баков летательного аппарата, летательный аппарат и управляющий элемент процессора расчета количества топлива
AU752463B2 (en) Fuel delivery system
US5056017A (en) System to monitor fuel level in a tank, and fuel dispensed from the tank, to determine fuel leakage and theft losses
EP2893301B1 (fr) Débitmètre à pression différentielle à autodiagnostic
EP0619874B1 (fr) Appareil pour determiner des caracteristiques de vidange
EP3409953B1 (fr) Procédé dans un système à air comprimé et ensemble correspondant
US9841015B2 (en) Arrangement and method for measuring a delivery volume and a delivery rate of an intermittently operating pump
CN111024327B (zh) 漏气自检和对待测物进行漏气检测的装置和方法
CN101796382A (zh) 用于检测与活塞机相关的流体泄漏的方法
Geiger Principles of leak detection
CN107923375B (zh) 受监控的比例计量供给设备和用于监控计量供给泵的方法
EP3872456A1 (fr) Système de surveillance de l'état de fonctionnement d'un compteur de gaz rotatif et compteur de gaz rotatif comportant un système de surveillance de l'état de fonctionnement du compteur de gaz rotatif
CN115978457B (zh) 一种长距离泥浆管道输送异常工况诊断方法
CN112556934A (zh) 一种瓶装高压七氟丙烷灭火剂泄漏量实时检测装置及方法
US11029181B2 (en) Vortex flowmeter with flow instability detection
KR101810232B1 (ko) 작동 이상을 실시간 감지 가능한 부스터 펌프용 유량 센서 및 부스터 펌프 시스템
CN115289233A (zh) 一种可在线诊断泄漏的阀门
CN213120667U (zh) 一种油液流量监控装置
JP2980640B2 (ja) 流量計測装置
JP2001330491A (ja) ガスメータ及びガス使用監視システム
JP2520501Y2 (ja) 液圧ポンプ又はモ−タの異常検出及び破損防止装置
CN110514433A (zh) 一种检测阀门全性能的自动控制试验台设备
ZA200601983B (en) Method and apparatus for determining the approximate flow rate of a fluid through a pump
CN208187660U (zh) 一种转向器油缸检测装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19880912

17Q First examination report despatched

Effective date: 19890130

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

REF Corresponds to:

Ref document number: 3769429

Country of ref document: DE

Date of ref document: 19910523

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960930

Year of fee payment: 10

Ref country code: DE

Payment date: 19960930

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010912

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020909

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050909