EP0262189B1 - Hydraulischer hochdruckerzeuger bzw.-empfänger zur leistungsübertragung - Google Patents

Hydraulischer hochdruckerzeuger bzw.-empfänger zur leistungsübertragung Download PDF

Info

Publication number
EP0262189B1
EP0262189B1 EP87902113A EP87902113A EP0262189B1 EP 0262189 B1 EP0262189 B1 EP 0262189B1 EP 87902113 A EP87902113 A EP 87902113A EP 87902113 A EP87902113 A EP 87902113A EP 0262189 B1 EP0262189 B1 EP 0262189B1
Authority
EP
European Patent Office
Prior art keywords
conduits
gears
flanges
teeth
envelope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87902113A
Other languages
English (en)
French (fr)
Other versions
EP0262189A1 (de
Inventor
Jean Malfit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8605152A external-priority patent/FR2596460B2/fr
Priority claimed from FR8615016A external-priority patent/FR2605683B2/fr
Application filed by Individual filed Critical Individual
Publication of EP0262189A1 publication Critical patent/EP0262189A1/de
Application granted granted Critical
Publication of EP0262189B1 publication Critical patent/EP0262189B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0007Radial sealings for working fluid
    • F04C15/0019Radial sealing elements specially adapted for intermeshing-engagement type machines or pumps, e.g. gear machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0023Axial sealings for working fluid
    • F04C15/0026Elements specially adapted for sealing of the lateral faces of intermeshing-engagement type machines or pumps, e.g. gear machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0042Systems for the equilibration of forces acting on the machines or pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/086Carter

Definitions

  • Opposite sectors are equal, but two consecutive sectors can be unequal.
  • the realization of the rotor conduits is that defined by the form 76 of FIGS. 18 and 19 of the document EP-A-0165884, but with an additional arrangement, that is to say that the rotor circuit is constituted by diametrical bores through the pinions 9 and 10, holes opening into two conduits parallel to the axis of the pinions (or inclined up to the value of the helix angle a), and opposite to n, these two conduits serving four symmetrical switching points on the switching circle 20, these supply symmetrically the fluid bearings between the faces of the flanges 21 and 22 and the faces of the pinions 9 and 10. This symmetry of creation of the fluid bearings is only obtained in the context of the form 76 of rotor and stator conduits.
  • the hydraulic generator-receiver according to the invention is characterized in that its rotor circuits in the pinions consist of groups of diametrically opposite conduits on the switching circle and parallel (or inclined to the value of the helix angle) to the axis of the pinions and radials joining the pipes opposite to n to form an H, the high-pressure supply of the permanent total pressure zone being effected by a preferential valve system also allowing the decompression of this zone when desired .
  • Figure 1 is a perspective representation of the invention.
  • the take-up of clearances between the flanges 21 and 22, and the pinions 9 and 10 is effected by the action of the 2 N hydrostatic compensation sectors 60 on flanges 21 and 22, and is enabled by the possibility of axial compression of the casing 36.
  • the pinions 9 and 10 are balanced by the stator conduits formed by the cells 30 on the pitch circle, the conduits 23, the cells 100 on the switching circuit 20, and by the rotor conduits formed by the conduits 102 parallel to the axis of the pinion (or inclined to the value of the helix angle a), opposite to n and the conduits 101 for diametric connection between the conduits 102, the assembly ensuring an equipotential bond between sectors opposite to n if Z even, and at n ⁇ half an angular step of teeth if odd Z.
  • the number of connections D is greater than N so as to provide, by the overlaps between the conduits 102 and the cells 100, a permanent connection between opposite sectors while ensuring sufficient sealing between successive sectors. This permanent connection is broken at points 6 and 3, zone 34 of permanent total pressure to ensure the creation at points 6 of "hydraulic bearings".
  • This figure 1 also shows the arrangement of the orifices 40 HP-BP, shown parallel to the axes of the pinions and of cylindrical shape. They can also adopt a shape derived from the shape of the fluidd vein generated or received and possibly inclined at the helix angle a.
  • Figure 2 is a sectional elevation II-II ( Figure 3), still in the case of catching clearances by compression of the casing 36. It shows the area 34 and the arrangement of the conduits 101 and 102 in the pinions 9 and 10 .
  • Figure 3 half-section III-III, half-cut XI-XI ( Figure 20) shows the arrangement of the hydrostatic compensation sectors 60 on flanges 21 and 22 in the cs of a symmetrical construction, that is to say with symmetry, with respect to the median plane perpendicular to the axes of the pinions 9 and 10.
  • This arrangement does not correspond exactly to the pressures to be balanced, in the sense that it does not take into account the offset introduced by the helix angle, ie a angular half step
  • the hydrostatic compensation sectors 60 are materialized by the points 45, the anti-extrusion devices 104 and are balanced at by the cells 30, the conduits 23, the stator cells 100 and the rotor tubes 101 and 102.
  • This FIG. 3 shows a possibility of balancing by a conduit 103 constituted by bores, either through the body 49, or through the covers 54 or 55, are by a steel piping external to the apparatus and connecting two sectors opposite to
  • Figure 4 shows the arrangement of the hydrostatic compensation sectors 60 on flanges 21 and 22 in the case of an asymmetrical construction. This arrangement corresponds exactly to the pressures to be balanced in the sense that it takes account of the offset introduced by the helix angle a, that is to say an angular half pitch of toothing
  • the flanges 21 and 22 are however always identical, but in position in the generator-receiver, they only have a central symmetry with respect to the point 3 of meshing at mid-height of the pinions 9 and 10. It also has a possibility of balancing by a conduit 103 and another embodiment of the pinions 9 and 10 in two pieces assembled by a link 106, brazing or sintering.
  • FIGS. 3 and 4 show the hydrostatic compensation sectors 60 on flanges 21 and 22 located near point 3 reduced by a certain value for the creation of zone 34 at 3 (in principle an angular pitch of toothing); this in the case where the number of teeth Z is odd. In the case of even Z, these sectors near point 3 will have a normal value if the area 34 in 3 is equal to the area 34 in 6, that is to say an angular pitch of toothing and will be increased if the zone 34 adopted in 3 is weaker.
  • FIG. 5 section V-V (FIG. 4) shows the conduits 101 and 102 in the pinions 9 and 10, with the conduits 101 being closed by the plug 105.
  • This figure presents various possible construction variants:
  • the flange 22 of plastic material and comprises an anti-extrusion device 104.
  • the seal housings 45 and 58 are molded in the flange 22.
  • the casing 36 is plastic, the hydrostatic compensation sectors on the casing 36 are materialized by the clearance 38, the seal 37, the supply orifice 43 and the anti-extrusion device 107. Balancing between two opposite tooth recesses is clearly shown by the cells 30, the conduits 23, the stator cells 100 and the rotor conduits 101 and 102.
  • FIG. 6 is an external developed view of the casing 36 which shows the hydrostatic balancing sectors 38 on the casing 36 and their supply via the orifice 43.
  • the non-return 39 supplying the zone 34 according to document EP-A-0165884 has been replaced by an orifice 43, the zone 34 at 3 being eliminated and replaced by a hydrostatic compensation sector at this point, because it is important to have the same pressure on the axis 3 inside and outside of the envelope 36.
  • the role of the non-return 39 supplying the area 34 will be fulfilled by a device with preferred valve.
  • FIG. 7, section VII-VII is a section of the enclosure 36 which shows the detail of the hydrostatic compensation sectors 38 on the enclosure 36 with anti-extrusion device 107 and supply via the orifice 43.
  • FIG. 8 is a panoramic representation of the stator circuits alveoli 30, conduits 23, alveoli 100, and rotor circuits conduits 101 and 102 in the case of an even number of teeth Z and symmetrical construction of the hydrostatic compensation sectors 60 on flanges 21 and 22.
  • the upper representation shows the arrangement on the envelope 36, with the area 34, the seals 37, the orifices 43.
  • the shape 108 is a shape which extends the cells 30 towards point 6, for the hydrostatic balancing of the hollow teeth at 6 and the creation of "hydraulic bearings" replacing the supply conduit 33 according to document EP-A-0165884. This arrangement makes it possible to better control the hydrostatic balancing at 6 according to the priority operations in generator or or receiver by varying the length of this shape 108.
  • FIG. 9 is a panoramic representation of the stator and rotor circuits in the case of an odd number of teeth Z and symmetrical construction of the hydrostatic compensation sectors 60 on flanges 21 and 22.
  • FIG. 10 is a panoramic representation of the stator and rotor circuits in the case of a odd number of teeth Z and asymmetrical construction of the hydrostatic compensation sectors 60 on flanges 21 and 22. It requires an offset of an angular half-step dd toothing alveoli 100 and an inclination of the conduits 102 at the helix angle a. It allows more sustained balancing of the tooth hollows, the alveoli 30 being able to be angularly larger. The channels are tilted.
  • FIG. 11 is a panoramic representation of the stator and rotor circuits in the case of an odd number of teeth Z, and asymmetrical construction of the hydrostatic compensation sectors 60 on flanges 21 and 22.
  • This construction avoids the offset of an angular half step of teeth cells 100 between the flanges 21 and 22, and therefore to keep the conduits 102 parallel to the axis of the pinions 9 and 10.
  • the offset of is then produced by a spiral shape of a quarter angular pitch of toothing of the connecting conduit 23 between the cells 30 and the cells 100.
  • Intermediate variants are possible depending on the construction facilities they provide.
  • FIGS. 12, 13, 14 and 15, according to section II-II, represent various alternative embodiments of the flange clearance take-up assembly 21 and 22, envelope 36.
  • Seal housings by molding in the covers 54 and 55 or in the flanges 21 and 22 and in the body 49 or in the casing 36.
  • Each flange 21 and 22 will be equipped with four of these non-return devices for all operating cases, direction of rotation, generator and receiver, ie two devices per bore. These devices can be considerably simplified, in particular in the plastic flanges 21 and 22, the non-return 111 being able to be produced by a metal washer located on the inlet of the discharge duct in the hydrostatic compensation sector 60.
  • FIG. 17, section XVII-XVII shows the new device for pressurizing and decompressing the zone 34 which is the zone of total permanent pressure generated.
  • the supply and the decompression of the zone 34 is made either by the conduit 114, or by the conduits 117, 118 the selection being made by a preferential valve 116 opening into the conduit 115 leading to the zone 34.
  • This device is closed by the plug 119.
  • the valve 116 keeps free the connection between the sector at the top pressure and zone 34 and instantly allows the tilting of this connection when changing the sector for high pressure. It does not close when the pressure drops above the low pressure and therefore allows decompression. It only closes when a sector goes into low pressure. Zone 34 is therefore always at the maximum pressure generated or received.
  • This figure shows the orifice 40 HP-BP inclined at the helix angle a, 120 such that Mt apparent module 5, H tooth width 4.
  • the angle of inclination a, 120 may for units rotating at high rotational speed, take values of the order of 45 °, in particular in use herringbone teeth.
  • the HP-BP conduits are brought back perpendicular to the axes of the pinions, and positioned as on the generators and receivers with gears with straight teeth.
  • FIG. 20, section II-II is a variant of the protection of the driving pinion 9 against the external stresses transmitted by the power take-off: shocks, parasitic or internal forces resulting from possible imbalances of the hydrostatic compensations.
  • the pinion 9 is supported at the covers 54 and 55 by two needle bearings 123 which position this pinion 9 relative to the body 49, to the covers 54 and 55, the other constituent parts of the heart of the generator-receiver, pinion 10, flanges 21 and 22, envelope 36 balancing normally with respect to this positioning of the pinion 9 in the same way as in the preceding situations.
  • This device is a variant of the power take-off 52 for protecting the pinion 9. It will also, in combination with the hydrostatic compensation devices, correct certain minor imbalances resulting from operation and other imbalances such as those resulting from compressibility of the hydraulic fluid in the case of an even number of teeth Z.
  • These pressure values can vary from 100 to 800 bars.
  • V is the maximum flow speed of the hydraulic fluid in meters per second
  • w the maximum rotation speed in revolutions per minute
  • the speed of flow of the hydraulic fluid is the axial component of the speed of movement in the hollow of the tooth: only this axial component is to be taken into account, the tangential component is canceled by the speed of rotation of the pinion. Everything happens as if the generation (or reception) were ensured by a tooth-piston moving at constant speed in a hollow tooth cylinder, this speed being Z times the width of teeth H for a time corresponding to one revolution of pinion, the direction being axial.
  • the step in value 3 with an angular toothing pitch, zone 34, is distinct from the sectors located near point 3.
  • the bearing in 3 has an angular toothing pitch, zone 34, amputated by half an angular toothing pitch, the sectors located on either side of point 3.
  • the values underlined solid lines are those which make it possible to obtain the same pressure inside and outside of the envelope 36 on the axis 3
  • the values underlined lines dotted lines lead to possible constructions as a receiver, but with a lower pressure value outside than inside the envelope 36 on axis 3
  • Body 49 obtained by molding, aluminum-based alloy, cast iron or steel. Possible molding of the seal housings.
  • Lids 54 and 55 obtained by molding, aluminum-based alloy, cast iron or steel. Possible molding of the seal housings.
  • Sprockets 9 and 10 hard materials, case hardening or nitriding steel.
  • Precisions required pairing of the widths of teeth H, 4, pinions 9 and 10, surface conditions of the order of 0.20 to 0.40 on the tops of teeth and on the faces, faces perpendicular to the teeth profiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Motors (AREA)
  • Rotary Pumps (AREA)

Claims (9)

1. Hydraulischer Hochdruckerzeuger bzw. -empfänger zur Leistungsübertragung, bestehend aus zwei zusammenwirkenden Zahnrädern im Innern eines Stators, wobei mindestens eins der beiden Zahnräder kein mechanisches Lager aufweist, der Stator mindestens eine Eingangsöffnung und eine Ausgangsöffnung für eine unter Druck stehende Flüssigkeit aufweist, zwei Stirnwände den Stator an der einen und der anderen Seite der beiden Zahnräder verschließen und eine seitliche Dichtung sichern, diametrale Kanäle im Winkel von 180° in den Zahnrädern vorgesehen sind, der Stator ein biegsames Gehäuse (36) aufweist, das einem äußeren, zentripedalen Druck unterworfen ist, was eine Dichtigkeit an den Spitzen der Zähne der Zahnräder (9, 10) mit schraubenförmiger Verzahnung sichert, deren Schraubenwinkel
Figure imgb0015
(H = Breite der Zahnung, Mt = scheinbares Modul) ist, wobei die Zahnräder in dem Gehäuse zwischen den beiden biegsamen Stirnwänden (21, 22) mit hydrostatischer Kompensation angeordnet sind, was die Dichtigkeit zwischen den Stirnwänden und der Oberfläche der Zahnräder bewirkt, wobei das innere hydraulische Gleichgewicht durch eine hydraulische Anordnung gesichert ist, die aus rotorischen Leitungen (19) in den Zahnrädern und aus statorischen Leitungen (23) in den Stirnwänden besteht, wobei die Umschaltung nacheinander zwischen den rotorischen Leitungen und den statorischen Leitungen durch ihre Enden eines vor dem anderen auf einem Kommutationskreis (20) vorbeigehend erfolgt, wobei die statorischen Leitungen Y in Kanälen münden und gleichzeitig auf den Lücken der Zähne in Höhe des ursprünglichen Kreises für das andere Ende der statorischen Leitungen (23) einwirken, um die dauernde Verbindung zwischen den Lücken der gegenüberliegenden Zähne bei einer Zahl von Zahnpaaren und die Lücken der gegenüberliegenden Zähne bei einer Verschiebung um einen Halbschritt bei einer Zahl von unpaarigen Zähnen, ausgenommen in den Zonen des Eingriffs (3), und den entsprechenden diametral entgegegesetzten Zonen (6), wobei in der letzteren Zone die hydraulischen Lager diametral entgegengesetzt dem Eingriffspunkt (3) der Zahnräder (9, 10) gebildet sind, derart zu sichern, daß im Laufe der Drehung der Zahnräder (9, 10) die genannte Anordnung sich in Relation zu den gegenüberliegenden Zähnen trifft, um den gleichen hydraulischen Druck in den Zahnlücken für die ringförmig diametral gegenüberliegenden Stellungen zu erhalten und zwei umgekehrte Kräfte auf die Zahnräder zu bilden, um ihr Eingreifen ohne Spiel hervorzurufen, dadurch gekennzeichnet, daß die rotorischen Leitungen in den Antriebszahnrädern (9 und 10) aus Gruppen von Leitungen (102) bestehen, die diametral entgegengesetzt zum Kommutationskreis (20) und parallel (oder entsprechend dem Wert des Schraubenwinkels geneigt) zur Achse der Antriebszahnräder (9 und 10) verlaufen und aus radialen Leitungen (101), die die Leitungen (102) verbinden, entgegen n um ein H zu bilden, wobei die Speisung bei Hochdruck der Zone (34) des totalen, permanenten Druckes durch ein bevorzugtes Ventilsystem (116) bewirkt wird, das gleichzeitig eine Dekompression der Zone (34) erlaubt, wenn es erwünscht ist.
2. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach Anspruch 1, dadurch gekennzeichnet, daß das Gleichgewicht der Sektoren durch eine statorische Anordnung von Leitungen (103) gebildet ist, die die Sektoren mit gleichem Druckpotenzial verbinden, wobei diese Leitungen (103) in Körpern (49) oder in Kappen (54 und 55) durch eine Reihe von Bohrungen oder durch äußere Stahlleitungen am Druckerzeuger bzw. -empfänger angeordnet sind.
3. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die hydrostatischen Kompensationssektoren in Anzahl und Bedeutung derart definiert sein müssen, daß der hydraulische Druck identisch dem im Inneren und im Äußeren des Gehäuses (36) am Punkt (3) entsprechend dem Eingriffspunkt ist, wobei diese Vorkehrung ebenfalls die Verbindung der äußeren Leitung (103) und der inneren Leitungen (101, 102) erlaubt, um das Gleichgewicht der Sektoren, insbesondere bei schwachem Hubraum und großer Rotationsgeschwindigkeit zu erhalten.
4. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Unter-Druck-stellen der Zahnlücke an den Punkten (6) durch Verlängerung (108) der Kanäle (30) erreichbar ist, um die hydrostatische Kompensation des "hydraulischen Lagers" zu erhalten, wobei der Wert der Funktion der Konditionen der Reibungs- und Dichtigkeitsbedingungen in diesen Punkten und der ursprünglichen Wirkungen im Erzeuger und der Rotationsrichtung entspricht.
5. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Zahnräder (9 und 10) in ein oder zwei Teilen ausgebildet sind und in diesem Fall aus einem zentralen Kern (121) bestehen, der von den radialen Leitungen (101) und den achsialen Halbleitungen (102) durchdrungen ist und einen angelöteten oder gegossenen Zahnkranz (122) auf dem zentralen Kern (121) mit den Halbleitungen (102), die identisch denen des Kerns sind, aufweist.
6. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die hydrostatische Kompensationssektoren (60) aus Kunststoffstirnwänden (21 und 22) und aus einem Kunststoffgehäuse (36) bestehen und mit metallischen, Anti-Extrusions-Manschetten (104, 107) ausgerüstet sind.
7. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Einheit, bestehend aus den Stirnwänden (21 und 22) und dem Gehäuse (36), eine Spielverringerung in zwei konvergierenden Richtungen erlaubt, einer achsialen auf die Oberfläche der Zahnräder (9 und 10) und einer radialen auf die Spitzen der Zahnräder (9 und 10), ausgebildet in Kunststoffmaterial gemäß mindestens einer der beiden Richtungen: hartes Gehäuse (36), Kunststoffstirnwände (21 und 22) harte Stirnwände (21 und 22), Kunststoffgehäuse (36) Stirnwände (21 und 22), Kunststoffgehäuse (36).
8. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Antriebszahnräder (9 und 10) mit einer symetrischen heloicoidalen Chevronzahnung ausgerüstet sind.
9. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Zahnrad (9) in Höhe der Kappen (54 und 55) von zwei Nadellagern (123) getragen ist, wobei das Zahnrad (9), um die anderen Teile, Zahnrad (10), Stirnwände (21, 22) und Gehäuse (36) in Position zu bringen, sich normalerweise in Beziehung zu der Position ausgleicht, entsprechend der vorgenannten Konstruktion.
EP87902113A 1986-04-01 1987-04-01 Hydraulischer hochdruckerzeuger bzw.-empfänger zur leistungsübertragung Expired - Lifetime EP0262189B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR8605152A FR2596460B2 (fr) 1984-05-22 1986-04-01 Generateur recepteur hydraulique a haute pression pour la transmission de puissance
FR8605152 1986-04-04
FR8615016A FR2605683B2 (fr) 1986-10-22 1986-10-22 Generateur recepteur hydraulique a haute pression pour la transmission de puissance
FR8615016 1986-10-22

Publications (2)

Publication Number Publication Date
EP0262189A1 EP0262189A1 (de) 1988-04-06
EP0262189B1 true EP0262189B1 (de) 1990-05-30

Family

ID=26225150

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87902113A Expired - Lifetime EP0262189B1 (de) 1986-04-01 1987-04-01 Hydraulischer hochdruckerzeuger bzw.-empfänger zur leistungsübertragung

Country Status (4)

Country Link
US (1) US5028221A (de)
EP (1) EP0262189B1 (de)
JP (1) JP2813347B2 (de)
WO (1) WO1987005975A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483029A1 (de) * 1990-10-24 1992-04-29 Jean Malfit Hydraulischer Hochdruckerzeuger bzw.-Empfänger zur Leistungsübertragung

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000060A1 (en) * 1991-06-20 1993-01-07 Tartan Rehab Limited Sliding seat for wheelchairs
FR2698413B1 (fr) * 1992-11-26 1995-01-27 Jean Malfit Générateur-récepteur hydraulique pour la transmission de puissance comportant un équilibrage hydraulique perfectionné.
US6394206B1 (en) 2000-10-12 2002-05-28 Robert Fury Vehicle generator control
US7053498B1 (en) * 2005-01-18 2006-05-30 Wartron Corporation Electronic control for a hydraulically driven generator
US8269360B2 (en) * 2006-01-17 2012-09-18 Uusi, Llc Electronic control for a hydraulically driven auxiliary power source
US8269359B2 (en) * 2006-01-17 2012-09-18 Uusi, Llc Electronic control for a hydraulically driven generator
US7759811B2 (en) * 2006-01-17 2010-07-20 Nartron Corporation Electronic control for a hydraulically driven generator
JP4387402B2 (ja) * 2006-12-22 2009-12-16 株式会社神戸製鋼所 軸受及び液冷式スクリュ圧縮機
DE102007044499A1 (de) * 2007-09-18 2009-03-19 Robert Bosch Gmbh Kraftstoffpumpe, insbesondere für ein Kraftstoffsystem einer Kolben-Brennkraftmaschine
ES2562922T3 (es) * 2008-05-30 2016-03-09 Carrier Corporation Compresor de tornillo con puertos asimétricos
EP2837827B1 (de) 2013-06-27 2016-06-01 Sumitomo Precision Products Co., Ltd. Hydaulische vorrichtung
US11021054B2 (en) * 2016-02-10 2021-06-01 Magna Powertrain Of America, Inc. Power transfer assembly with hypoid gearset having optimized pinion unit
GB201617119D0 (en) * 2016-10-07 2016-11-23 Rolls-Royce Controls And Data Services Limited Gear pump bearing

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US557123A (en) * 1896-03-31 Rotaey pump
FR713285A (fr) * 1930-06-21 1931-10-24 Johannes Freres Soc Pompe à engrenages, hydrauliquement équilibrée, reversible en moteur
FR795534A (fr) * 1934-12-20 1936-03-16 Bordier Et Gromadzinski Ets Pompe rotative équilibrée, réversible en moteur
US2029742A (en) * 1935-04-23 1936-02-04 William C Sieverts Balanced gear pump or motor
FR832872A (fr) * 1937-05-22 1938-10-04 Outil R B V L Pompe à engrenages, équilibrée
US2188702A (en) * 1937-08-13 1940-01-30 Burghauser Franz Pump or motor
DE705498C (de) * 1938-11-04 1941-04-30 Aeg Zahnradpumpe fuer OElfoerderung o. dgl.
US2338065A (en) * 1940-06-13 1943-12-28 Joseph F Keller Gear pump
US2491365A (en) * 1944-06-19 1949-12-13 Hpm Dev Corp Balanced gear pump
US2541010A (en) * 1945-12-22 1951-02-06 Equi Flow Inc Gear pump or motor
FR1121180A (fr) * 1955-02-08 1956-07-24 Air Equipement Perfectionnements aux pompes à engrenages
US3051091A (en) * 1959-11-18 1962-08-28 Be Ge Mfg Company Gear pump or motor
US3291061A (en) * 1963-07-23 1966-12-13 Kosaka Kenkyusho Ltd Screw pump or hydraulic screw motor
DD106442A1 (de) * 1971-11-03 1974-06-12
JPS5218402B2 (de) * 1971-12-03 1977-05-21
FR2284053A1 (fr) * 1974-09-03 1976-04-02 Laumont Roger Dispositif hydraulique a engrenages a fonction de pompe ou moteur a sens de rotation indifferent
JPS5170902U (de) * 1974-11-30 1976-06-04
JPS52242A (en) * 1975-06-18 1977-01-05 Toyobo Co Ltd Process for preparing 1,4-cyclohexane dimethanol
DE2604969A1 (de) * 1976-02-09 1977-08-11 Eckerle Otto Zahnradpumpe oder -motor
JPS5720580A (en) * 1980-07-10 1982-02-03 Canon Inc Gear pump
JPS5797197U (de) * 1980-12-05 1982-06-15
FR2564931B1 (fr) * 1984-05-22 1986-12-05 Malfit Jean Generateur recepteur hydraulique a haute pression pour la transmission de puissance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483029A1 (de) * 1990-10-24 1992-04-29 Jean Malfit Hydraulischer Hochdruckerzeuger bzw.-Empfänger zur Leistungsübertragung
FR2668548A1 (fr) * 1990-10-24 1992-04-30 Malfit Jean Generateur-recepteur hydraulique pour la transmission de puissance.
US5178528A (en) * 1990-10-24 1993-01-12 Jean Malfit Hydraulic generator-receiver for power transmission

Also Published As

Publication number Publication date
EP0262189A1 (de) 1988-04-06
WO1987005975A1 (fr) 1987-10-08
US5028221A (en) 1991-07-02
JP2813347B2 (ja) 1998-10-22
JPH01500046A (ja) 1989-01-12

Similar Documents

Publication Publication Date Title
EP0262189B1 (de) Hydraulischer hochdruckerzeuger bzw.-empfänger zur leistungsübertragung
EP0867596B1 (de) Gewindeverbinder für Rohre
CA2047975C (fr) Dispositif de pompage ou de compression polyphasique et son utilisation
FR2668209A1 (fr) Pompe d'aspiration moleculaire.
FR2468009A1 (fr) Pompe et/ou moteur a engrenages
FR2690007A1 (fr) Tube à rayons X à anode rotative.
EP0279717B1 (de) Differentialvorrichtung
FR2563580A1 (fr) Pompe electrique rotative, a moteur immerge, a engrenage, avec refroidissement du palier par le carburant pompe
EP0122208A1 (de) Vorrichtung zum Übertragen der Drehbewegung einer Antriebsachse zu einer Abtriebsachse
EP0483029B1 (de) Hydraulischer Hochdruckerzeuger bzw.-Empfänger zur Leistungsübertragung
EP0165884B1 (de) Hydraulischer Hochdruckerzeuger bzw. -empfänger zur Leistungsübertragung
EP0600807B1 (de) Hydraulischer Hochdruckerzeuger bzw.-Empfänger zur Leistungsübertragung
WO2019076672A1 (fr) Dispositif de forme spherique et muni de cannelures bombees pour former une liaison rotule a doigt, et pompe a barillet muni d'un tel dispositif
FR2574868A1 (fr) Pompe a engrenage a denture interieure
EP0277861A1 (de) Hydraulische Schraubenmotoren
EP1438508B1 (de) Flanschzahnradpumpe
FR2561721A1 (fr) Machine a fluide moteur du type a volute
EP3049693B1 (de) Vorrichtung zur reduzierung der winkelgeschwindigkeit
EP3797223B1 (de) Statorelement einer exzenterschneckenpumpe und exzenterschneckenpumpe
FR2596460A2 (fr) Generateur recepteur hydraulique a haute pression pour la transmission de puissance
FR2657131A1 (fr) Machine de transmission hautes performances a engrenages.
BE566105A (de)
EP3982009A1 (de) Mechanisches reduktionsgetriebe für turbotriebwerk eines luftfahrzeugs
FR3122703A1 (fr) Pièce de transmission souple pour réducteur de turbomachine
FR2701066A1 (fr) Dispositif hydromécanique à engrenage doublement croisé.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19871202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 19880812

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: ING.A.GIAMBROCONO & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3762987

Country of ref document: DE

Date of ref document: 19900705

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ITTA It: last paid annual fee
26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

EAL Se: european patent in force in sweden

Ref document number: 87902113.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960312

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960326

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960418

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960422

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970402

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980101

EUG Se: european patent has lapsed

Ref document number: 87902113.7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050401