EP0165884B1 - Hydraulischer Hochdruckerzeuger bzw. -empfänger zur Leistungsübertragung - Google Patents

Hydraulischer Hochdruckerzeuger bzw. -empfänger zur Leistungsübertragung Download PDF

Info

Publication number
EP0165884B1
EP0165884B1 EP19850420097 EP85420097A EP0165884B1 EP 0165884 B1 EP0165884 B1 EP 0165884B1 EP 19850420097 EP19850420097 EP 19850420097 EP 85420097 A EP85420097 A EP 85420097A EP 0165884 B1 EP0165884 B1 EP 0165884B1
Authority
EP
European Patent Office
Prior art keywords
gears
conduits
flanges
teeth
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19850420097
Other languages
English (en)
French (fr)
Other versions
EP0165884A1 (de
Inventor
Jean Malfit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0165884A1 publication Critical patent/EP0165884A1/de
Application granted granted Critical
Publication of EP0165884B1 publication Critical patent/EP0165884B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0023Axial sealings for working fluid
    • F04C15/0026Elements specially adapted for sealing of the lateral faces of intermeshing-engagement type machines or pumps, e.g. gear machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0007Radial sealings for working fluid
    • F04C15/0019Radial sealing elements specially adapted for intermeshing-engagement type machines or pumps, e.g. gear machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0042Systems for the equilibration of forces acting on the machines or pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/086Carter

Definitions

  • the present invention relates to a high pressure hydraulic receiver-generator in accordance with the introduction to claim 1 and of the type described in patent FR-A-713285.
  • This patent describes, among other elements, the balancing of the pinions by means of a system of transverse lights communicating on each pinion each of the interdental hollows with the diametrically opposite hollow.
  • the main drawback of the device described in the aforementioned prior document consists in the fact that there are significant sources of fluid leaks between the high and low pressure zones. These leaks are mainly caused by the play existing from the start between on the one hand the lateral faces and the flanges of the body and on the other hand the tops of the teeth and the bores of said body. In addition, the flanges and the bodies are hollowed out while walking, further increasing the above-mentioned clearances.
  • the improvements which are the subject of the present invention aim to remedy these drawbacks and to allow the production of a generator-receiver of the kind in question which comprises means for making up for the play between the lateral faces of the pinions and the flanges as well as 'between the tops of the teeth and the bores in which the said pinions rotate.
  • This high pressure hydraulic generator-receiver will find its application in all problems of power transmission and reception and in particular in transmissions for motor vehicles.
  • Low pressure 1 supply pressure, use in generator, or return pressure, use in receiver. This pressure will preferably be higher than atmospheric pressure, pressurized tank.
  • High pressure 2 discharge pressure, use in generator, or supply pressure, use in receiver.
  • the BP and HP indications can be HP and BP and vice versa.
  • the construction of the hydraulic generator-receiver according to the invention ensures the hydraulic and mechanical balancing of all the pressure and mechanical forces brought into play by the generation or reception operation.
  • the generator-receiver according to the invention is defined by the characteristic of claim 1.
  • the helix angle has a value leading to a shift of a half of the no tooth profile between the two faces of gears available allowing to have a symmetrical construction and tightness meshing.
  • the flow rate of the generator-receiver will always be constant and no longer pulsed, as in straight-tooth generator-receivers or piston-generator-receivers.
  • curve 8 represents the distribution of HP and BP around each of the gears 9 and 10.
  • FIG. 6 The theoretical aspect of this balancing is shown in Figure 6, developed representation of the balancing of a gear with Z even, in this example sixteen teeth.
  • the central strip represents a developed section swimming 9 or 10 showing a succession of conduits 19 nested one inside the other, separated by a distance corresponding to an angular pitch, starting from one of the faces of the gear and ending at the other face, the departure and the arrival being located on a circle of the same diameter called switching circle 20.
  • the circles at the end of conduits show diagrammatically the intersection of the conduit on circle 20.
  • the conduits 23 located in the flanges 21 and 22 are stationary and constitute the stator of the "hydraulic winding".
  • the conduits 19 rotate with the gear 9 or 10, are mobile and constitute the rotor of the "hydraulic winding".
  • the generators 24-6-26-3 delimit the four 90 ° sectors of this construction. 3 is the HP discharge point on the upper part, and the BP suction point is located on the lower part with always the convention HP-BP ⁇ BP-HP as well as the possibility of two directions of rotation for the gears.
  • Pressure balancing is obtained by connecting the conduits 23 of the flange 21 with the conduits 23 of the flange 22 via the conduits 19 located inside the gears.
  • This connection between the hollow of diametrically opposite teeth takes place during the rotation of the gear and for a displacement corresponding to an angular half-step, taking into account the theoretical position of the arrival of the conduits 23 on the pitch diameter of the toothing and the internal diameter of the conduits 23 and 19.
  • Two groups of conduits 23 are to be considered: the group of conduits 28 centered in the sector (3, 24, 6) starting at the primitive of the sector (3, 24, 6) upper flange 21 and centered in the sector (3, 26, 6), in the sector primitive (3, 26, 6) lower flange 22.
  • This continuity value will be a function of the value which will be given to the recovery of the respective actions of the conduits of groups 28 and 29, a function of the diameter of the conduits, of the value of the angular pitch on the circle 20, of the radial position of the 'outcome of the conduits 23 relative to the pitch diameter of the gear, the theoretical angular distances between conduits being equal to nM inside the groups 28 and 29 and in the gears.
  • Each group 28 and 29 will act over a distance slightly greater than an angular step, ie nM + ⁇ , 5 representing the overlap.
  • the balancing circuit between two opposite tooth recesses covers an angle corresponding to whatever the group of conduits 28 or 29, there is perfect symmetry of construction. The complete balancing of the tooth cavity by diametrically opposite tooth cavities is thus ensured.
  • the assembly thus constructed is completely symmetrical with respect to a central point located on the generator at 3, halfway up the gears 9 and 10 on the pitch diameter. Balancing is theoretically perfect if there are no internal leaks and if the hydraulic oil is absolutely incompressible.
  • the balancing link covers an angle corresponding to Z / 2 minus one step, which allows balancing between two hollow teeth located at 180 ° minus half a step in the direction 3, 26.6.
  • Group 28 180 ° angle plus a half-step direction 3, 24.6.
  • Group 29 180 ° angle minus a half-step in direction 3, 26, 6, which corresponds to the same position of the hollows of teeth linked in group 28 and in group 29.
  • the number of teeth Z being odd, at the point opposite a tooth recess is a full of teeth and the connection is made between the tooth recess above and the tooth recess angularly lagging behind the first in the sector opposite the HP-BP port. Everything happens as if the sector opposite to the orifice 2 was supplied with priority by a value corresponding to a half-step to compensate for the fact that its supply takes place through the conduits with a delay due to the compressibility of the oil and possibly internal leaks.
  • P is the compressibility coefficient of the oil
  • P will link the volumes V2 and V1 to the pressures p2 and p1 and calculate the volumes of oil to be passed through the balancing pipe as well as the pipe diameter necessary to obtain a flow time less than the rotation time of the gear corresponding to an angular half-step.
  • This flow time will be less than the rotation time by half a step for the highest planned rotation speed so that the result of the pressure forces is always for the benefit of the sector opposite to the sector containing the orifice 2, or in our example, resulting sector 26, greater than resulting sector 3, 24.
  • Group 29 two and a half flange steps 21-one and a half flange step 22 or one and a half flange step 21-two and a half flange step 22.
  • the groove 41 on the switching circle 20 will make it possible to have complete symmetry of the conduits 23 of the group 29 in the flanges 21 and 22.
  • groove 41 on the switching circle is also used to link the first two conduits of group 29 from 6 and 3, this groove 41 can in this case be replaced by groove 42.
  • These grooves 41 or 42 are on the circle switching 20 and have a section identical to the section of the conduits 23 or 19.
  • This version allows an even more balanced and much simpler construction and a better balance of the whole.
  • balancing step that is to say a distance between conduits as close as possible to the value of the step nM and allowing an equal division of the circumference by an even number, so as to be able to place a conduit starting from the primitive at 6 and a conduit leaving the primitive at 3 in each of the flanges 21 and 22.
  • This value of balancing step is therefore necessarily equal to that is to say the value of the circumference in the primitive divided by the number of teeth minus one.
  • a group 28 connection circuit involves the same hollow teeth as the corresponding group 29 connection circuit.
  • Group 28 connection 180 ° angle + half a step in direction 3, 24, 6.
  • Group 29 link 180 ° angle - half a step in direction 3, 26, 6.
  • Deviation one step that is to say twice a half-step given by the difference in angle covered by the conduits 23 between groups 28 and 29; the links interest the same hollow teeth.
  • the conduit 23 in 3 is replaced by the link 41 (or 42 in thin broken lines), groove on the switching circle 20, connected to the following conduit since being at the same pressure potential.
  • Line 23 and 6 is replaced by line 33 which allows the creation of "hydraulic bearings" by supplying them with high pressure from zone 34, zone of maximum permanent total pressure (wherever there is no no balancing sector).
  • the same balancing conditions as for the version in FIG. 7 are achieved, but simplified and of more symmetrical construction.
  • the switching between the conduits 23 and 19 on the circle 20 will be successively lines of conduits 23-19 after lines of conduits 23-19 with a time offset corresponding to the time necessary for the gear to turn by the difference between the pitch d balancing and not the primitive either that is to say the pitch to the primitive divided by the number of teeth minus one.
  • the switching operations are therefore not simultaneous by group 28 or 29 as in the versions in figure 6 or figure 7.
  • conduits are theoretically centered in the primitive but can be shifted outward or inward relative to the primitive for an accentuation or a reduction of overlap.
  • the conduits 33 for supplying the "hydraulic bearings" from the area 34 are theoretically centered on the pitch diameter but can be offset outwards or inwards, angularly forward or backward with respect to 6, depending on the sealing conditions or the priority operation in generator or receiver, for an accentuation or a reduction in the action of the "hydraulic bearings".
  • These conduits 33 can also be placed on the envelope or can be eliminated if the sealing conditions at 6 are perfect, the "hydraulic bearings” then being created and kept by maintaining the pressure of the tooth recess thanks to the compressibility of hydraulic oil.
  • the balancing sectors are linked to the corresponding hollow teeth by conduits 46 positioned as the outcomes of the fictitious conduits 23.
  • the balancing sectors can also be linked by a circuit 47, center line of the circuits grouped in the linked sectors and linked to the tooth recesses by the conduits 46.
  • the conditions in 3 and 6 are unchanged compared to the version in figure 8.
  • Z-1 must be divisible by 2n if n is the number of conduits grouped or any if one admits different groupings in the same device, for example one, two, three ... n teeth, but Z-1 must always be even and Z odd.
  • this hydraulic receiver generator with helical gears must be oriented towards the largest number of teeth possible, the highest pressures compatible with the resistances of the external pipes and zero functional clearances and will therefore require a hydraulic oil with coefficient of compressibility as low as possible and having good molecular flow capacities to ensure lubrication with zero play under HP, hydraulic oil consisting of hydrocarbons with short carbon chains or mechanically sheared.
  • the first filling of hydraulic oil will be carried out under internal vacuum and the first pressurization will take place without rotation through the orifices 40 to set up the internal constituent elements.
  • the yield will be a function of the compressibility of the oil, of mechanical friction. Internal leaks contributing to the progressive compression of the oil as the orifice 2 approaches and will practically no longer intervene in the losses of yield (or in the decompression of the oil in the operation in engine).
  • Section II, II the helical gears 9 and 10 as defined above revolve in a flexible envelope 36 very hard and or with good friction characteristics, nitrided steel or composite materials on which is adhered a lining 48 in nylon or delrin-type thermoplastic polymers or polyesters in which the seals of the hydrostatic balancing sectors are housed on the outside diameter of the teeth of the gears 9 and 10.
  • This casing 36 surrounds the two gears, is internally ground to a diameter slightly a few hundredths of a millimeter higher to the outside diameter of the gears and the rectification takes place under tension, that is to say that the envelope must close on the outside diameter of the gears 9 and 10, except at the point of intersection of the diameters, which, by its rigidity will keep the grinding curve to allow the teeth to enter when the gears rotate.
  • the housings of the seals of the hydrostatic balancing sectors on the casing 36 can also be produced in the body 49; the lining 48 would then be removed, but the envelope 36 must then have a good surface condition on its outside diameters, which is a little more difficult to obtain, the blank of the envelope 36 being obtained by extrusion spinning in the case of a nitrided steel casing 36.
  • the gears 9 and 10 have no bearings, the latter being replaced by the casing 36 and the outside diameter of the gears, by the rolling of the gears 9 and 10 one on the other in 3, and by the "hydraulic bearings".
  • the gear 10 has a central orifice for evacuating HP leaks to BP, the general diagram of which is not shown, but which is in all respects similar to those produced for this kind of material.
  • the gear 9 has a shafted part on the side of the power take-off 50 for the transmission of the generation or reception torque. This shafted part can be either integral with the central part of the gear 9, or linked to the latter by grooves, since it is only subjected to torsional stresses. In this construction, the central parts of the gears 9 and 10 would then be identical, with a grooved steel core.
  • the shafted part of the gear 9 receives the external seal 51, and carries, at its end, the grooves 50 engaged in the power take-off 52, mounted on a needle socket.
  • This power take-off 52 housed in the centering 53 of the generator-receiver, is intended, by its shape, to avoid external shocks on the gear 9 and any axial stress on it.
  • the gears 9 and 10 constitute the rotor of the generator-receiver and receive the conduits 19, as defined above.
  • flanges 21 and 22 which constitute with the envelope the stator of the generator-receiver.
  • These flanges are made of thermoplastic polymers or polyesters, of the nylon or delrin composite type, that is to say with metallic powder fillers to improve the thermal conductivity characteristics. They are in one piece on each side for the gears 9 and 10, are molded with inserts constituted by the conduits 23, non-return 35, conduits 33 ( Figure 8) and HP-BP supply and discharge orifices ( Figure 3 , section III-1111.
  • the outside diameter will be a few hundredths larger than the outside diameter of the gears, to allow the casing 36 to compress the outside of the flanges 21 and 22, up to the outside diameter of the gears 9 and 10, and thus sealing the envelope 36 flanges 21 and 22.
  • the set of gears 9 and 10, the flanges 21 and 22, is housed in the body 49, in light alloy or cast iron, on which the covers 54 and 55 close, also in light alloy or cast iron, all assembled. by the bolts 56.
  • the cover 54 carries on the centering 53 the fixing flange of the generator-receiver, not shown.
  • the external seal is ensured by the seals 57 between the body and the covers, 58 between the flanges and the covers 51 on the shafted part of the gear 9.
  • the clearances materializing the area 34 represented in this figure 2, section II-II, between body 49 and casing 36 ⁇ 48, and between flanges 21 and 22, and covers 54 and 55, constitute the surface at maximum total permanent pressure generated or received by the generator-receiver.
  • the conduits 59 provide the connections between the different parts of this zone 34, the pressurization of which will be facilitated by clearances between metal inserts, a sort of grid, not shown, in particular in the annular zone between flanges and covers.
  • FIG. 3 shows the upper flange 21 or the lower flange 24, in which are housed the seals 45 delimiting the hydrostatic compensation sectors metarized by the sectors 60 in which the power supplies 30, pressure taps on the conduits 23, as well as the conduits 33 for supplying the "hydraulic bearings" and 6, starting from the zone 34, and shown on the pitch diameters of the gears.
  • the orifice 40 is materialized by the insert 61 and the seal 62 and, opposite this orifice, the hydrostatic compensation sector delimited by the seal 63.
  • FIG. 4 represents a developed view of the exterior of the envelope 36-48 showing the position of the gears 9 and 10 and the hydrostatic balancing sectors delimited by the seals 37, materialized by the clearances 38 and supplied by the orifices 43 whose diameter will be as small as possible, and less than the width of the top of the tooth of the gears, to avoid leakage from one tooth to the next, when switching over these orifices. It should be noted that this switching takes place couple of teeth by couple of teeth, with a time offset corresponding to the rotation of the gear.
  • the non-return valve 39 in 3 allows the supply of the zone 34 at the maximum generation or reception pressure.
  • hydrostatic compensation sectors have been shown parallel to the axis of the gears, which does not correspond exactly to the tooth hollow to balance, but this is not serious because of the area 34 located in relation to the flanges 21 and 22, which is clearly overabundant.
  • This hydrostatic compensation on the teeth is only intended to attenuate the action of the area 34 which will act anyway to press the envelope 36 on the top of the teeth.
  • These hydrostatic compensation sectors can be made with an inclination corresponding to the inclination of the propellers of the gears 9 and 10, the construction will be a little less simple, and the hydrostatic compensation better and more rational.
  • FIG. 5 shows a median section of the casing 36 ⁇ 48 with gears 9 and 10, the body 49, seals 37, the orifices 43, the clearances 38, the area 34.
  • FIGS. 6, 7, 8, 9 are the developed representation of the various “hydraulic windings” for balancing the gears 9 and 10.
  • Figure 10 section III-III shows the flanges 21 or 22 in the case of the developed representation of Figure 9 of grouping of conduits in the case of low power units and high rotational speeds.
  • the seals 45 delimit the balancing sectors corresponding to two teeth, are supplied by the conduits 30, pressure taps on the conduits 23 and supply of the second tooth of the sector by the conduit 46 by the hydrostatic compensation zone.
  • This figure shows the switching circle 20 on which the cells 41 appear, allowing the connections replacing the suppressed conduits.
  • section XI-XI is a section on the face between the gears 9 and 10 and the flanges 21 and 22 showing a panoramic representation of the conduits constituting the "hydraulic windings" stator and rotor.
  • Conduits 23 of the upper flange 21 which should not appear due to the cut and conduits 19 of the gears 9 and 10, the solid part of the conduit starting from the upper face of the gear and the dotted part leading to the lower face.
  • the conduits 23 of the lower flange 22 are not shown so as not to overload the figure but can be deduced by central symmetry.
  • the conduits 23 start from one face of the flanges 21 or 22 at the pitch of the gears 9 and 10 and end at the same face of the flanges 21 and 22 at the switching circle 20 and the conduits 19 leave from the circle 20 of one face of the gears and lead to the circle 20 on the other side of the gears 9 or 10, the rotation of the gears causing the connection or the rupture of the circuits by switching to the pitch through the faces of teeth and on the switching circle 20 by the orifices of termination conduits 23 and 19.
  • the connections are ensured during a stroke slightly greater than half a balancing step.
  • This section shows the position of the envelope 36-48, the orifice 40, the non-return valves 35 for evacuating the hollow teeth at point 3, the non-return valves 39, the seals 37, conduits 43 and clearances 38 d '' hydrostatic balancing on enclosure.
  • the curves 8 represent the distribution of the pressure forces resulting from the balancing around pinions 9 and 10, these curves evolving around an average value during the rotation and consist of a series of pressure levels corresponding to the valleys teeth.
  • section XII-XII is a half-section through the axis of the generator-receiver at 3.
  • the supply or discharge port 40 is materialized by the insert 61 housed in the flange 21.
  • This insert has a box 64 in which the two check valves 35 are housed, this box being closed by a cover for isolating the check valves during molding.
  • the non-return 35 open on the one hand into the orifice 40 through a conduit 66 and on the other hand into the alveoli 65 for recovering oil from the hollow of the teeth (FIG. 13- (section XIII-XIII) and folded section ).
  • This box is also connected by a conduit fitted with a non-return 68, always housed in the flange 21 or 22, for recovery of leaks or creation of a depression in a groove or channel 67 all around the flanges 21 or 22 to ensure perfect contact between the flanges 21 and 22 and the casing 36.
  • the envelope 36 includes a clearance 69 at the helix angle on the tips of the envelope at 3 and opening into the clearance 70 located under the orifice 40 and allowing good flow of the hydraulic fluid.
  • the conduit 72 connects the orifice 40 to the external connection of the generator-receiver.
  • FIG. 14 shows another version of oil recovery from the hollow of the teeth other than by the non-return valves 35 by a system of cells 73 on the faces of the flanges 21 and 22, the hollow of the teeth being successively isolated from the orifice 40 when they pass at low pressure by closing the connection 73-hollow of teeth-orifices 40 by the face of the tooth of the gear 9 or of the gear 10.
  • the cavity 73 plays the same role as the Clearance windows on spur gear pumps.
  • FIG. 15 gives an idea of the pressure curves 8 all around the gears 9 and 10 in the radial direction.
  • the pressure forces 12 balance the forces 11 at 3 resulting from the pressures at 3 and the radial components due to the generation or reception torque.
  • HP and BP forces are balanced with advantage to the HP forces opposite to the orifice 2 due to the offset of the sector balancing 6, 26 relative to the sector 3, 24.
  • FIG. 16 shows diagrammatically the axial pressure forces acting on the gears 9 and 10.
  • FIG. 17 shows a tooth in the case of a steel or metallic gear on which an anti-friction lining 74 is attached to the top of the tooth, the wear due to friction having to be done first on the top of the teeth and second on the envelope 36 to ensure a good seal.
  • This lining 74 can be a metallic deposit or an adhered plastic lining.
  • FIG. 18 shows different solutions of circuits between two hollow teeth of the gears via the conduits 23 in the flanges and 19 in the gears.
  • Circuit 75 the conduits 23 in the flanges 21 and 22 cover an angle equal to half of the total connection and the conduit 19 in the gears 9 or 10 a zero angle.
  • Circuit 76 the conduits 23 in the flanges 21 and 22 cover a zero angle and the conduit 19 in the gears 9 or 10 covers an angle equal to the entire connection.
  • Circuit 77 this circuit represents all the intermediate solutions between circuits 75 and 76.
  • Figure 19 shows the panoramic representation of these different types of circuits 75-76-77 with solid lines the parts located in the upper half and in dotted lines the parts located in the lower half.
  • the type of circuit adopted must also take into account that in the part 23 located in the flanges 21 and 22, this part must lend itself to the plastic deformation of the flanges 21 and 22 to allow the envelope 36 to come into contact on the diameter outside of the gears 9 and 10.
  • the shape of the circuit 76 and the neighboring shapes are to be avoided since they do not allow this deformation and also lead to an excessive bulk of the conduits 19 in the gears 9 and 10.
  • FIG. 20 shows different types of design of conduits 19 in the gears 9 and 10 and their symbolic representation in FIGS. 6-7-8 and 9.
  • the conduit 78 may be metallic or plastic piping.
  • the conduit 79 a metallic or plastic piping with metallic or plastic end piece serving to position the conduit in the mold (mounting on pins on the face of the mold).
  • the conduit 80 can be produced by a flexible cable which is braced or sheathed in plastic in the case of gears 9 or 10 made of composite materials based on resin and glass, carbon or metallic fibers and these cables removed after molding.
  • FIG. 21 shows different types of duct design 23 in the flanges 21 and 22 and their symbolic representation in FIGS. 6-7-8 and 9.
  • the conduit 81 without orifice 30 for balancing can be a metallic or plastic piping used in the case of small power units in which hydrostatic balancing will not be carried out, the bulk not allowing it and the short spans not not justifying it: the grouping of two, three, n teeth can still be done by a groove on the face of the flange with the original diameter, without going through the nonexistent balancing sector.
  • the conduit 82 a metallic or plastic piping housed in a metallic or plastic tip, comprising the conduit 30 for supplying the hydrostatic balancing sector on flask.
  • the conduit 32 a metallic or plastic piping housed in a metallic or plastic end piece, comprising the conduit 30, and a non-return valve 31, a system used in the version of FIG. 6 or point 6.
  • the conduit 23 may also be constituted by a groove in the face of the flange 21 or 22, groove going from the point of pressure tap at the pitch circle to the point of connection with the conduits 19 on the switching circle 20.
  • the conduit 23 may also be formed in its part parallel to the faces by the hydrostatic compensation sector 60 and connections by vertical pipes connecting the sector 60 on the one hand, and the pitch circle and the switching circle 20 on the other hand .
  • the windings will be made externally and then mounted in the molds.
  • the gears 9 and 10 can be made of steel with the conduits 19 drilled for large units, or for small units, made in two parts press fitted and brazed to the diameter of the switching circle 20, the conduits 19 made for half, half circular section, cut by switching circle 20, in each of those male and female parts, the copper brazing ensuring the assembly of the two parts between the conduits and the relative sealing of these, the teeth cut before or after in relation to the conduits.
  • the faces will be rectified and the gears paired within a thickness tolerance of the order of a hundredth of a millimeter.
  • the gears 9 and 10 may also be made of composite materials with a steel hub with drive grooves, they will be molded with the conduits 19 inserted in a thermosetting resin loaded with either glass fibers, carbon fibers or metallic powders. allowing good thermal conductivity ensuring the evacuation of the heat resulting from friction.
  • the teeth can be cut or molded.
  • the flanges 21 and 22 are molded with their metallic inserts conduits 23, inserts 61, metallic inserts for conduits 33. These conduits 33 can evolve throughout the zone 6 according to the priority uses of generator or receiver and according to the direction of rotation. priority. Clearance 67 can be machined. Powder metallic fillers will improve the thermal conductivity characteristics. Charges of graphite or molybdenum disulphide make it possible to improve the friction characteristics.
  • the bit housings of the lining 48 of the casing 36 will be machined if necessary and will either be straight or inclined depending on the inclination of the helix angle of the gears 9 and 10.
  • this receiver generator is thus designed so as to work with zero clearance at all points at risk of hydraulic leaks.
  • the study and definition of the hydrostatic balancing sectors and of the zones 343, of the plasticity of the materials, in particular of the flanges 21 and 22, of the friction coefficients will have to ensure these zero clearances while not causing too much contact forces.
  • high between the friction faces whose relative movements will be ensured by the high-pressure lubrication by the hollow of teeth and at the switching points on the circle 20.
  • the construction will always be in compromise between the losses by internal leaks and the losses by friction , the balance between these losses in a well-adapted hydraulic oil ensuring the maximum output of the receiver generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Motors (AREA)
  • Rotary Pumps (AREA)

Claims (13)

1. Hydraulischer Hochdruckerzeuger bzw. -empfänger zur Leistungsübertragung, bestehend aus zwei zusammenwirkenden Zahnrädern im Inneren eines Stators, der mindestens eine Eingangsöffnung und eine Ausgangsöffnung für eine unter Druck stehende Flüssigkeit aufweist, zwei Stirnwände, die den Stator an der einen und der anderen Seite der beiden Zahnräder verschließen und eine seitliche Dichtung sichern, wobei diametrale Kanäle in den Zahnrädern vorgesehen sind, dadurch gekennzeichnet, daß der Stator ein biegsames Gehäuse (36) aufweist, das einem äußeren zentripedalen Druck unterworfen ist, was ist Dichtigkeit an den Spitzen der Zähne der Zahnräder (9, 10) mit schraubenförmiger Verzahnung sichert, wobei die Zahnräder in dem Gehäuse zwischen den beiden biegsamen Stirnwänden (21 und 22) mit hydrostatischer Kompensation angeordnet sind, was die Dichtigkeit zwischen den Stirnwänden und der Oberfläche der Zahnräer bewirkt, wobei das innere hydraulische Gleichgewicht durch eine hydraulische Anordnung gesichert ist, die aus rotorischen Leitungen (19) in den Zahnrädern (9, 10) und durch statorische Leitungen (23) in den Stirnwänden (21, 22) besteht, wobei die Umschaltung nacheinander zwischen den rotorischen Leitungen (19) und den statorischen Leitungen (23) durch ihre Enden eines vor dem anderen auf einem Kommutationskreis (20) vorbeigehend erfolgt und gleichzeitig auf die Lücken der Zähne in Höhe des ursprünglichen Kreises für das andere Ende der statorischen Leitungen (23) einwirken, um die dauernde Verbindung zwischen den Lücken der gegenüberliegenden Zähne bei einer Zahl von Zahnpaaren und die Lücken der gegenüberliegenden Zähne bei einer Verschiebung um einen Halbschritt für eine Zahl von unpaarigen Zähnen, ausgenommen in den Zonen (6 und 3), wobei in der Zone (6) die hydraulische Lager diametral entgegengesetzt dem Eingriffspunkt (3) der Zahnräder (9, 10) gebildet sind, derart zu sichern, daß im Laufe der Drehung der Zahnräder (9, 10) die genannte Anordnung sich in Relation zu den gegenüberliegenden Zähnen trifft, um den gleichen hydraulischen Druck in den Zahnlücken für die ringförmig diametral gegenüberliegenden Stellungen zu erhalten und zwei umgekehrte Kräfte auf die Zahnräder zu bilden, um ihr Eingreifen ohne Spiel hervorzurufen.
2. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach Anspruch 2, dadurch gekennzeichnet, daß jede der Zenen der hydraulischen Lager (6 und 6) fortwährend durch maximalen Druck beaufschlagt ist und dem Eingriffspunkt (3) gegenüberliegt, wobei einerseits ein Aufbrechen der Verbindung zwischen den Zahnlücken und zwischen dem Punkt und dem gegenüberliegenden Punkt gegeben ist und andererseits die Erhaltung des Druckes durch Speisung der hydraulischen Lager mit Hochdruck dank einer Leitung (33) erfolgt, die der totalen permanenten Druckzone (34) in diesem Punkt entspricht, eine Leitung, deren Stellung gewählt ist, um die Verstärkung oder Schwächung der Tätigkeit des hydraulischen Lagers gemäß der Anfangsrichtung der gewählten Rotation für die Maschine zu erlauben, und daß die Maschine zum vornehmenlichen Gebrauch als Hochdruckerzeuger oder -empfänger bestimmt ist.
3. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß jede der Stirnwände (21,22) aus flexiblem Material der Gruppe der Polymere oder thermoplastischen Polyester angereichert mit metallischem Pulver besteht, um die thermische Leitfähigkeit zu verbessern, und angereichert mit Graphitpulver oder Molybdendisulfidpulver, um die Reibungseigenschaft zu verbessern, was jeder Stirnwand (21, 22) erlaubt, zu gleiten, um sich dem äußeren Durchmesser der Zahnräder (9, 10) unter Wirkung ihres radialen Druckes durch das Statorgehäuse (36) und durch die Zone (34) des maximalen totalen Druckes anzupassen.
4. Hydraulischer ,Hochdruckerzeuger bzw. -empfänger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Zahnräder (9 und 10) mindestens einen zentralen metallischen Kern haben, um die Belastung der radialen Kompression zu absorbieren, wobei die periphere Zahnung und die rotorischen Leitungen aus Metall oder aus einem synthetischen Material bestehen, das mit metallischem Pulver und einem Graphit- oder Polybdendisulfidpulver versetzt ist, wobei die Zahnräder (9, 10) entweder durchbohrt oder aus zwei Teilen durch Hartlöten am Durchmesser des Kommutationskreises (20) zusammengesetzt sind und die Leitungen (19) zur Hälfte auf jeden der beiden männlichen und weiblichen Teile zusammengefügt sind und wobei die Leitungen (19) in den Zahnrädern (9 und 10) während des Gießens eingesetzt sind.
5. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß auf den Stirnwänden (21 und 22) sowie auf das Statorgehäuse (36) bzw. den Sektoren (60 und 38), die durch Verschlüsse (45 und 37) begrenzt sind, ein Gegendruck durch Leitungen (30 und 43) ausgeübt wird, um ein hydrostatisches Gleichgewicht auf die Stirnwände und das Gehäuse zu erhalten.
6. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im Statorgehäuse (36) nicht umkehrbare Ventile (39) angeordnet sind, die in der Eingriffszone (3) der Zahnräder (9 und 10) angeordnet sind, um die Zone des totalen, permanenten, maximalen Drucks (34) zu speisen, wo immer der maximale Druck erzeugt oder empfangen wird.
7. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach Anspruch 6, dadurch gekennzeichnet, daß die Verbindung (37) von Sektoren des hydrostatischen Gleichgewichtes auf das Gehäuse (36) in Rillen gelagert sind, die in einer Einlage (48) aus Material der Polymer- oder thermoplastischen polyester-Gruppe am Gehäuse (36) anhaftend gebildet sind, wenn es im Inneren unter Spannung mit einem höheren Durchmesser von ein oder zwei hundertstel Millimeter zum äußeren Durchmesser der Zahnräder (9 und 10) schleift, wenn sie an den Punkten mit einer Neigung auseinander gehen, die am Maximum eines Halbschrittes bei einer Neigung eines Schraubenwinkels der Zahnung teilnehmen.
8. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach einem der vorhergehenden Ansprüche, dadurchgekennzeichnet, daß die Oberfläche der Stirnwände (21, 22) in Höhe des Kommutationskreises (20) und des Ursprungskreises der Zahnräder (9 und 10) Rillen (41) angeordnet sind, um mindestens zwei Gleichgewichtsleitungen (23) zu bilden, wobei diese ebenfalls durch die Rillen in den Zahnrädern (9 und 10) und durch die hydrostatische Gleichgewichtssektoren auf den Stirnwänden (21, 22) in Ursprungshöhe gebildet werden können.
9. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Statorgehäuse (36) Ausnehmungen (70) aufweist, um die Teile der Stirnwände (21, 22) aufzunehmen, die dem Einlaß und/oder den Auslaßöffnungen entsprechen.
10. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß auf dem äußeren Umfang der Stirnwände (21 und 22) ein Niederdruckkanal (67) angeordnet ist, der durch zwei Leitungen (68) mit nicht umkehrbaren Ventilen entlastet ist, die gegen eine Niederdruckzone gerichtet sind, um eine dichte Verbindung zwischen dem Gehäuse (36) und den Stirnwänden (21, 22) zu gewähren.
11. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß beim Eingriffspunkt (3) der Zahnräder (9 und 10) ein nicht umkehrbares System (35) angeordnet ist, das einerseits die Zahnlücken am Eingriffspunkt (3) und anderseits die Öffnungen HP+BP verbindet, was erlaubt, daß das Öl ohne Druck die Zahnlücken beim Eingriffspunkt (3) bei HP verlassen kann.
12. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß jedes der beiden Zahnräder (9 und 10) eine gleiche Anzahl von Zahnpaaren, das gleiche Zahnmodul, den gleichen Schraubenwinkel a, wenn
Figure imgb0019
ist, und Gleichgewichtskreise hat, die durch einen ringförmigen Abstand getrennt sind, der gleich dem ringförmigen Schritt nM der Zahnung ist, ausgenommen im Fall der Gruppierung von Leitungen.
13. Hydraulischer Hochdruckerzeuger bzw. -empfänger nach einem der Ansprüch 1 bis 12, dadurch gekennzeichnet, daß jedes der beiden Zahnräder die gleiche unpaarige Anzahl von Zähnen, das gleiche Zahnmodul, den selben Schraubenwinkel a, wenn
Figure imgb0020
ist und Gleichgewichtskreise hat, die durch einen ringförmigen Abstand getrennt sind, der gleich dem ringförmigen Schritt nM der Zahnung ist.
EP19850420097 1984-05-22 1985-05-21 Hydraulischer Hochdruckerzeuger bzw. -empfänger zur Leistungsübertragung Expired - Lifetime EP0165884B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8408607A FR2564931B1 (fr) 1984-05-22 1984-05-22 Generateur recepteur hydraulique a haute pression pour la transmission de puissance
FR8408607 1984-05-22

Publications (2)

Publication Number Publication Date
EP0165884A1 EP0165884A1 (de) 1985-12-27
EP0165884B1 true EP0165884B1 (de) 1990-04-11

Family

ID=9304594

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850420097 Expired - Lifetime EP0165884B1 (de) 1984-05-22 1985-05-21 Hydraulischer Hochdruckerzeuger bzw. -empfänger zur Leistungsübertragung

Country Status (4)

Country Link
EP (1) EP0165884B1 (de)
JP (1) JPH0631621B2 (de)
DE (1) DE3577120D1 (de)
FR (1) FR2564931B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483029A1 (de) * 1990-10-24 1992-04-29 Jean Malfit Hydraulischer Hochdruckerzeuger bzw.-Empfänger zur Leistungsübertragung

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2813347B2 (ja) * 1986-04-01 1998-10-22 ジャン マルフイ 動力伝達用高圧油圧発生収容器
JP4986753B2 (ja) * 2007-07-26 2012-07-25 株式会社日立製作所 歯車ポンプ及びそれを備えたブレーキ装置
DE102009012916A1 (de) * 2009-03-12 2010-09-16 Robert Bosch Gmbh Hydraulische Zahnradmaschine
WO2014199489A1 (ja) * 2013-06-13 2014-12-18 株式会社 島津製作所 歯車ポンプ又はモータ
EP2837827B1 (de) * 2013-06-27 2016-06-01 Sumitomo Precision Products Co., Ltd. Hydaulische vorrichtung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR713285A (fr) * 1930-06-21 1931-10-24 Johannes Freres Soc Pompe à engrenages, hydrauliquement équilibrée, reversible en moteur
FR795534A (fr) * 1934-12-20 1936-03-16 Bordier Et Gromadzinski Ets Pompe rotative équilibrée, réversible en moteur
FR832872A (fr) * 1937-05-22 1938-10-04 Outil R B V L Pompe à engrenages, équilibrée
US2491365A (en) * 1944-06-19 1949-12-13 Hpm Dev Corp Balanced gear pump
US3833317A (en) * 1971-03-04 1974-09-03 R Rumsey Rotary gear motor/pump having hydrostatic bearing means

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483029A1 (de) * 1990-10-24 1992-04-29 Jean Malfit Hydraulischer Hochdruckerzeuger bzw.-Empfänger zur Leistungsübertragung
FR2668548A1 (fr) * 1990-10-24 1992-04-30 Malfit Jean Generateur-recepteur hydraulique pour la transmission de puissance.

Also Published As

Publication number Publication date
JPS6153485A (ja) 1986-03-17
EP0165884A1 (de) 1985-12-27
DE3577120D1 (de) 1990-05-17
FR2564931A1 (fr) 1985-11-29
JPH0631621B2 (ja) 1994-04-27
FR2564931B1 (fr) 1986-12-05

Similar Documents

Publication Publication Date Title
CA2311175C (fr) Pompe a cavites progressantes a stator composite et son procede de fabrication
WO2014118477A1 (fr) Moteur pompe hydraulique a cylindrée fixe ou variable
EP0165884B1 (de) Hydraulischer Hochdruckerzeuger bzw. -empfänger zur Leistungsübertragung
EP1208317A1 (de) Kraftfahrzeugantriebseinheit mit stufenlosem getriebe
FR3031786A1 (fr) Integration d'une pompe en fut de pignon
EP0262189B1 (de) Hydraulischer hochdruckerzeuger bzw.-empfänger zur leistungsübertragung
CA2945890A1 (fr) Pompe a engrenages a carburant, prevue notamment comme pompe a haute pression
FR2716494A1 (fr) Machine à pistons rotatifs utilisable notamment en tant que moteur thermique.
EP0534836B1 (de) Hydraulikzahnradmaschine mit einem schwebendem Körper
WO2014048838A1 (fr) Différentiel intégrant un appareil hydraulique
EP0483029B1 (de) Hydraulischer Hochdruckerzeuger bzw.-Empfänger zur Leistungsübertragung
EP0277861A1 (de) Hydraulische Schraubenmotoren
EP3698062A1 (de) Mit konvexen verzahnungen zur ausformung eines kugelgelenks mit einem finger ausgestattete sphärische vorrichtung und mit solch einer vorrichtung ausgestattete taumelpumpe
FR2549908A1 (fr) Machine du type en spirale
FR2586066A1 (fr) Pompe a huile
BE1026074B1 (fr) Groupe de lubrification à crépine pour turbomachine
EP2356318B1 (de) Einen verbesserten getriebemechanismus umfassende rotationsmaschine jener art mit verformbarem rhombus
FR3111173A1 (fr) Réducteur radial haute densité de puissance pour turbosoufflante
FR2492904A2 (fr) Perfectionnements aux pompes et moteurs a fluide a engrenages
EP3938657A1 (de) Trockenpumpe für gas und satz aus mehreren trockenpumpen für gas
EP1319837A1 (de) Gerotorpumpe
FR3142516A1 (fr) Palier lisse de satellite de reducteur mecanique a fonctionnement silencieux
EP4242489A1 (de) Mechanisches reduktionsgetriebe für flugzeugturbomaschine
FR2561315A1 (fr) Machine hydraulique
BE566077A (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19860129

17Q First examination report despatched

Effective date: 19870902

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3577120

Country of ref document: DE

Date of ref document: 19900517

ITF It: translation for a ep patent filed

Owner name: ING.A.GIAMBROCONO & C. S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940310

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940511

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940517

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940705

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

EAL Se: european patent in force in sweden

Ref document number: 85420097.9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950522

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960201

EUG Se: european patent has lapsed

Ref document number: 85420097.9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST