EP0255816A2 - Verfahren zur Herstellung korrosionsbeständiger, hartmagnetischer Pulver für die Magneterzeugung, Magnete aus hartmagnetischen Pulver und Verfahren zu deren Herstellung - Google Patents

Verfahren zur Herstellung korrosionsbeständiger, hartmagnetischer Pulver für die Magneterzeugung, Magnete aus hartmagnetischen Pulver und Verfahren zu deren Herstellung Download PDF

Info

Publication number
EP0255816A2
EP0255816A2 EP87890182A EP87890182A EP0255816A2 EP 0255816 A2 EP0255816 A2 EP 0255816A2 EP 87890182 A EP87890182 A EP 87890182A EP 87890182 A EP87890182 A EP 87890182A EP 0255816 A2 EP0255816 A2 EP 0255816A2
Authority
EP
European Patent Office
Prior art keywords
powder
alloy
magnet
permanent
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87890182A
Other languages
English (en)
French (fr)
Other versions
EP0255816A3 (de
Inventor
Herwig Dr. Winkler
Alexander Dr. Bouvier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Treibacher Chemische Werke AG
Original Assignee
Treibacher Chemische Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Treibacher Chemische Werke AG filed Critical Treibacher Chemische Werke AG
Publication of EP0255816A2 publication Critical patent/EP0255816A2/de
Publication of EP0255816A3 publication Critical patent/EP0255816A3/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Definitions

  • Permanent magnet materials are a basic material for many electrical and electronic applications such as motors, microphones, loudspeakers, measuring devices etc. or for daily needs, e.g. as simple holding magnets.
  • ferrites, alnico magnets or rare earth cobalt magnets are mainly used for these purposes.
  • the low magnetic performance is a disadvantage of the first two types, it is the low availability of the SE raw material samarium and the high price of the connection for the SE cobalt magnets.
  • Great efforts have therefore been made to find a new alloy that is characterized on the one hand by good magnetic properties such as high coercive force and high remanence, and on the other hand by cheaper raw materials that are available in larger quantities.
  • the SE-Fe-B alloy is produced by melt metallurgy under vacuum or inert gas in order to prevent oxygen uptake by the rare earth metals, which tend to oxidize.
  • the alloy is produced in pieces or in the form of ingots. To improve the magnetic properties, it must be crushed.
  • the comminution of the alloy takes place either by atomization into powder (US Pat. No. 4,585,473) or in the so-called "melt spinning" process (US Pat. No. 4,496,395), whereby amorphous structures are formed, by a pressure roller or by Bre and grinding the alloy. In this way, the alloy particles are brought to grain sizes between 1 and 10 microns. With this fineness, they are extremely sensitive to oxidation.
  • the absorption of oxygen primarily binds the rare earth metal, eg neodymium, in the form of an oxide and is therefore no longer available for the Nd-Fe-B phase, which is responsible for achieving the hard magnetic properties. From a certain oxygen concentration, this leads to a significant loss of quality and, at higher values, even to a complete loss of magnetic properties.
  • the powders must therefore be protected against atmospheric oxygen, processed further under an inert gas atmosphere or in organic solvents. This is usually done by pressing, possibly with the application of an external magnetic field, whereby anisotropic or isotropic magnets are obtained.
  • the compacts are then sintered and the sinterings are subjected to a thermal aftertreatment to improve the magnetic properties. It is only through the process of sintering that the magnet regains extensive resistance to oxidation. Complete resistance of the magnet can only be achieved by coating it.
  • the magnets produced according to these described processes must therefore be subjected to a sintering treatment under vacuum or an inert gas atmosphere, which must run at over 1000 ° C and only leads to high-quality products in connection with a subsequent heat treatment. This represents a costly process step.
  • the powders produced according to the "melt spinning" process with subsequent comminution are usually embedded in plastic, resulting in isotropic magnets with a low energy product (BHmax).
  • the aim of the present invention is therefore a process for the production of corrosion-resistant, hard magnetic powders from an alloy of the basic type SE-Fe-B for magnet production, the magnetic powders produced in this way being distinguished by excellent resistance to oxidation and without sintering to isotropic or anisotropic magnets with high Coercivity and maximum energy product can be processed.
  • This aim is achieved according to the invention by combining the following process steps, that the starting alloy present in pieces or in the form of ingots is crushed, the powder particles thus obtained are heat-treated to improve their magnetic properties, preferably in a temperature range of 300-1000 ° C., and then the The surface of the individual heat-treated powder particles is coated with a ceramic or metallic protective layer to prevent corrosion, the metallic coating preferably being carried out electrolytically from an aqueous solution.
  • the powders produced by the process according to the invention can then, if appropriate with the addition of a pressing aid, be processed by simple pressing, if appropriate with application of an external magnetic field, to permanent magnets with excellent properties.
  • the invention also relates to a magnet made of hard magnetic powder, which is characterized in that the powder particles consist of an alloy containing 25-45% by weight SE, 0.5-3% by weight B and iron or a combination of iron contains at least one other metal from the group cobalt, aluminum and niobium and are coated with a ceramic or metallic protective layer.
  • the invention also relates to a method for Production of such a magnet, which consists in that the coated powder is optionally pressed into magnets under the action of an external magnetic field, the pressing preferably taking place with the addition of a plastic, a metal or ceramic powder to improve the strength of the compact.
  • the addition of other rare earths can increase certain properties, such as the coercive field strength.
  • Another component of the alloy is boron, which is necessary to form the hard magnetic phase and is present in quantities of 0.5-3% by weight.
  • the remainder of the alloy is iron or a combination of iron with another element, e.g. Cobalt, aluminum, niobium or others. The combination of iron with these elements can lead to an improvement in temperature resistance and magnetic properties.
  • the starting alloy is produced by the molten metal-lurgic route, it being of the utmost importance that the oxygen content be kept as low as possible so that the prerequisite for the production of the lowest possible oxygen powder is given.
  • An improvement in the magnetic properties of an atomized powder can be achieved if the alloy droplets move through a magnetic field during the atomization process and solidify in it. If the atomized alloy is ground briefly before the heat treatment, for example in a stirred ball mill under liquid, to an FSSS value of ⁇ 30 ⁇ m, preferably 15-3 ⁇ m, a magnetically anisotropic material is obtained, which also has a low oxygen content. Compared to the powders produced by the known "melt spinning" process with subsequent grinding, this comminution method is advantageous since the particles are also partially spherical after grinding and can therefore be coated more easily. To explain the importance of oxygen, Table 1 shows the oxygen contents of dry powders of an NdFeB alloy, which were finely divided for two hours and stored in air to determine 02 uptake, depending on the grain size.
  • Another necessary step in the manufacturing process according to the invention is the heat treatment of the powders.
  • the powders are transferred directly into a vacuum oven under solvent or in an inert gas atmosphere and subjected to heat treatment between 300 ° and 1000 ° C in one or more stages.
  • a heat treatment of the powder for example, increased the coercive field strength of a ground alloy with an FSSS value of 5 ⁇ m from 222.9 kA / m in the original material to 802 kA / m, which represents a significant improvement.
  • the production of the magnetic powder in the manner described is the prerequisite for achieving good magnetic properties.
  • a prerequisite for the corrosion resistance of the powder is a complete coating of the individual powder particles with a metallic or ceramic material.
  • a metal is deposited, for example, by an electrolytic process, as in the case of electrodeless coating with copper, which is described below:
  • An aqueous solution of copper sulfate, sodium hydroxide solution and potassium sodium tartrate is prepared, the alloy is stirred in and formaldehyde is added. The copper is deposited metallically on the surface of the powder.
  • the proportion of coating material varies depending on the fineness of the powder and the surface associated with it. It is between 10 and 25% for the previously described grain sizes. Just By applying a corrosion-resistant layer to each individual powder particle, however, there is sufficient resistance to corrosion of the powder and the magnets.
  • a lumpy NdFeB alloy with the following composition 33.3% SE (in 100% SE 98.7% Nd) 1.3% B 65.2% Fe 0.04% O was melted under an inert gas atmosphere, then atomized and a fraction ⁇ 63 ⁇ m was sieved out. It was then heat-treated at 630 ° C and then coated with copper without electrodes. For this purpose, the atomized and heat-treated alloy was stirred into an aqueous solution which contained 30 g / l CuSo4, 80 g / l 60% NaOH and 150 g / l KNa tartrate. Then 1 part by volume of 37% formaldehyde was added to 5 parts by volume of this solution. After the Cu had been deposited and the coated alloy had been filtered, it was washed thoroughly. It contained 13.2% Cu and 0.17% oxygen. Table 2 shows the values for the coercive field strength for the individual intermediates and the end material.
  • Example 2 A lumpy NdFeB alloy with the same composition as in Example 1 was melted under an inert gas atmosphere, atomized and the atomized material was ground under cyclohexane to an FSSS value of 5.2 ⁇ m in an attritor. The powder was placed in a vacuum oven while wet with solvent and heat-treated at 630 ° C. The coating was again carried out according to Example 1 and the powder had a copper content of 18.2% and an oxygen content of 0.27% O. Table 3 again summarizes the coercive field strengths.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

Ein Verfahren zur Herstellung korrosionsbeständiger, hartmagnetischer Pulver aus einer Legierung des Grundtyps SE-Fe-B für die Magneterzeugung, wobei die so hergestellten Magnetpulver sich durch hervorragende Beständigkeit gegenüber Oxidation auszeichnen und ohne Sinterung zu isotropen oder anisotropen Magneten mit hoher Koerzitivfeldstärke und maximalem Energieprodukt verarbeitet werden können. Dieses wird dadurch erreicht, daß die stückig oder in Form von Ingots vorliegende Ausgangslegierung zerkleinert wird, die so erhaltenen Pulverpartikel zur Verbesserung ihrer magnetischen Eigenschaften, vorzugsweise in einem Temperaturbereich von 300 - 1000°C, wärmebehandelt und anschließend die Oberfläche der einzelnen wärmebehandelten Pulverpartikel zur Verhinderung der Korrosion mit einer keramischen oder metallischen Schutzschicht überzogen wird, wobei die metallische Beschichtung vorzugsweise auf elektrolytischem Weg aus einer wässerigen Lösung erfolgt. Die Erfindung betrifft auch einen Magneten aus hartmagnetischem Pulver, der dadurch gekennzeichnet ist, daß die Pulverpartikel aus einer Legierung bestehen, die 25-45 Gew.-% SE, 0,5 - 3 Gew.-% B und Eisen oder eine Kombination von Eisen mit mindestens einem anderen Metall der Gruppe Kobalt, Aluminium und Niob enthält und mit einer keramischen oder metallischen Schutzschicht überzogen sind.

Description

  • Permanentmagnetwerkstoffe stellen in großem Umfang ein Grundma­terial für viele elektrische und elektronische Anwendungen wie Motoren, Mikrophone, Lautsprecher, Meßgeräte etc. oder für den täglichen Bedarf, z.B. als einfache Haftmagnete, dar. Derzeit werden für diese Zwecke vorwiegend Ferrite, Alnico-Magnete oder Seltenerd-Kobalt-Magnete eingesetzt. Während bei den ersten bei­den Typen die geringe magnetische Leistungsfähigkeit von Nach­teil ist, ist es bei den SE-Kobalt-Magneten die geringe Verfüg­barkeit des SE-Rohstoffes Samarium und der hohe Preis der Ver­bindung. Es wurden deshalb große Anstrengungen unternommen, eine neue Legierung zu finden, die sich einerseits durch gute magne­tische Eigenschaften wie hohe Koerzitivfeldstärke und hohe Remanenz, andererseits durch billigere und in größeren Mengen verfügbare Rohstoffe auszeichnet. Diese wurde in Form einer Le­gierung des Grundtypus SE-FeB gefunden, wobei als SE vorwiegend der billige Rohstoff Neodym eingesetzt wird. Allerdings können die Bestandteile des Grundtypus durch verschiedenste andere Ele­mente, Nd zum Beispiel durch Dysprosium oder Eisen zum Beispiel durch Kobalt ersetzt werden, um eine Verbesserung gewisser Eigen­schaften wie Koerzitivfeldstärke oder Temperaturverhalten (Er­höhung des Curiepunktes) zu erzielen.
  • Es ist weiters bekannt, daß die SE-Fe-B-Legierung auf schmelzme­tallurgischem Wege unter Vakuum oder Inertgas hergestellt wird, um eine Sauerstoffaufnahme durch die stark zur Oxidation neigen­den Seltenerdmetalle zu verhindern. Die Legierung fällt bei die­ser Herstellungsart stückig oder in Form von Ingots an. Zur Ver­besserung der magnetischen Eigenschaften muß sie zerkleinert wer­den. Die Zerkleinerung der Legierung erfolgt entweder durch Ver­düsung zu Pulver (US-Patent 4,585,473) oder beim sogenannten "Melt-Spinning"-Verfahren (US-Patent 4,496,395), wobei amorphe Strukturen entstehen, durch eine Druckwalze oder aber durch Bre­ chen und Mahlen der Legierung. Auf diese Art und Weise werden die Legierungspartikel auf Korngrößen zwischen 1 und 10 µm gebracht. Bei dieser Feinheit sind sie aber extrem oxidationsempfindlich. Durch die Aufnahme von Sauerstoff wird vor allem das Seltenerd­metall, z.B. Neodym, in Form eines Oxides gebunden und steht somit nicht mehr für die - zur Erzielung der hartmagnetischen Eigen­schaften verantwortliche - Nd-Fe-B-Phase zur Verfügung. Ab einer gewissen Sauerstoffkonzentration führt dies bereits zu einem bedeutenden Qualitätsverlust und bei höheren Werten sogar zum vollständigen Verlust der magnetischen Eigenschaften. Die Pul­ver müssen daher gegen Luftsauerstoff geschützt, unter Inertgas­atmosphäre oder in organischen Lösungsmitteln weiterverarbeitet werden. Dies erfolgt meist über ein Verpressen, gegebenenfalls unter Anlegen eines äußeren Magnetfeldes, wodurch man aniso­trope oder isotrope Magnete erhält.
  • Die Preßlinge werden anschließend gesintert und zur Verbesserung der magnetischen Eigenschaften werden die Sinterlinge einer thermischen Nachbehandlung unterzogen. Erst durch den Vorgang des Sinterns erreicht der Magnet wieder eine weitgehende Wider­standsfähigkeit gegen Oxydiation. Eine vollständige Beständigkeit des Magneten ist aber nur durch eine Beschichtung desselben erreichbar.
  • Die nach diesen beschriebenen Verfahren hergestellten Magnete müssen also einer Sinterbehandlung unter Vakuum oder Inertgas­atmosphäre unterzogen werden, welche bei über 1000°C ablaufen muß und erst in Verbindung mit einer nachfolgenden Wärmebehandlung zu qualitativ hochwertigen Produkten führt. Dies stellt einen kostenaufwendigen Verfahrensschritt dar. Die nach dem "Melt-­Spinning"-Verfahren mit anschließender Zerkleinerung herge­stellten Pulver werden meist in Kunststoff eingebettet, wodurch isotrope Magnete mit geringem Energieprodukt (BHmax) entstehen.
  • In der EU-Anm. 0 125 752 von General Motors ist ein Verfahren beschrieben, bei dem isotrope Magnete hergestellt werden, indem man die Legierung nach dem "Melt-Spinning"-Verfahren herstellt, zerkleinert, verpreßt und dann die Pulver solcherart beschichtet, daß die Poren zwischen den Partikeln mit Kunststoff ausgefüllt sind. Bei fehlerhafter Beschichtung an der Oberfläche ist aber nach diesem Verfahren ein Angriff des Sauerstoffs auf innen­liegende, unbeschichtete Teile des Magnetmaterials nicht zu ver­hindern, was wieder zu den schon oben beschriebenen Nachteilen führt.
  • Ziel der vorliegenden Erfindung ist daher ein Verfahren zur Her­stellung korrosionsbeständiger, hartmagnetischer Pulver aus einer Legierung des Grundtyps SE-Fe-B für die Magneterzeugung, wobei die so hergestellten Magnetpulver sich durch hervorra­gende Beständigkeit gegenüber Oxidation auszeichnen und ohne Sinterung zu isotropen oder anisotropen Magneten mit hoher Koer­zitivfeldstärke und maximalem Energieprodukt verarbeitet werden können. Dieses Ziel wird erfindungsgemäß erreicht durch die Kombination der folgenden Verfahrensschritte, daß die stückig oder in Form von Ingots vorliegende Ausgangslegierung zerkleinert wird, die so erhaltenen Pulverpartikel zur Verbesserung ihrer magnetischen Eigenschaften, vorzugsweise in einem Temperaturbereich von 300 - 1000°C, wärmebehandelt und anschließend die Oberfläche der einzelnen wärmebehandelten Pulverpartikel zur Verhinderung der Korrosion mit einer keramischen oder metallischen Schutz­schicht überzogen wird, wobei die metallische Beschichtung vor­zugsweise auf elektrolytischem Weg aus einer wässerigen Lösung erfolgt. Die nach dem erfindungsgemäßen Verfahren hergestellten Pulver können dann gegebenenfalls unter Zusatz eines Preßhilfs­mittels durch einfaches Verpressen, gegebenenfalls unter Anlegen eines äußeren Magnetfeldes, zu Permanentmagneten mit hervorragen­den Eigenschaften verarbeitet werden.
  • Die Erfindung betrifft auch einen Magneten aus hartmagnetischem Pulver, der dadurch gekennzeichnet ist, daß die Pulverpartikel aus einer Legierung bestehen, die 25-45 Gew.-% SE, 0,5 - 3 Gew.-% B und Eisen oder eine Kombination von Eisen mit mindestens einem anderen Metall der Gruppe Kobalt, Aluminium und Niob enthält und mit einer keramischen oder metallischen Schutzschicht überzogen sind. Die Erfindung betrifft ferner auch ein Verfahren zur Herstellung eines solchen Magneten, das darin besteht, daß das beschichtete Pulver gegebenenfalls unter Einwirkung eines äußeren Magnetfeldes zu Magneten verpreßt wird, wobei das Ver­pressen vorzugsweise unter Zumischung eines Kunststoffes, eines Metall- oder Keramikpulvers zur Verbesserung der Festigkeit des Preßlings erfolgt.
  • Als Ausgangslegierung des Grundtyps SE-FE-B wird normalerweise eine Legierung mit einem Gehalt von 25 - 45 Gew.-% SE eingesetzt, wobei als SE = Seltene Erde entweder Neodym allein oder ein anderes Element aus der Gruppe der Seltenen Erden oder eine Kom­bination von zwei oder mehreren Seltenen Erden, zum Beispiel Neodym und Dysprosium, verwendet werden. Durch den Zusatz an­derer Seltener Erden können bestimmte Eigenschaften, wie zum Beispiel die Koerzitivfeldstärke, erhöht werden. Weiterer Be­standteil der Legierung ist Bor, welches zur Bildung der hart­magnetischen Phase notwendig ist und in Mengen von 0,5 - 3 Gew.-% vorliegt. Der restliche Anteil der Legierung ist Eisen oder eine Kombination von Eisen mit einem anderen Element, wie z.B. Kobalt, Aluminium, Niob oder andere. Die Kombination des Eisens mit die­sen Elementen kann zu einer Verbesserung der Temperaturbeständig­keit sowie der magnetischen Eigenschaften führen.
  • Die Herstellung der Ausgangslegierung erfolgt auf schmelzmetall­lurgischem Weg, wobei es von größter Wichtigkeit ist, daß der Sauerstoffgehalt möglichst gering gehalten wird, damit die Voraussetzung zur Herstellung möglichst sauerstoffarmer Pulver gegeben ist.
  • Gute magnetische Eigenschaften sind aber nur erzielbar, wenn diese Ausgangslegierung zu Pulvern zerkleinert wird, wobei diese Pulver neben einer ausreichenden Feinheit einen geringen Sauer­stoffgehalt aufweisen müssen. Erfindungsgemäß wird dies durch eine Verdüsung und/oder Mahlung erreicht. Beide Parameter, Korn­größe und 02-Gehalt haben entscheidenden Einfluß auf die magne­tische Qualität.
  • Mit Hilfe der Verdüsung unter Inertgasatmosphäre erhält man sphärische Partikel mit einem Korndurchmesser < 1 mm. Der Sauer­stoffgehalt einer derartig verdüsten Legierung liegt unter 0,1%. Siebt man unter Schutzgas aus dieser verdüsten Legierung eine Fraktion < 63 µm aus, so weist diese einen FSSS-Wert (Fisher Subsieve Sizer) von 30 - 40 µm auf. Werden diese Pul­ver wärmebehandelt und beschichtet, so erhält man isotrope Pulver, die hohe Koerzitivfeldstärken, aber geringe Energiepro­dukte zeigen.
  • Eine Verbesserung der magnetischen Eigenschaften eines verdüsten Pulvers ist zu erzielen, wenn sich die Legierungströpfchen während des Verdüsungsvorganges durch ein magnetisches Feld be­wegen und in diesem erstarren. Wenn man die verdüste Legierung vor der Wärmebehandlung kurz, beispielsweise in einer Rührwerks­kugelmühle unter Flüssigkeit, auf einen FSSS-Wert <30 µm, vorzugs­weise 15 - 3 µm vermahlt, so erhält man ein magnetisch anisotro­pes Material, welches ebenfalls einen niedrigen Sauerstoffgehalt aufweist. Gegenüber den nach dem bekannten "Melt-Spinning"-Verfah­ren mit anschließender Mahlung hergestellten Pulvern ist diese Zerkleinerungsmethode vorteilhaft, da die Partikel auch nach der Mahlung teilweise in Kugelform vorliegen und somit leichter be­schichtet werden können. Zur Erläuterung der Bedeutung des Sauer­stoffes sind in Tabelle 1 Sauerstoffgehalte trockener Pulver einer NdFeB-Legierung, die zwei Stunden feinverteilt, zur Bestimmung der 02-Aufnahme in Luft gelagert wurden, in Abhängigkeit von der Korngröße dargestellt.
  • Tabelle 1 SAUERSTOFFGEHALTE EINER NdFeB-LEGIERUNG UNBESCHICHTET NACH 2 STUNDEN AN LUFT
  • Stückig 0,04 % O
    < 1 mm (verdüst) 0,08 % O
    <63 µm (FSSS 35 µm) 0,11 % O
    FSSS 20 µm 0,15 % O
    FSSS 11 µm 0,18 % O
    FSSS 7,0 µm 0,28 % O
    FSSS 4,8 µm 0,42 % O
    FSSS 3,2 µm 0,61 % O
  • Andererseits ist es bei Einhaltung inerter Bedingungen auch mög­lich, auf herkömmliche Weise, also durch zwei Mahlschritte, eine ausreichende Feinheit zu erzielen.
  • Ein weiterer notwendiger Schritt im erfindungsgemäßen Herstel­lungsverfahren ist die Wärmebehandlung der Pulver. Dabei werden die Pulver unter Lösungsmittel oder in Inertgasatmosphäre direkt in einen Vakuumofen übergeführt und einer Wärmebehandlung zwi­schen 300° und 1000°C in ein oder mehreren Stufen unterzogen. Durch eine Wärmebehandlung des Pulvers konnte beispielsweise die Koerzitivfeldstärke bei einer vermahlenen Legierung mit einem FSSS-Wert von 5 µm von 222,9 kA/m im Originalmaterial auf 802 kA/m gesteigert werden, was eine bedeutende Verbesserung dar­stellt. Die Herstellung der Magnetpulver auf die beschriebene Weise ist die Voraussetzung für die Erzielung guter magnetischer Eigenschaften. Es ist aber laut dem erfindungsgemäßen Verfahren auch möglich, die beiden Schritte, Mahlung der verdüsten Pulver und Wärmebehandlung, in umgekehrter Reihenfolge durchzuführen. Die Voraussetzung für die Korrisionsbeständigkeit der Pulver ist eine vollständige Beschichtung der einzelnen Pulverpartikel mit einem metallischen oder keramischen Material. Die Abscheidung eines Metalls erfolgt beispielsweise auf elektrolytischem Weg wie bei der elektrodenlosen Beschichtung mit Kupfer, die im folgenden beschrieben wird:
  • Dabei wird eine wäßrige Lösung aus Kupfersulfat, Natronlauge und Kalium-Natrium-Tartrat hergestellt, die Legierung eingerührt und Formaldehyd zugefügt. Das Kupfer wird metallisch auf der Ober­fläche der Pulver abgeschieden.
  • Überraschenderweise wurde dabei festgestellt, daß trotz des Vor­handenseins einer wäßrigen Lösung praktisch keine Korrosion der Teilchen festzustellen war und der Sauerstoffgehalt des Pul­vers nur geringfügig anstieg.
  • Je nach Feinheit des Pulvers und der damit verbundenen Oberfläche ist der Anteil an Beschichtungsmaterial verschieden. Er liegt bei den vorher beschriebenen Korngrößen zwischen 10 und 25 %. Nur durch das Aufbringen einer korrosionsfesten Schicht auf jedes einzelne Pulverpartikel ist aber eine ausreichende Beständigkeit gegen Korrosion der Pulver und der Magnete gegeben.
  • Diese Pulver können direkt zu isotropen oder durch Anlegen eines magnetischen Feldes zu anisotropen Magneten verpreßt werden. Reicht für gewisse Anwendungen die Festigkeit nicht aus, so kann diese durch Zugabe eines Metall-, Keramik- oder Kunststoffpulvers zum beschichteten Magnetpulver verbessert werden. Die Erfindung soll abschließend durch zwei Beispiele erläutert werden.
  • Beispiel 1:
  • Eine stückige NdFeB-Legierung folgender Zusammensetzung
    33,3 % SE (in 100% SE 98,7% Nd)
    1,3 % B
    65,2 % Fe
    0,04% O
    wurde unter Inertgasatmosphäre aufgeschmolzen, anschließend ver­düst und eine Fraktion < 63 µm ausgesiebt. Danach wurde sie bei­630°C wärmebehandelt und daraufhin elektrodenlos mit Kupfer be­schichtet. Die verdüste und wärmebehandelte Legierung wurde zu diesem Zweck in eine wäßrige Lösung eingerührt, die 30 g/l CuSo₄, 80 g/l 60% NaOH und 150 g/l KNa-Tartrat enthielt. An­schließend wurde auf 5 Volumsteile dieser Lösung 1 Volumsteil 37% Formaldehyd zugegeben. Nach Abscheidung des Cu und nach Filtratrion der beschichteten Legierung wurde diese gründlich gewaschen. Sie enthielt 13,2 % Cu und 0,17 % Sauerstoff. In Tabelle 2 sind die Werte für die Koerzitivfeldstärke bei den einzelnen Zwischenprodukten und dem Endmaterial dargestellt.
    Figure imgb0001
  • Beispiel 2
  • Eine stückige NdFeB-Legierung mit gleicher Zusammensetzung wie in Beispiel 1 angeführt wurde unter Inertgasatmosphäre aufge­schmolzen, verdüst und das verdüste Material unter Cyclohexan auf einen FSSS-Wert von 5,2 µm in einem Attritor vermahlen. Das Pulver wurde lösungsmittelfeucht in einen Vakuumofen eingetragen und bei 630°C wärmebehandelt. Die Beschichtung erfolgte wiederum gemäß Beispiel 1 und das Pulver wies einen Kupfergehalt von 18,2 % und einen Sauerstoffgehalt von 0,27% O auf. In Tabelle 3 sind wiederum die Koerzitivfeldstärken zusammengefaßt.
    Figure imgb0002
  • Die auf diese Art hergestellten Pulver zeigten anisotropes Ver­halten (BHmax = 195,8 kJ/m³.

Claims (11)

1. Verfahren zur Herstellung korrosionsbeständiger, hartmagneti­scher Pulver aus einer Legierung des Grundtyps SE-Fe-B für die Magneterzeugung, gekennzeichnet durch die Kom­bination der folgenden Verfahrensschritte, daß die stückig oder in Form von Ingots vorliegende Ausgangslegierung zer­kleinert wird, die so erhaltenen Pulverartikel zur Verbes­serung ihrer magnetischen Eigenschaften, vorzugsweise in einem Temperaturbereich von 300 - 1000°C, wärmebehandelt und anschließend die Oberfläche der einzelnen wärmebehandelten Pulverpartikel zur Verhinderung der Korrosion mit einer ke­ramischen oder metallischen Schutzschicht überzogen wird, wobei die metallische Beschichtung vorzugsweise auf elek­trolytischem Weg aus einer wässerigen Lösung erfolgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeich­net, daß eine Legierung eingesetzt wird, die aus 25-45 Gew.-% SE (SE ist eines oder die Summe mehrerer Elemente der Gruppe der Seltenen Erden), 0,5-3 Gew.-% B und aus Fe oder einer Kombination von Eisen mit anderen Metallen, z.B. Ko­balt, Aluminium und/oder Niob, besteht.
3. Verfahren anch Anspruch 1 oder 2, dadurch gekenn­zeichnet, daß die Zerkleinerung mittels einer Kombi­nation mehrerer Zerkleinerungsverfahren, vorzugsweise be­stehend aus einer Inertgasverdüsung der Ausgangslegierung und einer Mahlung des verdüsten Pulvers, vorzugsweise unter Schutzgas und/oder einer organischen Flüssigkeit erfolgt, wobei die Mahlung des verdüsten Pulvers vor oder nach der Wärmebehandlung vorgenommen werden kann.
4. Verfahren nach Anspruch 3, dadurch gekennzeich­net, daß die Partikel bereits während er Verdüsung durch Anlegen eines äußeren magnetischen Feldes ausgerichtet werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Legierung zerkleinert wird, bis die Korngrößen der erhaltenen Partikel im Bereich von 1-30 µm, vorzugsweise von 3-15 µm liegen.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Pulverpartikel unter Vakuum oder Inertgasatmosphäre wärmebehandelt werden.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Wärmebehandlung im Temperaturbereich zwischen 300 und 1000°C, vorzugsweise zwi­schen 500 und 800°C, erfolgt.
8. Verfahren nach Anspruch 1, dadurch gekenn­zeichnet, daß als Beschichtungsmaterial Kupfer ver­wendet wird.
9. Magnet aus hartmagnetischem Pulver, dadurch ge­kennzeichnet, daß die Pulverpartikel aus einer Legierung bestehen, die 25-45 Gew.-% SE, 0,5 - 3 Gew.-% B und Eisen oder eine Kombination von Eisen mit mindestens einem anderen Metall der Gruppe Kobalt, Aluminium und Niob enthält und mit einer keramischen oder metallischen Schutz­schicht überzogen sind.
10. Verfahren zur Herstellung eines Magneten nach Anspruch 9, dadurch gekennzeichnet, daß das be­schichtete Pulver gegebenenfalls unter Einwirkung eines äußeren Magnetfelds zu Magneten verpreßt wird.
11. Verfahren nach Anspruch 10, dadurch gekenn­zeichnet, daß das Verpressen unter Zumischung eines Kunststoffes, eines Metall- oder Keramikpulvers zur Verbes­erung der Festigkeit des Preßlings erfolgt.
EP87890182A 1986-08-04 1987-07-31 Verfahren zur Herstellung korrosionsbeständiger, hartmagnetischer Pulver für die Magneterzeugung, Magnete aus hartmagnetischen Pulver und Verfahren zu deren Herstellung Withdrawn EP0255816A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT209386A AT386554B (de) 1986-08-04 1986-08-04 Verfahren zur herstellung korrosionsbestaendiger, hartmagnetischer pulver fuer die magneterzeugung, magnete aus hartmagnetischem pulver und verfahren zu deren herstellung
AT2093/86 1986-08-04

Publications (2)

Publication Number Publication Date
EP0255816A2 true EP0255816A2 (de) 1988-02-10
EP0255816A3 EP0255816A3 (de) 1988-12-21

Family

ID=3527596

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87890182A Withdrawn EP0255816A3 (de) 1986-08-04 1987-07-31 Verfahren zur Herstellung korrosionsbeständiger, hartmagnetischer Pulver für die Magneterzeugung, Magnete aus hartmagnetischen Pulver und Verfahren zu deren Herstellung

Country Status (3)

Country Link
EP (1) EP0255816A3 (de)
JP (1) JPS6338216A (de)
AT (1) AT386554B (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361308A1 (de) * 1988-09-20 1990-04-04 Sumitomo Special Metals Co., Ltd. Korrosionsfester Dauermagnet und Herstellungsverfahren
EP0392077A2 (de) * 1989-04-14 1990-10-17 Hitachi Metals, Ltd. Heissverformte anisotrope Magnete und deren Herstellung
US4990876A (en) * 1989-09-15 1991-02-05 Eastman Kodak Company Magnetic brush, inner core therefor, and method for making such core
EP0452580A1 (de) * 1990-04-19 1991-10-23 Seiko Epson Corporation Kunstharzgebundener Magnet und dessen Herstellungsverfahren
EP0504397A1 (de) * 1990-10-09 1992-09-23 Iowa State University Research Foundation, Inc. Herstellungsverfahren von dauermagneten
WO1999043862A1 (en) * 1998-02-26 1999-09-02 The University Of Birmingham Method of applying a corrosion-resistant coating
EP1022929A2 (de) * 1999-01-23 2000-07-26 Harman Audio Electronic Systems GmbH Lautsprecher mit einem ummantelten Magnetkern
EP1211700A2 (de) * 2000-11-30 2002-06-05 Tokin Corporation Polarisierungsmagnet befassende Magnetkern und Induktor unter Verwendung desselben
DE102013004985A1 (de) 2012-11-14 2014-05-15 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Permanentmagneten sowie Permanentmagnet
DE102013213494A1 (de) 2013-07-10 2015-01-29 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Permanentmagneten sowie Permanentmagnet und elektrische Maschine mit einem solchen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623731B2 (ja) * 1988-07-29 1997-06-25 三菱マテリアル株式会社 希土類―Fe―B系異方性永久磁石の製造法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155106A (ja) * 1983-02-23 1984-09-04 Hitachi Maxell Ltd 金属磁性粉末の製造法
EP0125752A2 (de) * 1983-05-09 1984-11-21 General Motors Corporation Gebundene seltene Erden-Eisen-Magnete
JPS6054406A (ja) * 1983-09-03 1985-03-28 Sumitomo Special Metals Co Ltd 耐酸化性のすぐれた永久磁石
JPS60189901A (ja) * 1984-03-09 1985-09-27 Sumitomo Special Metals Co Ltd 希土類・ボロン・鉄系永久磁石用合金粉末の製造方法
EP0190461A2 (de) * 1984-12-24 1986-08-13 Sumitomo Special Metals Co., Ltd. Verfahren zur Herstellung von Dauermagneten und Dauermagnet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1914137B2 (de) * 1969-03-20 1976-09-23 Siemens AG, 1000 Berlin und 8000 München Verfahren zur herstellung von dauermagneten
DE2421605B2 (de) * 1974-05-04 1977-05-05 Verfahren zur herstellung von pulver fuer dauermagneten auf der basis von kobalt-seltenerden-verbindungen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155106A (ja) * 1983-02-23 1984-09-04 Hitachi Maxell Ltd 金属磁性粉末の製造法
EP0125752A2 (de) * 1983-05-09 1984-11-21 General Motors Corporation Gebundene seltene Erden-Eisen-Magnete
JPS6054406A (ja) * 1983-09-03 1985-03-28 Sumitomo Special Metals Co Ltd 耐酸化性のすぐれた永久磁石
JPS60189901A (ja) * 1984-03-09 1985-09-27 Sumitomo Special Metals Co Ltd 希土類・ボロン・鉄系永久磁石用合金粉末の製造方法
EP0190461A2 (de) * 1984-12-24 1986-08-13 Sumitomo Special Metals Co., Ltd. Verfahren zur Herstellung von Dauermagneten und Dauermagnet

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Band 104, Nr. 24, Juni 1986, Seite 705, Zusammenfassung Nr. 217825y, Columbus, Ohio, US; A.S. KONONENKO et al.: "Effect of heat treatment on the coercive force of neodymium-iron-boron alloy magnets", & IZV. AKAD. NAUK SSSR, MET. 1986, (2), 182-4 *
PATENT ABSTRACTS OF JAPAN, Band 10, Nr. 32 (E-379)[2089], 7. Februar 1986; & JP-A-60 189 901 (SUMITOMO TOKUSHIYU KINZOKU K.K.) 27-09-1985 *
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 185 (E-332)[1908], 31. Juli 1985; & JP-A-60 54 406 (SUMITOMO TOKUSHIYU KINZOKU K.K.) 28-03-1985 *
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 4 (E-288)[1727], 10. Januar 1985; & JP-A-59 155 106 (HITACHI MAXELL K.K.) 04-09-1984 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959273A (en) * 1988-09-20 1990-09-25 Sumitomo Special Metals Co., Ltd. Corrosion-resistant permanent magnet and method for preparing the same
EP0361308A1 (de) * 1988-09-20 1990-04-04 Sumitomo Special Metals Co., Ltd. Korrosionsfester Dauermagnet und Herstellungsverfahren
EP0392077A2 (de) * 1989-04-14 1990-10-17 Hitachi Metals, Ltd. Heissverformte anisotrope Magnete und deren Herstellung
EP0392077A3 (de) * 1989-04-14 1991-06-26 Hitachi Metals, Ltd. Heissverformte anisotrope Magnete und deren Herstellung
US4990876A (en) * 1989-09-15 1991-02-05 Eastman Kodak Company Magnetic brush, inner core therefor, and method for making such core
US5464670A (en) * 1990-04-13 1995-11-07 Seiko Epson Corporation Resin bound magnet and its production process
EP0452580A1 (de) * 1990-04-19 1991-10-23 Seiko Epson Corporation Kunstharzgebundener Magnet und dessen Herstellungsverfahren
EP0504397A1 (de) * 1990-10-09 1992-09-23 Iowa State University Research Foundation, Inc. Herstellungsverfahren von dauermagneten
EP0504397A4 (en) * 1990-10-09 1993-01-27 Iowa State University Research Foundation, Inc. Method of making permanent magnets
US6399146B1 (en) 1998-02-26 2002-06-04 The University Of Birmingham Method of applying a corrosion-resistant coating
WO1999043862A1 (en) * 1998-02-26 1999-09-02 The University Of Birmingham Method of applying a corrosion-resistant coating
GB2351741A (en) * 1998-02-26 2001-01-10 Univ Birmingham Method of applying a corrosion-resistant coating
EP1022929A2 (de) * 1999-01-23 2000-07-26 Harman Audio Electronic Systems GmbH Lautsprecher mit einem ummantelten Magnetkern
EP1022929A3 (de) * 1999-01-23 2007-06-13 Harman Becker Automotive Systems GmbH Lautsprecher mit einem ummantelten Magnetkern
EP1211700A2 (de) * 2000-11-30 2002-06-05 Tokin Corporation Polarisierungsmagnet befassende Magnetkern und Induktor unter Verwendung desselben
EP1211700A3 (de) * 2000-11-30 2003-10-15 NEC TOKIN Corporation Polarisierungsmagnet befassende Magnetkern und Induktor unter Verwendung desselben
KR100924037B1 (ko) * 2000-11-30 2009-10-27 엔이씨 도낀 가부시끼가이샤 자기 바이어스용 자석을 갖춘 자기 코어 및 이를 이용한인덕턴스 부품
DE102013004985A1 (de) 2012-11-14 2014-05-15 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Permanentmagneten sowie Permanentmagnet
WO2014075890A1 (de) * 2012-11-14 2014-05-22 Volkswagen Aktiengesellschaft Verfahren zur herstellung eines permanentmagneten sowie permanentmagnet
US10312019B2 (en) 2012-11-14 2019-06-04 Volkswagen Aktiengesellschaft Method for producing a permanent magnet and permanent magnet
DE102013213494A1 (de) 2013-07-10 2015-01-29 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Permanentmagneten sowie Permanentmagnet und elektrische Maschine mit einem solchen

Also Published As

Publication number Publication date
EP0255816A3 (de) 1988-12-21
JPS6338216A (ja) 1988-02-18
AT386554B (de) 1988-09-12
ATA209386A (de) 1988-02-15

Similar Documents

Publication Publication Date Title
DE69916764T2 (de) Auf Seltenerd/Eisen/Bor basierte Legierung für Dauermagnet
DE19626049C2 (de) Magnetwerkstoff und Verbundmagnet
DE3537191C2 (de)
DE60009772T2 (de) Abgeschrecktes, dünnes Band aus einer Magnetlegierung auf Basis Seltene Erde/Eisen/Bor
DE102014221200A1 (de) Verfahren zum herstellen von seltenerdmagneten
DE69819854T2 (de) Seltenerd-Eisen-Bor-Dauermagnet und Herstellungsverfahren
DE2631781B2 (de) Hartmagnetischer Werkstoff auf der Basis Seltenes Erdmetall-Kobalt-Kupfer und Verfahren zu dessen Herstellung
DE102006032517A1 (de) Verfahren zur Herstellung von Pulververbundkernen und Pulververbundkern
CH616777A5 (de)
EP0255816A2 (de) Verfahren zur Herstellung korrosionsbeständiger, hartmagnetischer Pulver für die Magneterzeugung, Magnete aus hartmagnetischen Pulver und Verfahren zu deren Herstellung
DE112012000967T5 (de) Verfahren zur Herstellung eines Seltenerdmagneten
DE69831256T2 (de) Dünner plattenmagnet mit mikrokristalliner struktur
DE60028659T2 (de) Dünnes Band einer dauermagnetischen Legierung auf Seltenerdbasis
DE3422281A1 (de) Verfahren zur herstellung von formlingen aus magnetischen metallegierungen und so hergestellte formlinge
DE2507105C2 (de) Verfahren zur Herstellung von permanentmagnetischem Material, enthaltend Samarium, Kobalt, Kupfer und gegebenenfalls Eisen
DE102012211960A1 (de) Magnetisches Material, seine Verwendung und Verfahren zu dessen Herstellung
CH638566A5 (de) Material fuer permanente magneten und verfahren zu dessen herstellung.
EP0395625B1 (de) Verfahren zur Herstellung eines Permanentmagnet(en) bzw. -werkstoffs
DE2258780A1 (de) Verfahren zum herstellen von permanentmagneten auf der basis von kobalt-seltene erden-legierungen
DE2321368A1 (de) Neues sinterprodukt aus einer intermetallischen kobalt-neodym-samarium-verbindung und daraus hergestellte permanentmagnete
DE69725750T2 (de) Pulver für Permanentmagnet, Herstellungsverfahren davon und mit diesem Pulver hergestellter anisotroper Permanentmagnet
DE102006032520B4 (de) Verfahren zur Herstellung von Magnetkernen, Magnetkern und induktives Bauelement mit einem Magnetkern
DE2705384A1 (de) Material fuer permanente magneten und verfahren zu dessen herstellung
AT393178B (de) Permanentmagnet(-werkstoff) sowie verfahren zur herstellung desselben
EP0338401B1 (de) Pulvermetallurgisches Verfahren zum Herstellen eines Halbzeugs für elektrische Kontakte aus einem Verbundwerkstoff auf Silberbasis mit Eisen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19890622

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WINKLER, HERWIG, DR.

Inventor name: BOUVIER, ALEXANDER, DR.