EP0262189B1 - Generateur-recepteur hydraulique a haute pression pour la transmission de puissance - Google Patents

Generateur-recepteur hydraulique a haute pression pour la transmission de puissance Download PDF

Info

Publication number
EP0262189B1
EP0262189B1 EP87902113A EP87902113A EP0262189B1 EP 0262189 B1 EP0262189 B1 EP 0262189B1 EP 87902113 A EP87902113 A EP 87902113A EP 87902113 A EP87902113 A EP 87902113A EP 0262189 B1 EP0262189 B1 EP 0262189B1
Authority
EP
European Patent Office
Prior art keywords
conduits
gears
flanges
teeth
envelope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87902113A
Other languages
German (de)
English (en)
Other versions
EP0262189A1 (fr
Inventor
Jean Malfit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8605152A external-priority patent/FR2596460B2/fr
Priority claimed from FR8615016A external-priority patent/FR2605683B2/fr
Application filed by Individual filed Critical Individual
Publication of EP0262189A1 publication Critical patent/EP0262189A1/fr
Application granted granted Critical
Publication of EP0262189B1 publication Critical patent/EP0262189B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0007Radial sealings for working fluid
    • F04C15/0019Radial sealing elements specially adapted for intermeshing-engagement type machines or pumps, e.g. gear machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0023Axial sealings for working fluid
    • F04C15/0026Elements specially adapted for sealing of the lateral faces of intermeshing-engagement type machines or pumps, e.g. gear machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0042Systems for the equilibration of forces acting on the machines or pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/086Carter

Definitions

  • Opposite sectors are equal, but two consecutive sectors can be unequal.
  • the realization of the rotor conduits is that defined by the form 76 of FIGS. 18 and 19 of the document EP-A-0165884, but with an additional arrangement, that is to say that the rotor circuit is constituted by diametrical bores through the pinions 9 and 10, holes opening into two conduits parallel to the axis of the pinions (or inclined up to the value of the helix angle a), and opposite to n, these two conduits serving four symmetrical switching points on the switching circle 20, these supply symmetrically the fluid bearings between the faces of the flanges 21 and 22 and the faces of the pinions 9 and 10. This symmetry of creation of the fluid bearings is only obtained in the context of the form 76 of rotor and stator conduits.
  • the hydraulic generator-receiver according to the invention is characterized in that its rotor circuits in the pinions consist of groups of diametrically opposite conduits on the switching circle and parallel (or inclined to the value of the helix angle) to the axis of the pinions and radials joining the pipes opposite to n to form an H, the high-pressure supply of the permanent total pressure zone being effected by a preferential valve system also allowing the decompression of this zone when desired .
  • Figure 1 is a perspective representation of the invention.
  • the take-up of clearances between the flanges 21 and 22, and the pinions 9 and 10 is effected by the action of the 2 N hydrostatic compensation sectors 60 on flanges 21 and 22, and is enabled by the possibility of axial compression of the casing 36.
  • the pinions 9 and 10 are balanced by the stator conduits formed by the cells 30 on the pitch circle, the conduits 23, the cells 100 on the switching circuit 20, and by the rotor conduits formed by the conduits 102 parallel to the axis of the pinion (or inclined to the value of the helix angle a), opposite to n and the conduits 101 for diametric connection between the conduits 102, the assembly ensuring an equipotential bond between sectors opposite to n if Z even, and at n ⁇ half an angular step of teeth if odd Z.
  • the number of connections D is greater than N so as to provide, by the overlaps between the conduits 102 and the cells 100, a permanent connection between opposite sectors while ensuring sufficient sealing between successive sectors. This permanent connection is broken at points 6 and 3, zone 34 of permanent total pressure to ensure the creation at points 6 of "hydraulic bearings".
  • This figure 1 also shows the arrangement of the orifices 40 HP-BP, shown parallel to the axes of the pinions and of cylindrical shape. They can also adopt a shape derived from the shape of the fluidd vein generated or received and possibly inclined at the helix angle a.
  • Figure 2 is a sectional elevation II-II ( Figure 3), still in the case of catching clearances by compression of the casing 36. It shows the area 34 and the arrangement of the conduits 101 and 102 in the pinions 9 and 10 .
  • Figure 3 half-section III-III, half-cut XI-XI ( Figure 20) shows the arrangement of the hydrostatic compensation sectors 60 on flanges 21 and 22 in the cs of a symmetrical construction, that is to say with symmetry, with respect to the median plane perpendicular to the axes of the pinions 9 and 10.
  • This arrangement does not correspond exactly to the pressures to be balanced, in the sense that it does not take into account the offset introduced by the helix angle, ie a angular half step
  • the hydrostatic compensation sectors 60 are materialized by the points 45, the anti-extrusion devices 104 and are balanced at by the cells 30, the conduits 23, the stator cells 100 and the rotor tubes 101 and 102.
  • This FIG. 3 shows a possibility of balancing by a conduit 103 constituted by bores, either through the body 49, or through the covers 54 or 55, are by a steel piping external to the apparatus and connecting two sectors opposite to
  • Figure 4 shows the arrangement of the hydrostatic compensation sectors 60 on flanges 21 and 22 in the case of an asymmetrical construction. This arrangement corresponds exactly to the pressures to be balanced in the sense that it takes account of the offset introduced by the helix angle a, that is to say an angular half pitch of toothing
  • the flanges 21 and 22 are however always identical, but in position in the generator-receiver, they only have a central symmetry with respect to the point 3 of meshing at mid-height of the pinions 9 and 10. It also has a possibility of balancing by a conduit 103 and another embodiment of the pinions 9 and 10 in two pieces assembled by a link 106, brazing or sintering.
  • FIGS. 3 and 4 show the hydrostatic compensation sectors 60 on flanges 21 and 22 located near point 3 reduced by a certain value for the creation of zone 34 at 3 (in principle an angular pitch of toothing); this in the case where the number of teeth Z is odd. In the case of even Z, these sectors near point 3 will have a normal value if the area 34 in 3 is equal to the area 34 in 6, that is to say an angular pitch of toothing and will be increased if the zone 34 adopted in 3 is weaker.
  • FIG. 5 section V-V (FIG. 4) shows the conduits 101 and 102 in the pinions 9 and 10, with the conduits 101 being closed by the plug 105.
  • This figure presents various possible construction variants:
  • the flange 22 of plastic material and comprises an anti-extrusion device 104.
  • the seal housings 45 and 58 are molded in the flange 22.
  • the casing 36 is plastic, the hydrostatic compensation sectors on the casing 36 are materialized by the clearance 38, the seal 37, the supply orifice 43 and the anti-extrusion device 107. Balancing between two opposite tooth recesses is clearly shown by the cells 30, the conduits 23, the stator cells 100 and the rotor conduits 101 and 102.
  • FIG. 6 is an external developed view of the casing 36 which shows the hydrostatic balancing sectors 38 on the casing 36 and their supply via the orifice 43.
  • the non-return 39 supplying the zone 34 according to document EP-A-0165884 has been replaced by an orifice 43, the zone 34 at 3 being eliminated and replaced by a hydrostatic compensation sector at this point, because it is important to have the same pressure on the axis 3 inside and outside of the envelope 36.
  • the role of the non-return 39 supplying the area 34 will be fulfilled by a device with preferred valve.
  • FIG. 7, section VII-VII is a section of the enclosure 36 which shows the detail of the hydrostatic compensation sectors 38 on the enclosure 36 with anti-extrusion device 107 and supply via the orifice 43.
  • FIG. 8 is a panoramic representation of the stator circuits alveoli 30, conduits 23, alveoli 100, and rotor circuits conduits 101 and 102 in the case of an even number of teeth Z and symmetrical construction of the hydrostatic compensation sectors 60 on flanges 21 and 22.
  • the upper representation shows the arrangement on the envelope 36, with the area 34, the seals 37, the orifices 43.
  • the shape 108 is a shape which extends the cells 30 towards point 6, for the hydrostatic balancing of the hollow teeth at 6 and the creation of "hydraulic bearings" replacing the supply conduit 33 according to document EP-A-0165884. This arrangement makes it possible to better control the hydrostatic balancing at 6 according to the priority operations in generator or or receiver by varying the length of this shape 108.
  • FIG. 9 is a panoramic representation of the stator and rotor circuits in the case of an odd number of teeth Z and symmetrical construction of the hydrostatic compensation sectors 60 on flanges 21 and 22.
  • FIG. 10 is a panoramic representation of the stator and rotor circuits in the case of a odd number of teeth Z and asymmetrical construction of the hydrostatic compensation sectors 60 on flanges 21 and 22. It requires an offset of an angular half-step dd toothing alveoli 100 and an inclination of the conduits 102 at the helix angle a. It allows more sustained balancing of the tooth hollows, the alveoli 30 being able to be angularly larger. The channels are tilted.
  • FIG. 11 is a panoramic representation of the stator and rotor circuits in the case of an odd number of teeth Z, and asymmetrical construction of the hydrostatic compensation sectors 60 on flanges 21 and 22.
  • This construction avoids the offset of an angular half step of teeth cells 100 between the flanges 21 and 22, and therefore to keep the conduits 102 parallel to the axis of the pinions 9 and 10.
  • the offset of is then produced by a spiral shape of a quarter angular pitch of toothing of the connecting conduit 23 between the cells 30 and the cells 100.
  • Intermediate variants are possible depending on the construction facilities they provide.
  • FIGS. 12, 13, 14 and 15, according to section II-II, represent various alternative embodiments of the flange clearance take-up assembly 21 and 22, envelope 36.
  • Seal housings by molding in the covers 54 and 55 or in the flanges 21 and 22 and in the body 49 or in the casing 36.
  • Each flange 21 and 22 will be equipped with four of these non-return devices for all operating cases, direction of rotation, generator and receiver, ie two devices per bore. These devices can be considerably simplified, in particular in the plastic flanges 21 and 22, the non-return 111 being able to be produced by a metal washer located on the inlet of the discharge duct in the hydrostatic compensation sector 60.
  • FIG. 17, section XVII-XVII shows the new device for pressurizing and decompressing the zone 34 which is the zone of total permanent pressure generated.
  • the supply and the decompression of the zone 34 is made either by the conduit 114, or by the conduits 117, 118 the selection being made by a preferential valve 116 opening into the conduit 115 leading to the zone 34.
  • This device is closed by the plug 119.
  • the valve 116 keeps free the connection between the sector at the top pressure and zone 34 and instantly allows the tilting of this connection when changing the sector for high pressure. It does not close when the pressure drops above the low pressure and therefore allows decompression. It only closes when a sector goes into low pressure. Zone 34 is therefore always at the maximum pressure generated or received.
  • This figure shows the orifice 40 HP-BP inclined at the helix angle a, 120 such that Mt apparent module 5, H tooth width 4.
  • the angle of inclination a, 120 may for units rotating at high rotational speed, take values of the order of 45 °, in particular in use herringbone teeth.
  • the HP-BP conduits are brought back perpendicular to the axes of the pinions, and positioned as on the generators and receivers with gears with straight teeth.
  • FIG. 20, section II-II is a variant of the protection of the driving pinion 9 against the external stresses transmitted by the power take-off: shocks, parasitic or internal forces resulting from possible imbalances of the hydrostatic compensations.
  • the pinion 9 is supported at the covers 54 and 55 by two needle bearings 123 which position this pinion 9 relative to the body 49, to the covers 54 and 55, the other constituent parts of the heart of the generator-receiver, pinion 10, flanges 21 and 22, envelope 36 balancing normally with respect to this positioning of the pinion 9 in the same way as in the preceding situations.
  • This device is a variant of the power take-off 52 for protecting the pinion 9. It will also, in combination with the hydrostatic compensation devices, correct certain minor imbalances resulting from operation and other imbalances such as those resulting from compressibility of the hydraulic fluid in the case of an even number of teeth Z.
  • These pressure values can vary from 100 to 800 bars.
  • V is the maximum flow speed of the hydraulic fluid in meters per second
  • w the maximum rotation speed in revolutions per minute
  • the speed of flow of the hydraulic fluid is the axial component of the speed of movement in the hollow of the tooth: only this axial component is to be taken into account, the tangential component is canceled by the speed of rotation of the pinion. Everything happens as if the generation (or reception) were ensured by a tooth-piston moving at constant speed in a hollow tooth cylinder, this speed being Z times the width of teeth H for a time corresponding to one revolution of pinion, the direction being axial.
  • the step in value 3 with an angular toothing pitch, zone 34, is distinct from the sectors located near point 3.
  • the bearing in 3 has an angular toothing pitch, zone 34, amputated by half an angular toothing pitch, the sectors located on either side of point 3.
  • the values underlined solid lines are those which make it possible to obtain the same pressure inside and outside of the envelope 36 on the axis 3
  • the values underlined lines dotted lines lead to possible constructions as a receiver, but with a lower pressure value outside than inside the envelope 36 on axis 3
  • Body 49 obtained by molding, aluminum-based alloy, cast iron or steel. Possible molding of the seal housings.
  • Lids 54 and 55 obtained by molding, aluminum-based alloy, cast iron or steel. Possible molding of the seal housings.
  • Sprockets 9 and 10 hard materials, case hardening or nitriding steel.
  • Precisions required pairing of the widths of teeth H, 4, pinions 9 and 10, surface conditions of the order of 0.20 to 0.40 on the tops of teeth and on the faces, faces perpendicular to the teeth profiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Motors (AREA)
  • Rotary Pumps (AREA)

Abstract

Construction particulière d'un générateur récepteur hydraulique avec paliers à aiguilles (123) sur le pignon menant (9) et permettant un rattrapage des jeux entre les flasques (21, 22) et l'enveloppe (36), un retour de fuite et une meilleure alimentation de la zone de pression (34).

Description

  • La présente invention est relative à des perfectionnement apportés à un générateur-récepteur hydraulique suivant EP-A-0165884 revendiquant la priorité de FR-A-2 564 931, comprenant deux engrenages accouplés à l'intérieur d'un stator, au moins l'un d'eux étant dépourvu de palier mécanique lequel stator comporte par ailleurs au moins une ouverture d'arrivée et une ouverture de retour pour un liquide sous pression, tandis que deux flasques referment le stator de part et d'autre des deux engrenages sur lesquels ils assurent une étanchéité latérale et que des canaux diamétraux couvrant un angle de 180° sont prévus dans les engrenages, le stator comportant und enveloppe souple (39) soumise extérieurement à une pression centripète qui lui permet d'assurer l'étanchéité sur les sommets des dents des engrenages (9, 10) à denture hèlicoïdale dont l'angle d'hélice a est tel que tga = 2H/rtMt (H = largeur de denture, Mt = module apparent situés dans l'enveloppe entre deux flasques souples (21, 22) avec compensation hydrostatique assurant l'étanchéité entre ces flasques et les faces des engrenages, l'équilibrage hydraulique interne étant assuré par un bobinage hydraulique comprenant des conduits rotoriques (19) dans les engrenages (9 et 10), et statoriques (23) dans les flasques (21 et 22), les commutations successives entre les conduits rotoriques (19) et statoriques (23) étant assurées par leurs extrémités défilant les unes devant les autres sur un cercle de commutation (20), les conduits statoriques y débouchant dans des alvéoles (100), et simultanément sur les creux de dents au niveau du cercle primitif pour l'autre extrémité des conduits statoriques (23), pour assurer la liaison permanente entre les creux de dents opposés pour un nombre de dents pair, et les creux de dents opposés avec, un décalage de un demi-pas pour un nombre de dents impair, sauf dans les zones d'engrènement (3) et celles respectivement diamétralement opposées (6), dans ces dernières sont créés des paliers hydrauliques diamétralement opposés au point d'engrènement (3) des engrenages (9 et 10) de sorte qu'au cours de la rotation des engrenages (9 et 10) ledit bobinage met en relation les couples de dents opposées de façon à obtenir une même pression hydraulique dans les creux de dents pour des positions angulaires diamétralement opposées et à créer deux forces inverses sur les engrenages en vue de provoquer leur engrènement sans jeu.
  • Les désignations et les repères utilisés dans EP-A-0165884 sont repris, ainsi que sont conservées les caractéristiques principales de l'invention décrite dans ledit document c'est-à-dire:
    • que chacun des engrenages a une même nombre de dents, même module de denture, même angle a d'hélice, tel que tg
      Figure imgb0001
      module apparent, H largeur de denture, donnant un décalage de un demi-pas entre les profils de denture sur les faces;
    • que l'équilibrage des pignons est assuré par un système de "bobinage hydraulique" permettant la suppression des paliers classiques et la création de "paliers hydrauliques" assurant un engrènement sans jeu des pignons 9 et 10;
    • que l'étanchéité interne est assurée par un système de flasques 21 et 22 - enveloppe 36 avec compensation hydrostatique sur les faces et sur les sommets de dents des engrenages 9 et 10, qui permet un rattrapage des jeux dans les deux directions.
    • Ces conditions assurent un débit Q constant, et non plus pulsé, ainsi qu'un vecteur vitesse de déplacement des particules fluides à la génération et à la réception parallèle à l'axe des pignons 9 et 10, les composantes de vitesse résultant de la rotation et de l'inclinaison d'hélice se neutralisant.
    • Dans le document EP-A-0165884, la figure 9 définissait un équilibrage secteur par secteur et les figures 18 et 19, les différentes possibilités de réalisation des conduits rotoriques et statoriques; ces deux dispositions sont reprises dans la présente invention.
  • L'équilibrage secteur par secteur consiste à diviser la circonférence du pignon diminuée de la valeur nécessaire à la zone 34 située autour du point d'engrenage 3 et le point 6 y diamétralement opposé, soit par exemple un pas angulaire en 6, et zéro pas angulaire en 3, ou un pas angulaire en 6, et un pas angulaire en 3, en un nombre 2 N pair de secteurs opposés égaux:
    • opposés à n si le nombre de dents Z est pair;
    • opposés à n ± un demi-pas angulaire de denture, si le nombre de dents Z est impair, ces secteurs opposés égaux étant au même potentiel de pression et en même position angulaire sur les deux flasques 21 et 22 et sur l'enveloppe 36.
  • Les secteurs opposés sont égaux, mais deux secteurs consécutifs peuvent être inégaux.
  • La réalisation des conduits rotoriques est celle définie par la forme 76 des figures 18 et 19 du document EP-A-0165884, mais avec une disposition supplémentaire, c'est-à-dire que le circuit rotorique est constitué par des perçages diamétraux à travers les pignons 9 et 10, perçages débouchant dans deux conduits parallèles à l'axe des pignons (ou inclinés jusqu'à la valeur de l'angle d'hélice a), et opposés à n, ces deux conduits desservant quatre points de commutation symétriques sur le cercle de commutation 20, ceux-ci alimentant de façon symétrique les paliers fluides entre les faces des flasques 21 et 22 et les faces des pignons 9 et 10. Cette symétrie de création des paliers fluides n'est obtenue que dans le cadre de la forme 76 des conduits rotoriques et statoriques.
  • L'ensemble de la construction, des perçages, des conduits rotoriques et statoriques est défini de telle sorte que:
    • la liaison entre les secteurs équipotentiels est permanente;
    • les creux de dents passent d'un secteur à une certaine valeur de pression à un autre secteur à une autre valeur de pression, sans risque de court-circuit occasionnant des fuites d'un secteur au suivant.
    • les creux de dents opposés à n ou à n ± un demi-pas angulaire de denture sont au même potentiel de pression sauf lors du passage d'un secteur à un autre secteur et sauf aux points de création des "paliers hydrauliques";
    • les pignons 9 et 10 sont en conséquence:
    • équilibrés dans le cas d'un nombre de dents Z pair;
    • équilibrés avec un avantage côté opposé au côté orifice 40 haute Pression correspondant à un demi- pas angulaire de denture en pression dans le cas d'un nombre de dents Z impair;
    • la symétrie est totale;
    • la liaison entre creux de dents opposés est totalement rompue en 6 et en 3, pour permettre l'équilibrage hydrostatique aux points 6 de création des "paliers hydrauliques".
  • Le générateur-récepteur hydraulique suivant l'invention est caractérisé en ce que ses circuits rotoriques dans les pignons sont constitués par des groupes de conduits diamétralement opposés sur le cercle de commutation et parallèles (ou inclinés à la valeur de l'angle d'hélice) à l'axe des pignons et radiaux réunissant les conduits opposés à n pour former un H, l'alimentation en haute pression de la zone de pression totale permanente s'effectuant par un système de clapet préférentiel permettant également la décompression de cette zone lorsque désiré.
  • Le dessin annexé, donné à titre d'exemple, permettra de mieux comprendre l'invention, les caractéristiques qu'elle présente et les avantages qu'elle est susceptible de procurer:
  • Figure 1 est une représentation perspective de l'invention. Le nombre de dents Z impair = 15, les 2 N secteurs = 6, les pignons hélicoïdaux 9 et 10 engrènent au point 3, tourillonnent dans l'enveloppe plastique 36 et sont insérés entre les flasques 21 et 22. Le rattrapage de jeux entre les flasques 21 et 22, et les pignons 9 et 10 se fait par l'action des 2 N secteurs de compensation hydrostatique 60 sur flasques 21 et 22, et est permis par la possibilité de compression axiale de l'enveloppe 36.
  • L'équilibrage des pignons 9 et 10 est réalisé par les conduits statoriques constitués par les alvéoles 30 sur le cercle primitif, les conduits 23, les alvéoles 100 sur le circuit de commutation 20, et par les conduits rotoriques constitués par les conduits 102 parallèles à l'axe du pignon (ou inclinés jusqu'à valeur de 1' angle d'hélice a), opposés à n et les conduits 101 de liaison diamétrale entre les conduits 102, l'ensemble assurant une liaison équipotentielle entre secteurs opposés à n si Z pair, et à n ± un demi-pas angulaire de denture si Z impair. Le nombre de liaisons D est supérieur à N de façon à assurer par les recouvrements entre les conduits 102 et les alvéoles 100, une liaison permanente entre secteurs opposés tout en assurant une étanchéité suffisante entre secteurs successifs. Cette liaison permanente est rompue aux poins 6 et 3, zone 34 de pression totale permanente pour assurer la création aux points 6 des "paliers hydrauliques".
  • Cette figure 1 montre également la disposition des orifices 40 HP-BP, représentés parallèles aux axes des pignons et de forme cylindrique. Ils peuvent également adopter une forme dérivée de la forme de la veine fluidd générée ou reçue et éventuellement inclinés à l'angle d'hélice a.
  • La figure 2 est une élévation coupe II-II (figure 3), toujours dans le cas de rattrapage des jeux par compression de l'enveloppe 36. Elle montre la zone 34 et la disposition des conduits 101 et 102 dans les pignons 9 et 10.
  • La figure 3, demi-coupe III-III, demicoupe XI-XI (figure 20) montre la disposition des secteurs de compensation hydrostatique 60 sur flasques 21 et 22 dans le cs d'une construction symétrique, c'est-à-dire avec symétrie, par rapport au plan médian perpendiculaire aux axes des pignons 9 et 10. Cette disposition ne correspond pas exactement aux pressions à équilibrer, en ce sens qu'elle ne tient pas compte du décalage introduit par l'angle d'hélice, soit un demi-pas angulaire
    Figure imgb0002
  • Les secteurs de compensation hydrostatique 60 sont matérialisés par les points 45, les dispositifs anti-extrusion 104 et sont équilibrés à
    Figure imgb0003
    par les alvéoles 30, les conduits 23, les alvéoles 100 statoriques et les conduits 101 et 102 rotoriques. Cette figure 3 montre une possibilité d'équilibrage par un conduit 103 constitué par des perçages, soit au travers du corps 49, soit au travers des couvercles 54 ou 55, sont par une tuyauterie acier extérieure à l'appareil et reliant deux secteurs opposés à
    Figure imgb0004
  • Elle présente également une réaliqation des conduits 101 à partir d'un perçage réalisé en perçant d'un creux de dent avec obturation par un bouchon 105 brasé.
  • La figure 4, demi-coupe III-III, demi-coupe XI-XI (figure 20), montre la disposition des secteurs de compensation hydrostatique 60 sur flasques 21 et 22 dans le cas d'une construction asymétrique. Cette disposition correspond exactement aux pressions à équilibrer en ce sens qu'elle tient compte du décalage introduit par l'angle d'hélice a, soit un demi-pas angulaire de denture
    Figure imgb0005
  • De ce fait, les flasques 21 et 22 sont cependant toujours identiques, mais en position dans le générateur-récepteur, ils présentent seulement une symétrie centrale par rapport au point 3 d'engrènement à mi-hauteur des pignons 9 et 10. Elle présente également une possibilité d'équilibrage par un conduit 103 et un autre mode de réalisation des pignons 9 et 10 en deux pièces assemblées par une liaison 106, brasure ou frittage.
  • Il est à noter que les figures 3 et 4 présentent les secteurs de compensation hydrostatique 60 sur flasques 21 et 22 situés à proximité du point 3 amputés d'une certaine valeur pour la création de la zone 34 en 3 (en principe un pas angulaire de denture); ceci dans le cas où le nombre de dents Z est impair. Dans les cas de Z pair, ces secteurs à proximité du point 3 auront une valeur normale si la zone 34 en 3 est égale à la zone 34 en 6, soit un pas angulaire de denture
    Figure imgb0006
    et seront augumentés si la zone 34 adoptée en 3 est plus faible.
  • La figure 5, coupe V-V (figure 4) montre les conduits 101 et 102 dans les pignons 9 et 10, avec obturation des conduits 101 par le bouchon 105. Cette figure présente diverses variantes de construction possibles:
  • flasque 21 en matériau dur, donc pas de dispositif anti-extrusion 104. les joints 45 et 58 sont logés dans le couvercle 54;
  • flasque 22 en matériau plastique, et comporte un dispositif anti-extrusion 104. Les logements de joints 45 et 58 sont moulés dans le flasque 22.
  • L'enveloppe 36 est plastique, les secteurs de compensation hydrostatique sur enveloppe 36 sont matérialisés par le dégagement 38, le joint 37, l'orifice d'alimentation 43 et le dispositif anti-extrusion 107. L'équilibrage entre deux creux de dents opposés est bien montré par les alvéoles 30, les conduits 23, les alvéoles 100 statoriques et les conduits rotoriques 101 et 102.
  • La figure 6 est une vue développée extérieure de l'enveloppe 36 qui montre les secteurs d'équilibrage hydrostatique 38 sur enveloppe 36 et leur alimentation par l'orifice 43. Sur l'axe 3 correspondant au point d'engrènement des pignons 9 et 10, l'anti-retour 39 d'alimentation de la zone 34 selon le document EP-A-0165884 a été remplacé par un orifice 43, la zone 34 en 3 étant supprimée et remplacée par un secteur de compensation hydrostatique en ce point, car il est important d'avoir la même pression sur l'axe 3 à l'intérieur et à l'extérieur de l'enveloppe 36. Le rôle de l' anti-retour 39 d'alimentation de la zone 34 sera rempli par un dispositif à clapet préférentiel.
  • La figure 7, coupe VII-VII (figure 2) est une coupe de l'enveloppe 36 qui montre le détail des secteurs de compensation hydrostatique 38 sur enveloppe 36 avec dispositif anti-extrusion 107 et alimentation par l'orifice 43.
  • La figure 8 est une représentation panoramique des circuits statoriques alvéoles 30, conduits 23, alvéoles 100, et des circuits rotoriques conduits 101 et 102 dans le cas d'un nombre de dents Z pair et construction symétrique des secteurs de compensation hydrostatique 60 sur flasques 21 et 22. La représentation supérieure montre la disposition sur l'enveloppe 36, avec la zone 34, les joints 37, les orifices 43. La forme 108 est une forme qui prolonge les alvéoles 30 vers le point 6, pour l'équilibrage hydrostatique des creux de dents en 6 et la création des "paliers hydrauliques" en remplacement du conduit d'alimentation 33 selon le document EP-A-0165884. Cette disposition permet de mieux contrôler l'équilibrage hydrostatique en 6 selon les fonctionnements prioritaires en générateur ou ou récepteur en jouant sur la longueur de cette forme 108.
  • La figure 9 est une représentation panoramique des circuits statoriques et rotoriques dans le case d'un nombre de dents Z impair et construction symétrique des secteurs de compensation hydrostatique 60 sur flasques 21 et 22.
  • La figure 10 est une représentation panoramique des circuits statoriques et rotoriques dans le cas d'un nombre de dents Z impair et construction asymétrique des secteurs de compensation hydrostatique 60 sur flasques 21 et 22. Elle nécessite un décalage de un demi-pas angulaire dd denture
    Figure imgb0007
    des alvéoles 100 et une inclinaison des conduits 102 à l'angle d'hélice a. Elle permet un équilibrage plus maintenu des creux de dents, les alvéoles 30 pouvant être plus importants angulairement. Les canaux sont inclinés.
  • La figure 11 est une représentation panoramique des circuits statoriques et rotoriques dans le cas d'un nombre de dents Z impair, et construction asymétrique des secteurs de compensation hydrostatique 60 sur flasques 21 et 22. Cette construction évite le décalage de un demipas angulaire de denture des alvéoles 100 entre les flasques 21 et 22, et de ce fait de conserver les conduits 102 parallèles à l'axe des pignons 9 et 10. Le décalage de
    Figure imgb0008
    est alors réalisé par une forme spirale de un quart de pas angulaire de denture du conduit de liaison 23 entre les alvéoles 30 et les alvéoles 100. Des variantes intermédiaires sont possibles en fonction des facilités de construction qu'elles procurent.
  • Les figures 12, 13, 14 et 15, selon coupe II-II représentent diverses variantes de réalisation de l'ensemble de rattrapage de jeux flasques 21 et 22, enveloppe 36.
  • Le rattrapage des jeux sur les faces et sur les sommets de denture des pignons 9 et 10, c'est-à-dire selon deux directions concourantes, nécessite que, sur l'une au moins de ces deux directions, la plasticité des matériaux permette ces rattrapages de jeux dans l'autre direction, ce qui conduit à trois schémas possibles dans le choix des matériaux utilisés:
    • enveloppe 36 dure et non déformable, flasques 21 et 22 plastiques;
    • flasques 21 et 22 durs et non déformables; enveloppe 36 plastique;
    • flasques 21 et 22, enveloppe 36 plastiques.
  • La réalisation des logements de joints des secteurs de compensation hydrostatique devant se faire de préférence par moulage, conduit aux différentes constructions suivantes:
    • Figure 12 selon coupe II-II: Flasques 21 et 22 plastiques et enveloppe 36 dure avec garniture plastique 48. Logements des joints par moulage dans les couvercles 54 et 55 ou dans les flasques 21 et 22, et dans la garniture plastique 48 ou dans le corps 9.
    • Figure 13 selon coupe II-II: Flasques 21 et 22 plastiques et enveloppe 36 dure ou plastique.
  • Logements des joints par moulage dans les couvercles 54 et 55 ou dans les flasques 21 et 22 et dans le corps 49 ou dans l'enveloppe 36.
  • A noter sur cette figure 13, le plan de joint à 45° entre l'enveloppe 36 et les flasques 21 et 22, angle qui permet une meilleure étanchéité entre les faces en contact, enveloppe 36 - flasques 21 et 22, par suite d'une application des pressions de la zone 34 pour assurer un contact sans jeu, en particulier sur les secteurs Basse Pression.
    • Figure 14, selon coupe II-II: Flasques 21 et 22 durs, avec garniture plastique 109, et enveloppe 37 plastique. Logements des joints par moulage dans les couvercles 54 et 55 ou dans la garniture plastique 109 et dans le corps 49 ou dans l'enveloppe 36.
    • Figure 15, selon coupe II-II: Flasques 21 et 22 durs ou plastiques, et enveloppe 36 plastique. Logements des joints par moulage dans les couvercles 54 et 55 ou dans les flasques 21 et 22 et dans le corps 49 ou dans l'enveloppe 36.
    • Figure 16, couple XVI-XVI (figure 4) montre le retour de fuite vers le secteur basse pression réalisé à partir de l'alésage des flasques 21 et 22 par un conduit 110 équipé d'un anti-retour 111 et débouchant par un conduit 112 dans un secteur de compensation hydrostatique 60 BP-HP, l'ensemble étant obturé par un bouchon butée 113.
  • Chaque flasque 21 et 22 sera équipé de quatre de ces dispositifs anti-retour pour tous les cas de fonctionnement, sens de rotation, générateur et récepteur, soit deux dispositifs par alésage. Ces dispositifs peuvent être considérablement simplifiés, en particulier dans le case flasques 21 et 22 plastiques, l'anti-retour 111 pouvant être réalisé par une rondelle métallique située sur l'arrivée du conduit d'évacuation dans le secteur de compensation hydrostatique 60.
  • La figure 17, coupe XVII-XVII (figure 3) montre le nouveau dispositif de mise en pression et de décompression de la zone 34 qui est la zone de pression totale permanente générée. L'alimentation et la décompression de la zone 34, est faite soit par le conduit 114, soit par les conduits 117, 118 la sélection étant opérée par un clapet préférentiel 116 débouchant dans le conduit 115 menant à la zone 34. Ce dispositif est obturé par le bouchon 119. Le clapet 116 maintient libre la liaison entre le secteur en haute pression et la zone 34 et permet instantanément le basculement de cette liaison lors du changement de secteur pour la haute pression. Il ne se ferme pas lorsque la pression chute en dessus de la basse pression et permet donc la décompression. Il ne se ferme que lorsqu'un secteur passe en basse pression. La zone 34 est donc toujours à la pression maximale générée ou reçue. Cette figure présente l'orifice 40 HP-BP incliné à l'angle d'hélice a, 120 tel que
    Figure imgb0009
    Mt module apparent 5, H largeur de denture 4. L'angle d'inclinaison a, 120, pourra pour les unités tournant à grande vitesse de rotation, prendre des valeurs de l'ordre de 45°, en particulier loes de l'utilisation de denture chevrons. Dans ces conditions, les conduits HP-BP sont ramenés perpendiculaires aux axes des pignons, et positionnés comme sur les générateurs et récepteurs à engrenages à denture droite.
  • Les figures 18 (demi-coupe II-II) et 19 (coupe partielle par un conduit 101) montrent une réalisation des pignons 9 et 10 en deux parties:
    • un noyau central 121 réalisé avec les demi-conduits 102 sur le cercle de commutation 20, et les conduits 101 percés à travers ce noyau;
    • une couronne dentée 122 réalisée avec l'autre partie des conduits 102 sur le cercle de commutation 20. Cette couronne sera, soit usinée et assemblée par brasure 106 sur le noyau 121, sont réalisée par frittage avec ancrages sur le noyau 121 au niveau du cercle de commutation 20.
  • La figure 20, coupe II-II, est une variante de la protection du pignon menant 9 contre les contraintes extérieures transmises par la prise de mouvement: chocs, efforts parasites ou intérieurs résultant des déséquilibres possibles des compensations hydrostatiques. Le pignon 9 est supporté au niveau des couvercles 54 et 55 par deux roulements à aiguilles 123 qui possitionnent ce pignon 9 par rapport au corps 49, aux couvercles 54 et 55, les autres pièces constitutives du coeur du générateur-récepteur, pignon 10, flasques 21 et 22, enveloppe 36 s'équilibrant normalement par rapport à ce positionnement du pignon 9 de la même façon que dans les situations précédentes. Ce dispositif est une variante de la prise de mouvement 52 de protection du pignon 9. Il permettra aussi, en association avec les dispositifs de compensation hydrostatique, une correction de certains déséquilibres mineurs résultant du fonctionnement et d'autres déséquilibres tels que ceux résultant de la compressibilité du fluide hydraulique dans le cas d'un nombre de dents Z pair.
  • Règles générales de construction
  • L'étude théorique s'attachera à déterminer la pression maximum d'utilisation, le nombre de dents Z, la largeur de denture H, 4, le module apparent Mt, 5, ou réel Mn de denture, l'angle d'inclinaison a d'hélice, le diamètre de l'arbre de sortie d, le nombre de secteurs 2N, le nombre de liaisons D à travers les pignons 9 et 10 dans la largeur H de denture 4, en fonction des caractéristiques du générateur-récepteur, puissance, couple, vitesse de rotation maximum w, vitesse maximum d'écoulement V mètres par seconde admise pour le fluide hydraulique, sens de rotation prioritaire en générateur ou en récepteur, rendement, prix ...
  • Un générateur-récepteur de petite cylindrée, prioritaire en générateur, tournant à grande vitesse de rotation, 3000, 4000 tours par minute, aura un petit nombre de secteurs N, soit N = 2, un petit nombre de liaisons D, soit D = 3, ou D = 4, et une faible largeur de denture H, 4, ou une denture chevron, pour limiter au maximum la vitesse d'écoulement du fluide hydraulique à la vitesse maximale admise.
  • Par contre, un générateur-récepteur de forte cylindrée, tournant à petite vitesse 100, 200 ou 300 tours par minute, prioritaire en récepteur, aura un grand nombre de secteurs, soit N = 4, 5, 6 ... et un grand nombre de liaisons, soit D = 5, 6, 7 ... et une forte largeur de denture H, 4, permise par la vitesse d'écoulement du fluide hydraulique.
  • Choix de la pression
  • Pression adoptée d'autant plus forte que la puissance à transmettre est plus élevée. Choisir la pression la plus élevée possible, compatible vers les basses puissances, avec les impératifs de dimensionnement des secteurs N, et vers les hautes puissances avec les contraintes mécaniques admissibles dans les engrenages qui sont de l'ordre de trois, quatre fois la pression hydraulique. Ces valeurs de pression pourront varier de 100 à 800 bars.
  • Choix du nombre de dents Z:
    • Z impair, soit Z = 9, 11, 13, 15, 17, 19, 21 ...
  • Grandes vitesses de rotation w: Z le plus faible possible, avec éventuellement engrenages à denture chevrons pour les très grandes vitesses de rotation w.
  • Petites vitesses de rotation w: Z augmente et cette augmentation est liée en partie aux caractéristiques mécaniques de l'enveloppe 36. Le rendement et le prix augmentent si Z augmente pour les mêmes caractéristiques du générateur-récepteur. Le nombre de dents Z est associé à la largeur de denture H, 4, pour sa détermination, en fonction de la vitesse de rotation w maximum, de la vitesse maximum V mètres par seconde d'écoulement du fluide hydraulique.
  • Choix de la largeur de denture H, 4:
  • Si V est la vitesse maximale d'écoulement du fluide hydraulique en mètres par seconde, w la vitesse de rotation maximale en tours par minute, H sera donnée en mètres, par
    Figure imgb0010
  • La vitesse d'écoulement du fluide hydraulique est la composante axiale de la vitesse de déplacement dans le creux de la dent: seule, cette composante axiale est à prendre en compte, la composante tangentielle est annulée par la vitesse de rotation du pignon. Tout se passe comme si la génération (ou la réception) était assurée par un piston-dent se déplaçant à vitesse constante dans un cylindre creux de dent, cette vitesse étant de Z fois la largeur de denture H pour un temps correspondant à un tour de pignon, la direction étant axiale.
  • Choix du module apparent Mt, 5:
  • Calcul de Mt pour la transmission de la puissance en fonction de la pression adoptée, de la vitesse de rotation w, du nombre de dents Z, et de la largeur H, 4 de denture.
  • Choix de l'angle d'inclinaison d'hélice a:
  • Calcul à partir de
    Figure imgb0011
  • Choix du diamètre de l'arbre de sortie d:
  • Calcul à partir du couple maximum à transmettre, et de la contrainte maximum admise.
  • Choix du nombre de secteurs 2 N:
  • Détermination de la valeur angulaire d'un secteur:
    Figure imgb0012
  • Le palier en 3 de valeur un pas angulaire de denture, zone 34, est distinct des secteurs situés à proximité du point 3.
    Figure imgb0013
  • Le palier en 3 de valeur un pas angulaire de denture, zone 34, ampute de un demi-pas angulaire de denture, les secteurs situés de part et d'autre du point 3.
  • Les secteurs N de part et d'autre de la zone 34 en 3 auront donc une valeur:
    • amputée de la moitié de la zone 34, si Z est impair;
    • normale, si Z est pair.
  • L'adoption pour les secteurs de compensation hydrostatique sur flasques 21 et 22, d'une disposition symétrique par rapport au plan médian perpendiculaire aux axes des pignons 9 et 10 et à mi-hauteur de ceux-ci, ou d'une disposition asymétrique, c'est-à-dire avec un décalage de un demi-pas angulaire de denture, pour mieux correspondre aux pressions à équilibrer, sera fonction des matériaux utilisés, mais la seconde solution doit satisfaire à toutes les conditions.
  • Le tableau donne les choix possibles pour les secteurs: les valeurs soulignées traits pleins, sont celles qui permettent d'obtenir la même pression à l'intérieur et à l'extérieur de l'enveloppe 36 sur l'axe 3, les valeurs soulignées traits pointillés conduisent à des constructions possibles en récepteur, mais avec une valeur de pression plus faible à l'extérieur qu'à l'intérieur de l'enveloppe 36 sur l'axe 3
    Figure imgb0014
  • Le choix du nombre de secteurs 2N sera fonction des caractéristiques recherchées; si N augmente, le rendement et le prix augmentent. Plus la cylindrée par tour augmente, plus Z et N augmenteront pour résoudre les problèmes de résistance et de dimensionnement de l'enveloppe 36. Cependant, l'étude devra toujours chercher à réaliser la construction avec Z et N les plus faibles possibles.
  • Réalisation pratique des pièces:
  • Corps 49: obtenu par moulage, alliage à base d'aluminium, fonte ou acier. Moulage éventuel des logements des joints.
  • Couvercles 54 et 55: obtenus par moulage, alliage à base d'aluminium, fonte ou acier. Moulage éventuel des logements des joints.
  • Flasques 21 et 22:
    • en matériaux plastiques ou composites, réalisation par moulage avec logements de joints.
    • en matériaux durs, alliage aluminium plomb, à bonnes caractéristiques de frottement
    • en matériaux durs, plus garniture plastique 109, réalisation par moulage avec logements de joints.
  • Enveloppe 36:
    • en matériaux plastiques ou composites, réalisation par moulage avec logements des joints
    • en matériaux durs, acier nitruré
    • en matériaux durs, plus garniture plastique 48 acier nitruré et garniture plastique adhérisée par moulage avec logements des joints.
  • Pignons 9 et 10: matériaux durs, acier de cémentation ou de nitruration.
  • Réalisation:
    • par usinage complet en une seule partie ou en deux parties assemblées par brasure;
    • par frittage d'une couronne dentée sur un noyau central préalablement usine;
    • par frittage complet.
  • Précisions nécessaires: appairage des largeurs de denture H, 4, des pignons 9 et 10, états de surface de l'ordre de 0.20 à 0.40 sur les sommets de dents et sur les faces, faces perpendiculaires aux profils de denture.

Claims (9)

1. Générateur-récepteur hydraulique pour la transmission de puissance comprenant deux engrenages accouplés à l'intérieur d'un stator, au moins l'un d'eux étant dépourvu de palier mécanique lequel stator comporte par ailleurs au moins une ouverture d'arrivée et une ouverture de retour pour un liquide sous pression, tandis que deux flasques referment le stator de part et d'autre des deux engrenages sur lesquels ils assurent une étanchéité latérale et que des canaux diamétraux couvrant un angle de 180° sont prévus dans les engrenages, le stator comportant und enveloppe souple (39) soumise extérieurement à une pression centripète qui lui permet d'assurer l'étanchéité sur les sommets des dents des engrenages (9, 10) à denture hèlicoïdale dont l'angle d'hélice a est tel que tga = 2H/nMt (H = largeur de denture, Mt = module apparent) situés dans l'enveloppe entre deux flasques souples (21, 22) avec compensation hydrostatique assurant l'étanchéité entre ces flasques et les faces des engrenages, l'équilibrage hydraulique interne étant assuré par un bobinage hydraulique comprenant des conduits rotoriques (19) dans les engrenages (9 et 10), et statoriques (23) dans les flasques (21 et 22), les commutations successives entre les conduits rotoriques (19) et statoriques (23) étant assurées par leurs extrémités défilant les unes devant les autres sur un cercle de commutation (20), les conduits statoriques y débouchant dans des alvéoles (100), et simultanément sur les creux de dents au niveau du cercle primitif pour l'autre extrémité des conduits statoriques (23), pour assurer la liaison permanente entre les creux de dents opposés pour un nombre de dents pair, et les creux de dents opposés avec, un décalage de un demi-pas pour un nombre de dents impair, sauf dans les zones d'engrènement (3) et celles respectivement diamétralement opposées (6), dans ces dernières sont créés des paliers hydrauliques diamétralement opposés au point d'engrènement (3) des engrenages (9 et 10) de sorte qu'au cours de la rotation des engrenages (9 et 10) ledit bobinage met en relation les couples de dents opposées de façon à obtenir une même pression hydraulique dans les creux de dents pour des positions angulaires diamétralement opposées et à créer deux forces inverses sur les engrenages en vue de provoquer leur engrènement sans jeu, caractérisé en ce que les circuits rotoriques dans les pignons (9, 10) sont constitués par des groupes de conduits (102) diamétralement opposés sur le cercle de commutation (20) et parallèles (ou inclinés à la valeur de l'angle de l'hélice) à l'axe des pignons (9, 10) et radiaux (101) réunissant les conduits (102) opposés de n pour former un H, l'alimentation en haute pression de la zone (34) de pression totale permanente s'effectuant par un système de clapet préférentiel (116) permettant également la décompression de cette zone (34) lorsque désiré.
2. Générateur-récepteur hydraulique suivant la revendication 1, caractérisé en ce que l'équilibrage des secteurs est réalisé par un bobinage statorique de conduits (103) reliant les secteurs au même potentiel de pression, ces conduits (103) étant réalisés dans le corps (49) ou dans les couvercles (54) et (55) par une série de perçages, ou par des tuyauteries acier extérieures au générateur-récepteur.
3. Générateur-récepteur hydraulique suivant l'une quelconque des revendications précédentes, caractérisé en ce que les secteurs de compensation hydrostatique devront être définis, en nombre et en importance, de façon que la pression hydraulique soit identique à l'intérieur et à l'extérieur de l'enveloppe (36) au point (3) correspondant au point d'engrènement, cette disposition permettant aussi la combinaison des conduits (103) externes et des conduits (101 et 102) internes pour l'équilibrage des secteurs en particulier pour les unités de faible cylindrée et grande vitesse de rotation.
4. Générateur-récepteur hydraulique suivant l'une quelconque des revendications précédentes, caractérisé en ce que la mise en pression du creux de dent aux points (6) pour obtenir la compensation hydrostatique des "paliers hydrauliques" est réalisée par un prolongement (108) des alvéoles (30) dont la valeur sera fonction des conditions de frottement et d'étanchéité en ces points et des fonctionnements prioritaires en générateur et sens de rotation.
5. Générateur-récepteur hydraulique suivant l'une quelconque des revendications précédentes, caractérisé en ce que les pignons (9) et (10) seront réalisés en une partie ou en deux parties, et, dans ce cas, seront constitués par:
un noyau central (121) percé avec les conduits radiaux (101) et des demi-conduits axiaux (102);
une couronne dentée (122) brasée ou frittée sur le noyau central (121) avec des demi-conduits (102) identiques à ceux du noyau.
6. Générateur-récepteur hydraulique suivant l'une quelconque des revendications précédentes, caractérisé en ce que les secteurs de compensation hydrostatique (60) sur flasques (21) et (22) plastiques, et (38) sur enveloppe (36) plastique, sont équipés d'emboutis métalliques anti-extrusion (104) et (107).
7. Générateur-récepteur hydraulique suivant l'une quelconque des revendications précédentes, caractérisé en ce que l'ensemble, flasques (21) et (22) - enveloppe (36), permet le rattrapage des jeux suivant deux directions concourantes:
axiale sur les faces des pignons (9) et (10);
radiale sur les sommets de dents de pignons (9) et (10) sera réalisé en matériau plastique selon au moins l'une des deux directions:
enveloppe (36) dure, flasques (21) et (22) plastique;
flasques (21) et (22) durs, enveloppe (36) plastique;
flasques (21) et (22), enveloppe (36) plastique.
8. Générateur-récepteur hydraulique suivant l'une quelconque des revendications précédentes, caractérisé en ce que les pignons (9) et (10) peuvent être réalisés avec une denture chevron hélicoïdale symétrique.
9. Générateur-récepteur hydraulique suivant l'une quelconque des revendications précédentes, caractérisé en ce que le pignon (9) peut être supporté, au niveau des couvercles (54) et (55) par deux roulements à aiguilles (123), qui positionnent ce pignon (9) autour duquel les autres pièces, pignon (10), flasques (21) et (22), enveloppe (36) s'équilibrent normalement par rapport à ce positionnement, comme dans les constructions précédentes.
EP87902113A 1986-04-01 1987-04-01 Generateur-recepteur hydraulique a haute pression pour la transmission de puissance Expired - Lifetime EP0262189B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR8605152A FR2596460B2 (fr) 1984-05-22 1986-04-01 Generateur recepteur hydraulique a haute pression pour la transmission de puissance
FR8605152 1986-04-04
FR8615016 1986-10-22
FR8615016A FR2605683B2 (fr) 1986-10-22 1986-10-22 Generateur recepteur hydraulique a haute pression pour la transmission de puissance

Publications (2)

Publication Number Publication Date
EP0262189A1 EP0262189A1 (fr) 1988-04-06
EP0262189B1 true EP0262189B1 (fr) 1990-05-30

Family

ID=26225150

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87902113A Expired - Lifetime EP0262189B1 (fr) 1986-04-01 1987-04-01 Generateur-recepteur hydraulique a haute pression pour la transmission de puissance

Country Status (4)

Country Link
US (1) US5028221A (fr)
EP (1) EP0262189B1 (fr)
JP (1) JP2813347B2 (fr)
WO (1) WO1987005975A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483029A1 (fr) * 1990-10-24 1992-04-29 Jean Malfit Générateur-récepteur hydraulique pour la transmission de puissance

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000060A1 (fr) * 1991-06-20 1993-01-07 Tartan Rehab Limited Siege coulissant pour fauteuil roulant
FR2698413B1 (fr) * 1992-11-26 1995-01-27 Jean Malfit Générateur-récepteur hydraulique pour la transmission de puissance comportant un équilibrage hydraulique perfectionné.
US6394206B1 (en) 2000-10-12 2002-05-28 Robert Fury Vehicle generator control
US7053498B1 (en) 2005-01-18 2006-05-30 Wartron Corporation Electronic control for a hydraulically driven generator
US8269359B2 (en) * 2006-01-17 2012-09-18 Uusi, Llc Electronic control for a hydraulically driven generator
US7759811B2 (en) * 2006-01-17 2010-07-20 Nartron Corporation Electronic control for a hydraulically driven generator
US8269360B2 (en) * 2006-01-17 2012-09-18 Uusi, Llc Electronic control for a hydraulically driven auxiliary power source
JP4387402B2 (ja) * 2006-12-22 2009-12-16 株式会社神戸製鋼所 軸受及び液冷式スクリュ圧縮機
DE102007044499A1 (de) * 2007-09-18 2009-03-19 Robert Bosch Gmbh Kraftstoffpumpe, insbesondere für ein Kraftstoffsystem einer Kolben-Brennkraftmaschine
WO2009148884A2 (fr) * 2008-05-30 2009-12-10 Carrier Corporation Compresseur à vis avec orifices asymétriques
JP5465366B1 (ja) 2013-06-27 2014-04-09 住友精密工業株式会社 液圧装置
WO2017139310A1 (fr) * 2016-02-10 2017-08-17 Magna Powertrain Of America, Inc. Ensemble de transfert de puissance à train d'engrenage hypoïde comportant un pignon intégré et une unité d'accouplement de joint homocinétique
GB201617119D0 (en) * 2016-10-07 2016-11-23 Rolls-Royce Controls And Data Services Limited Gear pump bearing

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US557123A (en) * 1896-03-31 Rotaey pump
FR713285A (fr) * 1930-06-21 1931-10-24 Johannes Freres Soc Pompe à engrenages, hydrauliquement équilibrée, reversible en moteur
FR795534A (fr) * 1934-12-20 1936-03-16 Bordier Et Gromadzinski Ets Pompe rotative équilibrée, réversible en moteur
US2029742A (en) * 1935-04-23 1936-02-04 William C Sieverts Balanced gear pump or motor
FR832872A (fr) * 1937-05-22 1938-10-04 Outil R B V L Pompe à engrenages, équilibrée
US2188702A (en) * 1937-08-13 1940-01-30 Burghauser Franz Pump or motor
DE705498C (de) * 1938-11-04 1941-04-30 Aeg Zahnradpumpe fuer OElfoerderung o. dgl.
US2338065A (en) * 1940-06-13 1943-12-28 Joseph F Keller Gear pump
US2491365A (en) * 1944-06-19 1949-12-13 Hpm Dev Corp Balanced gear pump
US2541010A (en) * 1945-12-22 1951-02-06 Equi Flow Inc Gear pump or motor
FR1121180A (fr) * 1955-02-08 1956-07-24 Air Equipement Perfectionnements aux pompes à engrenages
US3051091A (en) * 1959-11-18 1962-08-28 Be Ge Mfg Company Gear pump or motor
US3291061A (en) * 1963-07-23 1966-12-13 Kosaka Kenkyusho Ltd Screw pump or hydraulic screw motor
DD106442A1 (fr) * 1971-11-03 1974-06-12
JPS5218402B2 (fr) * 1971-12-03 1977-05-21
FR2284053A1 (fr) * 1974-09-03 1976-04-02 Laumont Roger Dispositif hydraulique a engrenages a fonction de pompe ou moteur a sens de rotation indifferent
JPS5170902U (fr) * 1974-11-30 1976-06-04
JPS52242A (en) * 1975-06-18 1977-01-05 Toyobo Co Ltd Process for preparing 1,4-cyclohexane dimethanol
DE2604969A1 (de) * 1976-02-09 1977-08-11 Eckerle Otto Zahnradpumpe oder -motor
JPS5720580A (en) * 1980-07-10 1982-02-03 Canon Inc Gear pump
JPS5797197U (fr) * 1980-12-05 1982-06-15
FR2564931B1 (fr) * 1984-05-22 1986-12-05 Malfit Jean Generateur recepteur hydraulique a haute pression pour la transmission de puissance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483029A1 (fr) * 1990-10-24 1992-04-29 Jean Malfit Générateur-récepteur hydraulique pour la transmission de puissance
FR2668548A1 (fr) * 1990-10-24 1992-04-30 Malfit Jean Generateur-recepteur hydraulique pour la transmission de puissance.
US5178528A (en) * 1990-10-24 1993-01-12 Jean Malfit Hydraulic generator-receiver for power transmission

Also Published As

Publication number Publication date
WO1987005975A1 (fr) 1987-10-08
JPH01500046A (ja) 1989-01-12
EP0262189A1 (fr) 1988-04-06
US5028221A (en) 1991-07-02
JP2813347B2 (ja) 1998-10-22

Similar Documents

Publication Publication Date Title
EP0262189B1 (fr) Generateur-recepteur hydraulique a haute pression pour la transmission de puissance
CA2047975C (fr) Dispositif de pompage ou de compression polyphasique et son utilisation
FR2668209A1 (fr) Pompe d'aspiration moleculaire.
FR2468009A1 (fr) Pompe et/ou moteur a engrenages
FR2690007A1 (fr) Tube à rayons X à anode rotative.
EP0279717B1 (fr) Dispositif de différentiel
FR2563580A1 (fr) Pompe electrique rotative, a moteur immerge, a engrenage, avec refroidissement du palier par le carburant pompe
EP0122208A1 (fr) Dispositif de transmission d'un mouvement de rotation entre un arbre menant et un arbre mené
EP0483029B1 (fr) Générateur-récepteur hydraulique pour la transmission de puissance
EP0165884B1 (fr) Générateur récepteur hydraulique à haute pression pour la transmission de puissance
EP0600807B1 (fr) Générateur-récepteur hydraulique pour la transmission de puissance
WO2019076672A1 (fr) Dispositif de forme spherique et muni de cannelures bombees pour former une liaison rotule a doigt, et pompe a barillet muni d'un tel dispositif
FR2574868A1 (fr) Pompe a engrenage a denture interieure
EP0277861A1 (fr) Perfectionnements aux moteurs hydrauliques hélicoidaux
EP1438508B1 (fr) Pompe a engrenage flasquee
FR2486595A1 (fr) Pompe a engrenage
FR2561721A1 (fr) Machine a fluide moteur du type a volute
FR3027070A1 (fr) Turbomachine tournant a des vitesses elevees
EP3797223B1 (fr) Elément de stator d'une pompe à cavités progressives et pompe à cavités progressives
FR2596460A2 (fr) Generateur recepteur hydraulique a haute pression pour la transmission de puissance
FR2657131A1 (fr) Machine de transmission hautes performances a engrenages.
BE566105A (fr)
FR3122703A1 (fr) Pièce de transmission souple pour réducteur de turbomachine
FR2701066A1 (fr) Dispositif hydromécanique à engrenage doublement croisé.
FR2522371A1 (fr) Dispositif a piston spherique pour machines motrices et operatrices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19871202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 19880812

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: ING.A.GIAMBROCONO & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3762987

Country of ref document: DE

Date of ref document: 19900705

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ITTA It: last paid annual fee
26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

EAL Se: european patent in force in sweden

Ref document number: 87902113.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960312

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960326

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960418

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960422

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970402

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980101

EUG Se: european patent has lapsed

Ref document number: 87902113.7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050401