EP0256325A2 - Filter zum Entfernen von Russpartikeln, insbesondere aus dem Abgasstrom eines Dieselmotors - Google Patents

Filter zum Entfernen von Russpartikeln, insbesondere aus dem Abgasstrom eines Dieselmotors Download PDF

Info

Publication number
EP0256325A2
EP0256325A2 EP87110439A EP87110439A EP0256325A2 EP 0256325 A2 EP0256325 A2 EP 0256325A2 EP 87110439 A EP87110439 A EP 87110439A EP 87110439 A EP87110439 A EP 87110439A EP 0256325 A2 EP0256325 A2 EP 0256325A2
Authority
EP
European Patent Office
Prior art keywords
filter
filter according
soot particles
exhaust gas
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87110439A
Other languages
English (en)
French (fr)
Other versions
EP0256325B1 (de
EP0256325A3 (en
Inventor
Christian Bergemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT87110439T priority Critical patent/ATE69087T1/de
Publication of EP0256325A2 publication Critical patent/EP0256325A2/de
Publication of EP0256325A3 publication Critical patent/EP0256325A3/de
Application granted granted Critical
Publication of EP0256325B1 publication Critical patent/EP0256325B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/14Plant or installations having external electricity supply dry type characterised by the additional use of mechanical effects, e.g. gravity
    • B03C3/155Filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/04Ionising electrode being a wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/10Fibrous material, e.g. mineral or metallic wool
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the invention relates to a filter for removing soot particles, in particular from the exhaust gas stream of a diesel engine.
  • soot particles retained by the filter are burned to non-toxic carbon dioxide by the exhaust gas heat.
  • the mechanical filters cause a permanent loss of pressure and power by interrupting the exhaust gas flow.
  • the temperatures of 450 to 600 ° C required for soot combustion can only rarely be reached by the exhaust gas heat. Blockage of the filter and blocking of the exhaust gas flow therefore occur, which not only results in performance losses, but can also lead to engine shutdown.
  • the exhaust gas temperature is increased by adding additional fuel (cf. emission reduction of automobile exhaust gases - diesel engines - VDI report 559, VDI Verlag Düsseldorf, pages 139 to 156).
  • Gravity separation is also known to reduce soot emissions; this sets an electrostatic Grain enlargement of the soot particles ahead.
  • An electrostatic field causes the soot particles to agglomerate; the aggregated soot particles can be collected in a container. The collected soot is then fed into the combustion chamber of the engine and burned there.
  • the effective reduction of the soot in the exhaust gas flow requires, in view of the large amounts of soot that accumulate, a collecting container with a corresponding holding capacity; due to lack of space and free space, a large-volume collection container, in particular for diesel motor vehicles, can hardly be realized, at best only with great effort.
  • the migration and penetration of the soot particles into the waveguide is increased by the suction electrode, which has a greater voltage potential than the waveguide. This is because a second electric field, which is also directed outwards, is created in the waveguide, the highest electric field strength being in the center of the waveguide, ie on the surface of the wire-shaped suction electrode de rules; the suction electrode attracts the charged soot particles.
  • a gas flow opposite the exhaust gas flow flows through the waveguide, entrains the agglomerates concentrated therein and transports them into the combustion chamber of the diesel engine for post-combustion.
  • the invention has for its object to provide a filter and a method for removing soot particles, in particular from the exhaust gas stream of a mobile or stationary diesel engine without the above disadvantages and with a significantly improved efficiency.
  • a tube with filter material and a perforated jacket surface through which the exhaust gas flows the perforated tube preferably being designed as a fabric tube.
  • the invention is based on the knowledge that the soot particles are accelerated radially outward due to the pulsations in the exhaust system with the exhaust gas flow and because of the almost completely open outer surface of the very large-pored, mesh sizes of approx. 1 mm and approx. 0.6 mm wire thickness having fabric tube over the entire circumferential area of the tube unimpeded penetrate into the filter material immediately surrounding the fabric tube, ie, lying against the tube surface, and store it there.
  • Compressed, porous materials such as steel wool, ceramics, mineral foams are suitable as filter material.
  • the invention is also based on the idea that the exhaust gases flowing out of the combustion chamber of the diesel engine contain ionized soot particles which accelerate into the filter material immediately adjacent to the pipe.
  • the kinetic energy of the soot particles when they hit the filter material and the particles that have already been stored support a burn-off of the soot particles stored or temporarily stored in the filter material.
  • the self-regeneration of the filter by burning off the intermediate soot particles is also favored by the heat of the exhaust gas.
  • the burn-off temperature of the soot stored can advantageously be reduced by catalytically coated filter material.
  • the emissivity can be optimized by supporting the deposition by means of an electrostatic field, because by the energy supply from the electrostatic field, the charging of the soot particles and an erosion, which is favored by the branched edge area of the soot particles, are already caused on the way to the pipe surface.
  • the filter housing of a transient motor can e.g. ground through a ground connection. As tests have confirmed, the efficiency of the self-regenerating filter can be increased by up to 90% by means of electrostatic deposition.
  • the migration of the soot particles to be separated is supported in the direction of the lateral surface of the tissue tube serving as the precipitation electrode; from there, the soot particles are transported by the exhaust gases flowing through the surface of the fabric tube into the enveloping filter material and stored there.
  • the diameter of the filter material sheath can be smaller compared to the perforated tube than in the case of a filter which works without electrostatic deposition.
  • the voltage applied to the spray electrode is negative.
  • the negative voltage of the spray electrode which may consist of several wires, results in a corona that is considerably larger than the positive voltage.
  • the pulsating DC voltage can be provided by means of a transformer which is connected to the Car battery is supplied with electrical power. Since the required current is very low, approx. 4 to 5 mA, the electrical system of the vehicle is only slightly loaded; This enables the high voltage, which does not need to exceed about 10 kV, to be implemented easily and safely, the ozone generated in the high voltage field also influencing the chemical reaction of the ionized soot particles and thus promoting the combustion of the soot incorporated into non-toxic carbon dioxide.
  • the tension or compression spring keeps the metal wire, the diameter of which should not be more than 0.3 mm, tensioned, i.e. it compensates for any elongation of the wire caused by the exhaust gas heat.
  • the spring can be arranged, for example, between an insulator and the end of the wire, or it acts on a movable insulator base on the housing of the filter. One on the insulator base, i.e. The spring located outside the hot gas flow cannot burn out.
  • the insulators holding the metal wire can be arranged vertically or horizontally.
  • the insulators should in any case have a length such that flashovers from the spray electrode outlet to the housing wall of the filter are avoided.
  • the housing can advantageously have eccentrically arranged inlet and outlet pipes, which are followed by the connecting pieces, onto which the fabric tube can be plugged, for example, with its ends, or into which it engages with its ends.
  • the off-center position is particularly suitable for horizontally arranged insulators compared to vertical isolas gates are easier to install and dismantle, and are located outside the gas flow in the case of eccentric inlet and outlet pipes which are not aligned with the fabric tube.
  • the fabric tube can advantageously be formed with a radially outwardly projecting, web-like longitudinal seam.
  • a smooth inner jacket surface can be achieved in the interior of the tube by the outwardly directed longitudinal seam in the region of the abutting edges of the mat formed into a tube; Tensions and the skipping of sparks, as cannot be excluded with overlapping abutting edges, do not occur.
  • the exhaust gas flow pulsating through the filter with the soot particles contained therein is passed through an electrostatic field, the soot particles are charged in the electrostatic field, accelerated radially outward and into a filter layer stored and periodically burned off automatically.
  • the soot particles are thus embedded in the filter material concentrically enveloping the exhaust gas flow guide due to the pulsations of the gas flow combined with the effect of the electrostatic field.
  • the exhaust gas heat, the supply of energy from the electrostatic field, the high-voltage ozone and oxidizing substances present in the gas stream cause the soot to be burned off automatically.
  • the voltage in the electrostatic field can advantageously be varied depending on the operation of the motor. At full Operating load of the engine, the exhaust gas temperature is higher than in partial load operation; this results in more favorable burning conditions, so that the energy supply from the electrostatic field and thus the already low electrical power of approximately 50 W can be reduced further accordingly.
  • the exhaust gases coming from an internal combustion engine, not shown, are fed to a filter 1 in the direction of the arrow 2 via an inlet connection 3.
  • the filter 1 consists of a housing 4, which concentrically surrounds a fabric tube 5.
  • the tube 5 extends through the entire housing 4 and connects the inlet connector 3 with an opposite outlet connector 6.
  • the tube 5 is enveloped by filter material 7, which completely fills the space between the outer surface of the tube 5 and the housing 4.
  • the exhaust gas flows through the filter material 7 due to pulsations caused by the exhaust system, soot particles present in the exhaust gas penetrating through the numerous meshes 8 of the fabric tube 5 into the filter material 7 and settling there store.
  • the stored soot particles burn off automatically in the filter material, so that the exhaust gas leaving the filter via the outlet connection 6 is freed of soot particles.
  • the filter 101 has a grounded housing 9, for example connected to ground, with connections 10, 11 for applying a pulsating direct voltage to a spray electrode in the form of a metal wire 12.
  • the metal wire 12 extends in the longitudinal direction through the fabric tube 105 and is on the output side of the inlet and outlet connecting pieces 103 and 106, vertically arranged insulators 13.
  • the spray electrode 12 is stretched between the insulators 13 fixed to the housing 9 by means of bases 14; Any elongations of the spray electrode 12 caused by the hot exhaust gas flow compensate for a spring 15 which, in the embodiment according to FIG. 2, acts on the insulator 13 which is arranged in the region of the inlet connection piece 103 and is not connected to the current.
  • the insulator 13 is pivotally mounted movable in a spherical seat of the base 14; when the spray electrode 12 is elongated, the spring 15 which is supported on the inside of a cap 18 encapsulating the insulator 13 presses the insulator 13 in its seat into a position which compensates for the elongation.
  • an electrostatic field builds up and causes the soot particles introduced into the filter 101 with the exhaust gas stream 102 via the inlet connection 103 to migrate increasingly in the direction of the meshes 108 of the tube 105, through which meshes 108 pass and accumulate in the filter material 107 until the filter regenerates due to the burned-off soot particles; the stored soot burns to non-toxic carbon dioxide.
  • the self-regenerating fitler 101 shown in FIG. 3 with electrostatically assisted separation differs from the filter 101 according to FIG. 2 by the horizontal arrangement of the insulators 113 that clamp the spray electrode 12.
  • the insulators 113 are arranged in covers 16, which are on each end face of the housing 9 are flanged by means of bolts 17.
  • the covers 16 are provided with the inlet and outlet nozzles 103, 106 and inlet and outlet pipes 19, 20 arranged off-center with respect to the nozzles 103, 106.
  • the fabric tube 105 is plugged with its ends onto the connection 103, 106.
  • the fabric tube 5, 105 shown in FIG. 5 has a web-like protruding radially outward Longitudinal seam 22 with laterally angled locking surfaces 23; with the longitudinal seam 22, the fabric tube 5, 105 can for example in grooves of the and outlet ports 3, 6; 103, 106 are inserted and secured in their position via the locking surfaces 23.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrostatic Separation (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Filtering Materials (AREA)

Abstract

Bei einem Filter (1, 101) zum Entfernen von Rußpartikeln, insbesondere aus dem Abgasstrom eines Dieselmotors, läßt sich ein hoher Wirkungsgrad durch ein vom Abgas durchströmtes von Filtermaterial (7, 107) umhülltes Rohr (5, 105) mit durchlöcherter Mantelfläche in einem Gehäuse (4, 9) erreichen.

Description

  • Die Erfindung betrifft einen Filter zum Entfernen von Rußpartikeln, insbesondere aus dem Abgasstrom eines Dieselmotors.
  • Zum Verringern der sehr schädlichen, umweltbelastenden Rußemission ist es bekannt, den Abgasstrom durch einen mechanischen Filter zu leiten. Die von dem Filter zurückgehaltenen Rußpartikel werden durch die Abgaswärme zu ungiftigem Kohlendioxid verbrannt. Die mechanischen Filter bewirken allerdings durch die Unterbrechung des Abgasstromes einen permanenten Druck- und Leistungsverlust. Außerdem lassen sich die für den Rußabbrand erforderlichen Temperaturen von 450 bis 600 °C durch die Abgaswärme nur selten erreichen. Es treten deshalb Verstopfungen des Filters und ein Blockieren des Abgasstromes auf, was nicht nur Leistungsverluste mit sich bringt, sondern zum Motorstillstand führen kann. Um diese Nachteile zu kompensieren, wird die Abgastemperatur durch Zufuhr zusätzlichen Kraftstoffs erhöht (vgl. Emissionsminderung Automobilabgase - Dieselmotoren - VDI-Bericht 559, VDI Verlag Düsseldorf, Seiten 139 bis 156).
  • Zum Vermindern der Rußemission ist außerdem eine Schwerkraftabscheidung bekannt; diese setzt eine elektrostatische Kornvergrößerung der Rußpartikel voraus. Ein elektrostatisches Feld bewirkt dabei die Agglomeration der Rußpartikel; die zusammengeballten Rußpartikel lassen sich in einem Behälter sammeln. Der gesammelte Ruß wird anschließend dem Verbrennungsraum des Motors zugeführt und dort verbrannt. Das wirksame Verringern des Rußes im Abgasstrom erfordert in Anbetracht der anfallenden großen Rußmengen einen Sammelbehälter mit entsprechender Aufnahmekapazität; aus Mangel an Platz und freiem Raum läßt sich ein großvolumiger Sammelbehälter insbesondere für Diesel-Kraftfahrzeuge kaum, allenfalls nur sehr aufwendig verwirklichen.
  • Durch die DE-OS 33 24 886 ist es bekanntgeworden, den Abgasstrom mit den darin enthaltenen Schadstoffen, wie insbesondere Rußpartikeln, durch ein als Masseelektrode ausgebildetes Gehäuse zu leiten, das koaxial einen eine zweite Elektrode darstellenden Hohlleiter mit Durchbrüchen aufnimmt. Eine Saugelektrode in Form eines Drahtes erstreckt sich durch den Hohlleiter; das an die Saugelektrode angelegte Spannungspotential ist höher als das des Hohlleiters. Die in dem Gasstrom enthaltenen, sehr kleinen, fein verteilten Rußpartikel ballen sich unter dem Einfluß des elektrischen Feldes zwischen dem Gehäuse und dem Hohlleiter zu größeren Agglomeraten zusammen, die in Richtung des Hohlleiters wandern und über die Durchbrüche in den Hohlleiter eindringen. Das Wandern und Eindringen der Rußpartikel in den Hohlleiter wird durch die gegenüber dem Hohlleiter ein größeres Spannungspotential aufweisende Saugelektrode verstärkt. Es entsteht nämlich im Hohlleiter ein zweites, ebenfalls nach außen gerichtetes elektrisches Feld, wobei die höchste elektrische Feldstärke in der Mitte des Hohlleiters, d.h. an der Oberfläche der drahtförmigen Saugelektro de herrscht; die Saugelektrode zieht die geladenen Rußpartikel an. Ein dem Abgasstrom entgegengesetzter Gasstrom strömt durch den Hohlleiter, reißt die darin konzentrierten Agglomerate mit und transportiert sie zur Nachverbrennung in den Brennraum des Dieselmotors. Ein zusätzlicher Rußsammelbehälter ist bei dieser bekannten Abgas-Reinigungsvorrichtung zwar nicht erforderlich, jedoch besteht auch hier die große Gefahr, daß neben den Rußpartikeln auch die ebenfalls abgeschiedenen Rostpartikel aus der Auspuffanlage in den Verbrennungsraum des Motors gelangen; das hat eine verringerte Lebensdauer des Motors zur Folge und kann zu seiner Zerstörung führen.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Filter und ein Verfahren zum Entfernen von Rußpartikeln, insbesondere aus dem Abgasstrom eines mobilen oder stationären Dieselmotors ohne die vorstehenden Nachteile und mit einem wesentlich verbesserten Wirkungsgrad bereitzustellen.
  • Diese Aufgabe wird erfindungsgemäß durch ein vom Abgas durchströmtes von Filtermaterial umhülltes Rohr mit durchlöcherter Mantelfläche in einem Gehäuse gelöst, wobei das durchlöcherte Rohr vorzugsweise als Geweberohr ausgebildet ist. Der Erfindung liegt die Erkenntnis zugrunde, daß die Rußpartikel bedingt durch die Pulsationen in der Abgasanlage mit dem Abgasstrom radial nach außen beschleunigt werden und aufgrund der nahezu völlig offenen Mantelfläche des sehr großporigen, Maschenweiten von ca. 1 mm bei ca. 0,6 mm Drahtdicke aufweisenden Geweberohres über den gesamten Umfangsbereich des Rohres ungehindert in das das Geweberohr unmittelbar umschließende, d.h. der Rohrmantelfläche anliegende Filtermaterial eindringen und sich dort einlagern. Als Filtermaterial sind verdichtete, poröse Stoffe geeignet, wie beispielsweise Stahlwolle, Keramik, Mineralschäume.
  • Die Erfindung basiert außerdem auf dem Gedanken, daß die aus dem Brennraum des Dieselmotors abströmenden Abgase ionisierte Rußpartikel enthalten, die beschleunigt in das dem Rohr unmittelbar angrenzenden Filtermaterial eintreten. Die kinetische Energie der Rußpartikel beim Auftreffen auf das Filtermaterial und die bereits eingelagerten Partikel unterstützt einen Abbrand der im Filtermaterial ein- bzw. zwischengelagerten Rußpartikel. Das Selbstregenerieren des Filters durch Abbrennen der zwischengelagerten Rußpartikel wird außerdem durch die vorhandene Wärme des Abgases begünstigt.
  • Die Abbrenntemperatur des eingelagerten Rußes läßt sich vorteilhaft durch katalytisch beschichtetes Filtermaterial senken.
  • Das Entfernen von Rußpartikeln und damit Vermindern von Rußemission läßt sich mit dem erfindungsgemäßen Filter ohne Druckverluste erreichen, denn die Abgase durchströmen das Rohr im Gehäuse nahezu widerstandsfrei, d.h. ohne zwangsweise Durchströmung eines Filtermaterials. Durch den selbsttätigen Abbrand des außerhalb des Abgasstromes im Filtermaterial eingelagerten Rußes eine beträchtliche Einlagerungskapazität dar, ohne durch die Beladung den Strömungsquerschnitt für den Abgasstrom im Rohr zu beeinträchtigen; ein leistungsmindernder Abgasgegendruck kann sich nicht aufbauen. Eine Filtermaterialumhüllung, die vorzugsweise den dreifachen Durchmesser des Geweberohres besitzt, hat sich als besonder günstig herausgestellt. Aufgrund der geringen Baugröße lassen sich die Abgasanlagen vorhandener Dieselmotoren mit dem Filter nachrüsten.
  • Bei vorzugsweise einem geerdeten Gehäuse und einer durch das Rohr geführten Sprühelektrode, die vorteilhaft als ein zwischen rohrein- und -auslaßseitig angeordneten Isolatoren gespannter Metalldraht ausgebildet ist, läßt sich der Emissionsgrad durch Unterstützung der Abscheidung mittels eines elektrostatischen Feldes optimieren, denn durch die Energiezufuhr aus dem elektrostatischen Feld werden das Aufladen der Rußpartikel und ein Abbrand, der durch den verästelten Randbereich der Rußpartikel begünstigt wird, bereits auf dem Weg zur Rohr-Mantelfläche bewirkt. Das Filtergehäuse eines instationären Motors läßt sich z.B. durch einen Massenanschluß erden. Wie Versuche bestätigt haben, läßt sich der Wirkungsgrad des selbstregenerierenden Filters durch die elektrostatische Abscheidung bis 90 % erhöhen. Beim Anlegen einer aus Sicherheitsgründen vorzugsweise pulsierenden Gleichspannung an die Sprühelektrode wird nämlich das Wandern der abzuscheidenden Rußpartikel in die Richtung der Mantelfläche des als Niederschlagselektrode dienenden Geweberohres unterstützt; von dort werden die Rußpartikel von den durch die Geweberohr-Mantelfläche strömenden Abgasen in das umhüllende Filtermaterial transportiert und dort eingelagert. Bei einem Filter mit einem elektrostatischen Feld kann der Durchmesser der Filtermaterialumhüllung gegenüber dem durchlöcherten Rohr geringer sein als bei einem Filter, der ohne elektrostatische Abscheidung arbeitet.
  • Es empfiehlt sich, daß die an die Sprüh elektrode angelegte Spannung negativ ist. Die negative Spannung der gegebenenfalls aus mehreren Drähten bestehenden Sprühelektrode bewirkt eine im Vergleich zur positiven Spannung wesentlich größere Korona. Die pulsierende Gleichspannung läßt sich mittels eines Transformators bereitstellen, der von der Autobatterie mit elektrischem Strom versorgt wird. Da die benötigte Stromstärke sehr gering ist, ca. 4 bis 5 mA, wird die elektrische Anlage des Fahrzeugs nur geringfügig belastet; damit läßt sich die Hochspannung, die ca. 10 kV nicht zu überschreiten braucht, problem- und gefahrlos realisieren, wobei das im Hochspannungsfeld entstehende Ozon außerdem die chemische Reaktion der ionisierten Rußpartikel beeinflußt und damit den Abbrand des eingelagerten Rußes zu ungiftigem Kohlendioxid fördert.
  • Es wird vorgeschlagen, daß auf den Metalldraht eine Feder einwirkt. Die Zug- oder Druckfeder hält den Metalldraht, dessen Durchmesser nicht mehr als 0,3 mm betragen sollte, gespannt, d.h. sie gleicht die von der Abgaswärme gegebenenfalls verursachte Längung des Drahtes aus. Die Feder läßt sich beispielsweise zwischen einem Isolator und dem Ende des Drahtes anordnen, oder sie wirkt auf einen beweglichen Isolatorsockel am Gehäuse des Filters ein. Eine am Isolatorsockel, d.h. außerhalb des heißen Gasstromes angeordnete Feder kann nicht ausglühen.
  • Die den Metalldraht haltenden Isolatoren lassen sich vertikal oder horizontal anordnen. Die Isolatoren sollten auf jeden Fall eine solche Länge besitzen, daß Überschläge vom Sprühelektrodenaustritt zur Gehäusewand des Filters vermieden werden.
  • Das Gehäuse kann vorteilhaft außermittig angeordnete Ein-und Auslaßrohre aufweisen, denen sich die Stutzen anschließen, auf die sich das Geweberohr z.B. mit seinen Enden aufstecken läßt, oder in die es mit seinen Enden eingreift. Die außermittige Lage eignet sich insbesondere für horizontal angeordnete Isolatoren, die gegenüber vertikalen Isola toren einfacher ein- und auszubauen sind, und die bei außermittigen, d.h. nicht mit dem Geweberohr fluchtenden Ein- und Auslaßrohren außerhalb des Gasstroms liegen.
  • Das Geweberohr läßt sich vorteilhaft mit einer radial nach außen vorstehenden, stegartigen Längsnaht ausbilden. Beim fertigungstechnisch günstigen Herstellen des Geweberohres aus handelsüblichen Gewebematten läßt sich durch die nach außen gerichtete Längsnaht im Bereich der Stoßkanten der zu einem Rohr geformten Matte im Rohrinneren eine glatte Innenmantelfläche erreichen; Spannungen und das Überspringen von Funken, wie bei einander überlappenden Stoßkanten nicht auszuschließen, treten nicht auf.
  • Zum Vermindern von Rußemissionen, insbesondere im Abgasstrom eines Dieselmotors, wird verfahrensmäßig vorgeschlagen, daß der den Filter pulsierend durchströmende Abgasstrom mit den darin enthaltenen Rußpartikeln durch ein elektrostatisches Feld geführt wird, die Rußpartikel in dem elektrostatischen Feld aufgeladen, radial nach außen beschleunigt und in eine Filterschicht eingelagert sowie periodisch selbsttätig abgebrannt werden. Die Rußpartikel werden somit durch die mit der Wirkung des elektrostatischen Feldes vereinten Pulsationen des Gasstromes in das die Abgasstromführung konzentrisch umhüllende Filtermaterial eingelagert. Die Abgaswärme, die Energiezufuhr aus dem elektrostatischen Feld, das bei Hochspannung entstehende Ozon und im Gasstrom vorhandene oxidierende Substanzen bewirken den selbsttätigen Abbrand des eingelagerten Rußes.
  • Vorteilhaft läßt sich die Spannung im elektrostatischen Feld abhängig vom Betrieb des Motors variieren. Bei voller Betriebslast des Motors ist die Abgastemperatur höher als im Teillastbetrieb; damit liegen günstigere Abbrennbedingungen vor, so daß die Energiezufuhr aus dem elektrostatischen Feld und damit die ohnehin niedrige elektrische Leistung von ca. 50 W noch weiter entsprechend verringert werden kann.
  • Die Erfindung wird nachfolgend anhand der in den Zeichnungen dargestellten Ausführungsbei spiele näher erläutert. Es zeigen:
    • Fig. 1 im Längsschnitt einen Filter mit einem erfindungsgemäß von Filtermaterial umhüllten, durchlöcherten Abgasrohr;
    • Fig. 2 im Längsschnitt eine erste Auführung eines erfindungsgemäßen Filters mit kombinierter elektrostatischer Abscheidung;
    • Fig. 3 im Längsschnitt eine zweite Ausführung eines erfindungsgemäßen Filters mit gegenüber der Ausführung nach Fig. 2 geänderter, horizontaler Anordnung von Isolatoren;
    • Fig. 4 eine Einzelheit des Filters gemäß Fig. 3; und
    • Fig. 5 in perspektivischer Ansicht als Einzelheit ein erfindungsgemäßes Geweberohr mit stegartiger Außennaht.
  • Die von einer nicht dargestellten Brennkraftmaschine kommenden Abgase werden einem Filter 1 in Pfeilrichtung 2 über einen Einlaßstutzen 3 zugeleitet. Der Filter 1 besteht aus einem Gehäuse 4, das ein Geweberohr 5 konzentrisch umschließt. Das Rohr 5 erstreckt sich durch das gesamte Gehäuse 4 und verbindet den Einlaßstutzen 3 mit einem gegenüberliegenden Auslaßstutzen 6. Das Rohr 5 wird von Filtermaterial 7 umhüllt, das den Raum zwischen der Mantelfläche des Rohres 5 und dem Gehäuse 4 völlig ausfüllt. Auf seinem Weg vom Einlaß- zum Auslaßstutzen 3, 6 des Filters 1 durchströmt das Abgas bedingt durch von der Auspuffanlage bewirkten Pulsationen das Filtermaterial 7, wobei im Abgas vorhandene Rußpartikel durch die zahlreichen Maschen 8 des Geweberohres 5 bis in das Filtermaterial 7 dringen und sich dort einlagern. Die eingelagerten Rußpartikel brennen im Filtermaterial selbsttätig ab, so daß die den Filter über den Auslaßstutzen 6 verlassenden Abgas von Rußpartikeln befreit sind.
  • Bei den in den Fig. 2 bis 4 dargestellten Filtern 101 wird das Einlagern der mit den Abgasen in Pfeilrichtung 102 über den Einlaßstutzen 103 in den Filter 101 eingeleiteten Rußpartikel im Filtermaterial 107 durch ein elektrostatisches Feld unterstützt. Der Filter 101 besitzt zu diesem Zweck ein geerdetes, z.B. an Masse angeschlossenes Gehäuse 9 mit Anschlüssen 10, 11 zum Anlegen einer pulsierenden Gleichspannung an eine Sprühelektrode in Form eines Metalldrahtes 12. Der Metalldraht 12 erstreckt sich in Längsrichtung durch das Geweberohr 105 und ist an ausgangsseitig des Ein-und Auslaßstutzens 103 bzw. 106 vertikal angeordneten Isolatoren 13 befestigt. Die Sprühelektrode 12 wird zwischen den mittels Sockeln 14 am Gehäuse 9 festgelegten Isolatoren 13 gespannt; etwaige vom heißen Abgasstrom verursachte Längungen der Sprühelektrode 12 gleicht eine Feder 15 aus, die bei der Ausführung gemäß Fig. 2 den im Bereich des Einlaßstutzens 103 angeordneten, nicht am Strom angeschlossenen Isolator 13 beaufschlagt. Der Isolator 13 lagert schwenkbe weglich in einem kalottenartigen Sitz des Sockels 14; bei Längungen der Sprühelektrode 12 drückt die sich innen an einer den Isolator 13 einkapselnden Kappe 18 abstützende Feder 15 den Isolator 13 in seinem Sitz bis in eine die Längung ausgleichende Lage. Bedingt durch die an die Sprühelektrode 12 angelegte Spannung baut sich ein elektrostatisches Feld auf und bewirkt, daß die mit dem Abgasstrom 102 über den Einlaßstutzen 103 in den Filter 101 eingeleiteten Rußpartikel verstärkt in Richtung der Maschen 108 des Rohres 105 wandern, durch die Maschen 108 hindurchtreten und sich im Filtermaterial 107 einlagern, bis sich der Filter durch Abbrand der eingelagerten Rußpartikel regeneriert; der eingelagerte Ruß verbrennt zu ungiftigem Kohlendioxid.
  • Der in Fig. 3 dargestellte selbstregenerierende Fitler 101 mit elektrostatisch unterstützter Abscheidung unterscheidet sich von dem Filter 101 gemäß Fig. 2 durch die horizontale Anordnung der die Sprühelektrode 12 einspannenden Isolatoren 113. Die Isolatoren 113 sind in Deckeln 16 angeordnet, die an jeder Stirnseite des Gehäuses 9 mittels Bolzen 17 angeflanscht sind. Die Deckel 16 sind mit den Ein- und Auslaßstutzen 103, 106 sowie gegenüber den Stutzen 103, 106 auß ermittig angeordneten Ein- und Auslaßrohren 19, 20 versehen. Das Geweberohr 105 wird, wie in Fig. 4 für den Einlaßstutzen 103 dargestellt, mit seinen Enden auf die Stutzen 103, 106 gesteckt. Zum selbsttätigen Längenausgleich der Sprühelektrode 12 stützt sich die Feder 15 am Isolator 113 ab und drück gegen einen Teller 21 am Ende der durch den Isolator 113 hindurchgeführten Sprühelektrode 12. Das in Fig. 5 dargestellte Geweberohr 5, 105 besitzt eine radial nach außen vorstehende, stegartige Längsnaht 22 mit seitlich abgewinkelten Rastflächen 23; mit der Längsnaht 22 kann das Geweberohr 5, 105 beispielsweise in Nuten der Ein- und Auslaßstutzen 3, 6; 103, 106 eingesetzt und über die Rastflächen 23 in seiner Lage gesichert werden.

Claims (15)

1. Filter zum Entfernen von Rußpartikeln, insbesondere aus dem Abgasstrom eines Dieselmotors, gekennzeichnet durch ein vom Abgas durchströmtes von Filtermaterial (7, 107) umhülltes Rohr (5, 105) mit durchlöcherter Mantelfläche in einem Gehäuse (4, 9).
2. Filter nach Anspruch 1, gekennzeichnet durch ein in dem Gehäuse (4, 9) angeordnetes Geweberohr (5, 105).
3. Filter nach Anspruch 1 oder 2, gekennzeichnet durch katalytisch beschichtetes Filtermaterial (7, 107).
4. Filter nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Filtermaterialumhüllung (7, 107) mindestens den dreifachen Durchmesser des Geweberohres (5, 105) aufweist.
5. Filter nach einem oder mehreren der Ansprüche 1 bis 4, gekennzeichnet durch ein geerdetes Gehäuse (9) und eine durch das Rohr (105) geführte Sprühelektrode (12).
6. Filter nach Anspruch 5, gekennzeichnet durch einen zwischen rohrein- und -auslaßseitig angeordneten Isolatoren (13, 16) gespannten Metalldraht als Sprühelektrode (12).
7. Filter nach Anspruch 5 oder 6, gekennzeichnet durch eine auf den Metalldraht (12) einwirkende Feder (15).
8. Filter nach einem oder mehreren der Ansprüche 5 bis 7, gekennzeichnet durch vertikal angeordnete Isolatoren (13).
9. Filter nach einem oder mehreren der Ansprüche 5 bis 7, gekennzeichnet durch horizontal angeordnete Isolatoren (113).
10. Filter nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Gehäuse (4, 9) außermittig angeordnete Ein- und Auslaßrohre (19, 20) aufweist.
11. Filter nach einem oder mehreren der Ansprüche 1 bis 10, gekennzeichnet durch eine radial nach außen vorstehende, stegartige Längsnaht (22) des Geweberohres (5, 105).
12. Filter nach einem oder mehreren der Ansprüche 5 bis 11, dadurch gekennzeichnet, daß an die Sprühelektrode (12) eine pulsierende Gleichspannung angelegt ist.
13. Filter nach Anspruch 12, dadurch gekennzeichnet, daß die an die Sprühelektrode (12) angelegte Spannung negativ ist.
14. Verfahren zum Vermindern der Rußemission, insbesondere im Abgasstrom von Dieselmotoren, unter Einsatz eines Filters gemäß einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der den Filter (101) pulsierend durchströmende Abgasstrom mit den darin enthaltenen Rußpartikeln durch ein elektrostatisches Feld geführt wird, die Rußpartikel in dem elektrostatischen Feld aufgeladen, radial nach außen beschleunigt und in eine Filterschicht (107) eingelagert sowie periodisch selbsttätig abgebrannt werden.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die Spannung im elektrostatischen Feld abhängig vom Betrieb des Motors variiert wird.
EP87110439A 1986-08-01 1987-07-18 Filter zum Entfernen von Russpartikeln, insbesondere aus dem Abgasstrom eines Dieselmotors Expired - Lifetime EP0256325B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87110439T ATE69087T1 (de) 1986-08-01 1987-07-18 Filter zum entfernen von russpartikeln, insbesondere aus dem abgasstrom eines dieselmotors.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3626020 1986-08-01
DE3626020 1986-08-01

Publications (3)

Publication Number Publication Date
EP0256325A2 true EP0256325A2 (de) 1988-02-24
EP0256325A3 EP0256325A3 (en) 1988-05-25
EP0256325B1 EP0256325B1 (de) 1991-10-30

Family

ID=6306457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87110439A Expired - Lifetime EP0256325B1 (de) 1986-08-01 1987-07-18 Filter zum Entfernen von Russpartikeln, insbesondere aus dem Abgasstrom eines Dieselmotors

Country Status (4)

Country Link
EP (1) EP0256325B1 (de)
AT (1) ATE69087T1 (de)
DE (1) DE3774205D1 (de)
NL (1) NL8800208A (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0299197A2 (de) * 1987-07-16 1989-01-18 MAN Technologie Aktiengesellschaft Elektrostatischer Filter zum Reinigen von Gasen
EP0329818A2 (de) * 1988-02-20 1989-08-30 MAN Technologie Aktiengesellschaft Elektrostatischer Dieselpartikelfilter
DE3844141C1 (de) * 1988-12-28 1990-06-07 Voest-Alpine Automotive Ges.M.B.H., Linz, At
US4956152A (en) * 1989-05-10 1990-09-11 Electro Statics, Inc. Emission control unit
DE3923640A1 (de) * 1989-06-15 1990-12-20 Asea Brown Boveri Verfahren zur ausfilterung von russpartikeln
AT397928B (de) * 1993-03-22 1994-08-25 Panning Peter Vorrichtung zum abbau von in einem gasstrom enthaltenen schadstoffen
US5419126A (en) * 1991-12-25 1995-05-30 Maruyama Mfg. Co. Inc Exhaust silencer
WO1996014498A1 (en) * 1994-11-07 1996-05-17 Efisio Serra A device for exhaust silencers of endothermic engines, with electrostatic field
FR2798303A1 (fr) * 1999-09-14 2001-03-16 Daniel Teboul Dispositif de traitement d'un milieu gazeux, en particulier des gaz d'echappement d'un moteur a combustion interne, et vehicule equipe d'un tel dispositif
FR2822893A1 (fr) * 2001-03-29 2002-10-04 Renault Systeme de traitement des gaz d'echappement

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR701007A (fr) * 1930-08-23 1931-03-10 Procédé et dispositif pour supprimer les fumées et pour réduire la quantité d'oxyde de carbone contenu dans les gaz d'échappement des moteurs à explosion
DE2041886A1 (de) * 1969-09-03 1972-03-02 Glaser Willy Dr Ing Filterung von Kraftfahrzeug-Auspuffgas
US3683624A (en) * 1970-09-29 1972-08-15 Theodore M Williams Internal combustion engine exhaust burner
US4211302A (en) * 1976-02-03 1980-07-08 Recourt Martyn Elizabeth De Sound absorbing device
JPS5720510A (en) * 1980-07-15 1982-02-03 Nagatoshi Suzuki Exhaust gas cleaner of engine
JPS58132295A (ja) * 1982-01-29 1983-08-06 三菱電機株式会社 吸音材の製造方法
DE3205185A1 (de) * 1982-02-13 1983-08-25 Wilfried 6238 Hofheim Seitz Verfahren zum herstellen einer schalldaempf-fuellung fuer einen auspufftopf sowie nach diesem verfahren hergestellte schalldaempf-fuellung
US4406119A (en) * 1980-11-21 1983-09-27 Nippon Soken, Inc. Carbon-particle decontaminating system
EP0176657A1 (de) * 1984-09-20 1986-04-09 Mitsubishi Denki Kabushiki Kaisha Schalldämpferanlage für die Abgase von Verbrennungsmotoren
DE3440689A1 (de) * 1984-11-07 1986-05-15 Siemens AG, 1000 Berlin und 8000 München Verfahren zum vermindern von schadstoffen in auspuffgasen von kraftfahrzeugen

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR701007A (fr) * 1930-08-23 1931-03-10 Procédé et dispositif pour supprimer les fumées et pour réduire la quantité d'oxyde de carbone contenu dans les gaz d'échappement des moteurs à explosion
DE2041886A1 (de) * 1969-09-03 1972-03-02 Glaser Willy Dr Ing Filterung von Kraftfahrzeug-Auspuffgas
US3683624A (en) * 1970-09-29 1972-08-15 Theodore M Williams Internal combustion engine exhaust burner
US4211302A (en) * 1976-02-03 1980-07-08 Recourt Martyn Elizabeth De Sound absorbing device
JPS5720510A (en) * 1980-07-15 1982-02-03 Nagatoshi Suzuki Exhaust gas cleaner of engine
US4406119A (en) * 1980-11-21 1983-09-27 Nippon Soken, Inc. Carbon-particle decontaminating system
JPS58132295A (ja) * 1982-01-29 1983-08-06 三菱電機株式会社 吸音材の製造方法
DE3205185A1 (de) * 1982-02-13 1983-08-25 Wilfried 6238 Hofheim Seitz Verfahren zum herstellen einer schalldaempf-fuellung fuer einen auspufftopf sowie nach diesem verfahren hergestellte schalldaempf-fuellung
EP0176657A1 (de) * 1984-09-20 1986-04-09 Mitsubishi Denki Kabushiki Kaisha Schalldämpferanlage für die Abgase von Verbrennungsmotoren
DE3440689A1 (de) * 1984-11-07 1986-05-15 Siemens AG, 1000 Berlin und 8000 München Verfahren zum vermindern von schadstoffen in auspuffgasen von kraftfahrzeugen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAPANESE PATENTS GAZETTE, Sektion CH, Woche 8337, 26. Oktober 83, Derwent Publications LTD, London, GB; & JP-A-58 132 295 (MITSUBISHI ELECTRIC CORP.) 06-08-1983 *
PATENT ABSTRACTS OF JAPAN, Band 6, Nr. 83 (M-130)[961], 21. Mai 1982; & JP-A-57 20 510 (NAGATOSHI SUZUKI) 03-02-1982 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0299197A3 (de) * 1987-07-16 1990-09-26 MAN Technologie Aktiengesellschaft Elektrostatischer Filter zum Reinigen von Gasen
US4871515A (en) * 1987-07-16 1989-10-03 Man Technologie Gmbh Electrostatic filter
EP0299197A2 (de) * 1987-07-16 1989-01-18 MAN Technologie Aktiengesellschaft Elektrostatischer Filter zum Reinigen von Gasen
EP0329818A2 (de) * 1988-02-20 1989-08-30 MAN Technologie Aktiengesellschaft Elektrostatischer Dieselpartikelfilter
EP0329818A3 (de) * 1988-02-20 1990-06-20 MAN Technologie Aktiengesellschaft Elektrostatischer Dieselpartikelfilter
EP0376915A3 (de) * 1988-12-28 1990-11-07 VOEST-ALPINE AUTOMOTIVE Gesellschaft m.b.H. Elektrostatischer Russkonverter
EP0376915A2 (de) * 1988-12-28 1990-07-04 VOEST-ALPINE AUTOMOTIVE Gesellschaft m.b.H. Elektrostatischer Russkonverter
DE3844141C1 (de) * 1988-12-28 1990-06-07 Voest-Alpine Automotive Ges.M.B.H., Linz, At
US4956152A (en) * 1989-05-10 1990-09-11 Electro Statics, Inc. Emission control unit
DE3923640A1 (de) * 1989-06-15 1990-12-20 Asea Brown Boveri Verfahren zur ausfilterung von russpartikeln
US5419126A (en) * 1991-12-25 1995-05-30 Maruyama Mfg. Co. Inc Exhaust silencer
EP0616835A1 (de) * 1993-03-22 1994-09-28 Peter Panning Vorrichtung zum Abbau von in einem Gasstrom enthaltenen Schadstoffen
AT397928B (de) * 1993-03-22 1994-08-25 Panning Peter Vorrichtung zum abbau von in einem gasstrom enthaltenen schadstoffen
US5758495A (en) * 1993-11-07 1998-06-02 Serra; Efisio Device for exhaust silencers of engines with electrostatic field
WO1996014498A1 (en) * 1994-11-07 1996-05-17 Efisio Serra A device for exhaust silencers of endothermic engines, with electrostatic field
FR2798303A1 (fr) * 1999-09-14 2001-03-16 Daniel Teboul Dispositif de traitement d'un milieu gazeux, en particulier des gaz d'echappement d'un moteur a combustion interne, et vehicule equipe d'un tel dispositif
WO2001019525A1 (fr) * 1999-09-14 2001-03-22 Daniel Teboul Dispositif de traitement des gaz d'echappement d'un moteur a combustion interne
KR100760242B1 (ko) * 1999-09-14 2007-09-19 다니엘 떼블 입자가 많은 가스 매체의 처리 장치 및 이를 구비한 차량
FR2822893A1 (fr) * 2001-03-29 2002-10-04 Renault Systeme de traitement des gaz d'echappement

Also Published As

Publication number Publication date
EP0256325B1 (de) 1991-10-30
EP0256325A3 (en) 1988-05-25
ATE69087T1 (de) 1991-11-15
NL8800208A (nl) 1989-08-16
DE3774205D1 (de) 1991-12-05

Similar Documents

Publication Publication Date Title
DE4223277C2 (de) Verfahren und Vorrichtung zur Partikelentfernung aus Abgasen von Brennkraftmaschinen
EP0537219B1 (de) Verfahren und vorrichtung zur reinigung von abgasen
EP0152623B1 (de) Einrichtung zur Entfernung von Festkörperteilen aus Abgasen von Brennkraftmaschinen
EP0332609A2 (de) Dieselabgasfilter
DE3538155A1 (de) Verfahren zur oxidation von in russfiltersystemen abgelagerten partikeln
EP0256325A2 (de) Filter zum Entfernen von Russpartikeln, insbesondere aus dem Abgasstrom eines Dieselmotors
EP2616646B1 (de) VORRICHTUNG ZUR BEHANDLUNG VON RUßPARTIKEL ENTHALTENDEM ABGAS
DE4230631C2 (de) Verfahren zur Entfernung von elektrisch leitenden Teilchen aus einem Gasstrom sowie Vorrichtung zur Durchführung des Verfahrens
EP0329818A2 (de) Elektrostatischer Dieselpartikelfilter
EP1930081B1 (de) Optimierter elektrostatischer Abscheider
EP0526552B1 (de) Verfahren und vorrichtung zur reinigung von abgasen von partikeln
EP2603678A1 (de) Verfahren und vorrichtung zur verringerung von russpartikeln im abgas einer verbrennungskraftmaschine
DE4003565A1 (de) Vorrichtung zur entfernung partikelfoermiger stoffe aus auspuff- und rauchgasen
EP0715894B1 (de) Elektrostatische Filtereinrichtung
EP2153902B1 (de) Elektrostatischer Abscheider und Heizungssystem
DE602005004741T2 (de) Partikelfilter zur Abgasnachbehandlung eines Verbrennungsmotors eines Kraftfahrzeuges und entsprechendes Verfahren zur Filtrierung von Abgaspartikeln
DE3118739C2 (de)
DE2214038A1 (de) Staubsammelvorrichtung mit elektrischem Feldvorhang des Kombinationssystems
DE102009021072A1 (de) Elektrostatischer Abscheider und Heizsystem
DE3627734C2 (de)
EP2612000B1 (de) VORRICHTUNG MIT EINER RINGFÖRMIGEN ELEKTRODE ZUR VERRINGERUNG VON RUßPARTIKELN IM ABGAS EINER VERBRENNUNGSKRAFTMASCHINE
DE10018851A1 (de) Vorrichtung zur Abscheidung von Partikeln aus Abgas von Verbrennungskraftmaschinen
DE102006026372B4 (de) Abgasreinigungsvorrichtung für Brennstoffaggregate
AT394145B (de) Verfahren zum beschichten eines katalysators
DE3314178A1 (de) Umlaufvorrichtung fuer triebwerksabgas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE ES FR GB IT LI SE

17P Request for examination filed

Effective date: 19881115

17Q First examination report despatched

Effective date: 19891106

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19911030

Ref country code: FR

Effective date: 19911030

Ref country code: GB

Effective date: 19911030

Ref country code: SE

Effective date: 19911030

REF Corresponds to:

Ref document number: 69087

Country of ref document: AT

Date of ref document: 19911115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3774205

Country of ref document: DE

Date of ref document: 19911205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19920210

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19920731

Ref country code: LI

Effective date: 19920731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941208

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960402