EP0255527A1 - Procede pour generer du froid et pour l'utiliser, et dispositif pour la mise en uvre de ce procede - Google Patents

Procede pour generer du froid et pour l'utiliser, et dispositif pour la mise en uvre de ce procede

Info

Publication number
EP0255527A1
EP0255527A1 EP87900635A EP87900635A EP0255527A1 EP 0255527 A1 EP0255527 A1 EP 0255527A1 EP 87900635 A EP87900635 A EP 87900635A EP 87900635 A EP87900635 A EP 87900635A EP 0255527 A1 EP0255527 A1 EP 0255527A1
Authority
EP
European Patent Office
Prior art keywords
liquid
refrigerant
enclosure
coolant
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87900635A
Other languages
German (de)
English (en)
Inventor
Laszlo Simon
Jean Pfau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coldeco SA
Original Assignee
Coldeco SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coldeco SA filed Critical Coldeco SA
Publication of EP0255527A1 publication Critical patent/EP0255527A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery

Definitions

  • the present invention relates to a process for generating cold and for using it either directly or indirectly after temporary storage and restitution, in which a cooling and / or partial freezing of a cold accumulating and coolant liquid partially filling is carried out. minus a refrigeration chamber, by carrying out a liquid injection into a mass of said cold accumulating and coolant liquid contained in said refrigeration chamber, and by vaporizing this refrigerant directly in this liquid, and by collecting the refrigerant at the gaseous state at the upper part of this enclosure, above a free surface of the coolant and coolant liquid, and from which coolant and coolant fluid is taken from this enclosure, and it is transported in a circuit d use of cold and / or to at least one cold storage enclosure, then we r introduced into said refrigeration enclosure.
  • a first problem encountered with this process is that the microscopic crystals produced in the crystallization enclosure, whose specific mass is less than that of the cold accumulating and heat-transfer liquid, tend to agglomerate and to accumulate by decantation in the vicinity of the free surface of the accumulator liquid. This results in the risk that a plug of agglomerated crystals will form in the vicinity of the free surface of the accumulating liquid contained in the crystallization enclosure. This plug quickly fills the space of the enclosure surmounting the injector, which thwarts the vaporization of the refrigerant and / or requires its interruption.
  • a second problem encountered with this process comes from the difficulty of transporting said crystals and / or of accumulating them in the form of a porous, homogeneous and compact mass, since these crystals form with the accumulating liquid taken from the enclosure a heterogeneous mixture, of partially solid consistency, of agglomerates of crystals of large dimensions up to several cm, these agglomerates being produced in the mass of the cold accumulating and heat-transfer liquid and / or detached from the abovementioned stopper.
  • a third problem encountered with this process is that part of the gaseous refrigerant injected and / or produced by vaporization in the crystallization enclosure risks being entrained with the cold storage and heat-transfer liquid, containing said crystals, taken from the enclosure to be conveyed to a cold exchange circuit, directly or after it has passed through a storage enclosure cold. This results in multiple drawbacks, including the need to frequently purge the various elements of the circuit traversed by the conveyed mixture.
  • a fourth problem encountered with this process is that the known systems which implement it are faced with the problem of icing of the injector of the refrigerant. This icing is observed on the outside of the injector which is immersed in the mass of cold accumulating and coolant liquid, but also partly inside the body of the injector when the refrigerant contains even a minute proportion of this accumulator and coolant liquid.
  • Various mechanical or thermal means are currently used to periodically defrost the injector. However, these common means lower the thermodynamic efficiency of the installation and are expensive and unreliable. In addition, they require the periodic interruption of the cold production cycle, which decreases the average refrigerating capacity of the installation.
  • the object of the present invention is to provide a method and a device for implementing this method, making it possible to overcome all of the drawbacks mentioned above.
  • Its primary purpose is to maintain throughout the mass of cold accumulating and coolant liquid where said crystals are generated a gel or a suspension of homogeneous crystals, of fluid consistency by preventing the formation of plugs and / or other agglomerates of crystals. of solid consistency.
  • Its second object is to ensure, in a refrigeration chamber containing a cold accumulating and coolant liquid cooled and / or partially frozen by direct vaporization of a refrigerant in the bulk of this liquid, good separation of the gaseous refrigerant. of said mass of liquid in the vicinity of the free surface of this mass of liquid.
  • a stream of liquid is generated in said enclosure in a closed hydraulic circuit, this stream comprising at least an ascending stream of cold accumulating and coolant liquid located substantially above a refrigerant injection zone at least partially in the liquid state, located on a portion of the horizontal section of the enclosure, and at least one downdraft essentially consisting of coolant and coolant liquid free of refrigerant in gaseous state, this current in closed hydraulic circuit being produced by a siphon effect and caused by the lowering of the average density of the mixture of liquid and bubbles of refrigerant vaporized above said zone d 'injection.
  • the injection rate of said refrigerant is advantageously adjusted so that its vaporization generates a gel and a fluid and homogeneous suspension of crystals of liquid cold accumulator and coolant frozen in the mass of liquid in motion.
  • Said updraft is preferably generated in such a way that its speed is a multiple of the spontaneous settling speed of said crystals in suspension when the cold accumulating and heat-transfer liquid is immobilized.
  • Said downward flow is advantageously generated in such a way that its speed is lower than the speed of spontaneous settling of said crystals in suspension when the liquid is immobilized, so as to accumulate said crystals in the form of a compact porous mass in the zone of the flow descending, while letting this liquid pass through this mass, getting rid of the crystals it contained in suspension before returning to the bottom of the area of the ascending current, in which it recharges said crystals produced by the vaporization of refrigerant.
  • said downward current is generated in such a way that its speed is a multiple of said spontaneous settling speed.
  • the voluraetric concentration of bubbles is advantageously maintained between 10 and 70% in said ascending current, by adjusting the flow rate of liquid refrigerant injected as a function of the flow rate of this ascending current.
  • this flow rate is adjusted to vaporize, preferably, in said ascending current between 150 and 3,000 m 3 of gaseous refrigerant per hour and per m 2 of section of this ascending current corresponding to a power refrigeration approximately between 40,000 and 800,000 KFrig / hm 2 .
  • the speed of said updraft is advantageously between 0.05 and 2 m / s.
  • the speed of said downdraft is advantageously between 0.05 and 2 m / s.
  • the flow rate of the refrigerant vaporized in said ascending current and the flow rate of the cold accumulating and heat-transfer liquid taken from said enclosure are adjusted, so that the concentration of said crystals in the gel or the suspension is between 0.1 and 2%.
  • the flow rate of the refrigerant vaporized in said ascending current and the flow rate of the liquid sampled in said enclosure are adjusted, so that the concentration of said crystals in the gel or the sus pension is between 2 and 25%.
  • the coolant and coolant liquid from the downdraft zone and / or from the updraft zone, to circulate it in a closed circuit through a use circuit comprising at least a heat exchanger and reinject it into the enclosure.
  • the cold accumulating and heat-transfer liquid can be taken from said refrigeration enclosure, in the downdraft area and / or from the updraft area, and it is transferred to a cold storage enclosure. separated also containing coolant and coolant liquid, so as to accumulate said crystals in the form of a compact porous mass in this storage enclosure, while letting this liquid pass through this mass while getting rid of the crystals which it contained in suspension before returning to the bottom of the updraft zone, in which it recharges said crystals produced by the vaporization of refrigerant.
  • Said updraft is advantageously generated in at least one vertical tubular element disposed in the refrigeration chamber and associated with at least one refrigerant injector at least partially in the liquid state, this injector being disposed inside this element tubular.
  • this refrigerant is vaporized inside this element, by direct contact with the cold accumulating and coolant liquid, to cool this liquid and generate a gel or a fluid suspension of crystals of this frozen liquid and said liquid is poured in said form of gel or fluid suspension into the enclosure at the top of said vertical tubular element.
  • the refrigerant in gaseous state is collected at the top of the enclosure.
  • the pressure of the refrigerant and of the coolant and coolant liquid is maintained in the vicinity of an injection zone of this refrigerant in the mass of this liquid has a value higher than the saturated vapor pressure of the refrigerant, evaluated at the freezing temperature of the cold accumulating and coolant liquid, and the pressure of the gaseous refrigerant is maintained above said free surface of this liquid at a pressure d suction below this saturated vapor pressure.
  • said injection is carried out in a zone of the refrigeration chamber where the hydrostatic pressure of the cold accumulating and heat-transfer liquid, increased by the suction pressure of the gaseous refrigerant above the free surface of said liquid, is greater than said saturated vapor pressure, the vaporization of the refrigerant occurring in the mass of coolant and coolant liquid in upward movement at a height greater than that of the injection zone.
  • said suction pressure is preferably maintained at a value 0.2 to 0.8 bar lower than said saturated vapor pressure of the refrigerant evaluated at the freezing temperature of the cold accumulating and coolant liquid.
  • the refrigerant can be injected at the bottom of a vertical column of coolant and coolant liquid whose height is at least such that the total pressure of this liquid, in the vicinity of said injection zone, is greater than the pressure of saturated vapor of this fluid at said freezing temperature.
  • the refrigerant in the form of a jet opening into a space, located inside said refrigeration chamber, filled with cold accumulating and coolant liquid maintained at a pressure P 1 greater than said saturated vapor pressure P s , and in that a jet of this liquid is formed which opens out from this space into the mass of cold-accumulating and coolant liquid contained inside said enclosure, at a pressure P 2 lower than P 1 , the jet of said liquid surrounding the jet of refrigerant of a mantle, thermally insulating this Jet from the body of the injector.
  • This jet of cold accumulating and coolant liquid can be coaxial with the jet of refrigerant and the flow of the jet of this liquid is advantageously greater than the flow of the jet of refrigerant.
  • this method of generating cold is not limited to a use intended for the storage of cold, but can also be advantageously used with a view to transporting and exchanging cold in a circuit of use by means of a cold accumulating and coolant liquid containing crystals of this liquid in the frozen state in suspension.
  • said cold accumulator and coolant liquid is preferably circulated in a closed circuit outside the refrigeration chamber by taking from this chamber cold accumulator and coolant liquid charged with said gel or said suspension of said crystals of fluid consistency, by circulating this liquid through at least one heat exchanger, then, by returning this liquid in said enclosure. At least part of the crystals are melted in said exchanger, and said liquid is transferred to the storage enclosure while maintaining, preferably without interruption, a flow of cold accumulator and coolant liquid sufficient to ensure at all points a turbulent flow between the two enclosures to avoid the formation of plugs of agglomerated ice crystals.
  • the device for implementing this method as defined above is characterized in that said means for injecting and vaporizing the refrigerant are arranged to inject and vaporize this fluid in a limited part of the horizontal section of said enclosure of refrigeration, so as to generate in said refrigeration enclosure, by siphon effect, a stream of liquid in a closed hydraulic circuit, this stream comprising at least an ascending stream of coolant and coolant liquid contained in the refrigeration enclosure, current being located substantially above said means for injecting the refrigerant and counting nant bubbles of vaporized refrigerant, and at least one downflow essentially devoid of refrigerant in the gaseous state.
  • said means for injecting the refrigerant comprise at least one injector surmounted by a vertical column of cold accumulating and coolant liquid whose height is at least such that the hydrostatic pressure generated in the injection zone , increased by the suction pressure of the gaseous refrigerant at the top of the refrigeration chamber, is greater than the saturation vapor pressure of this fluid evaluated at the freezing temperature of said liquid.
  • the refrigeration enclosure preferably comprises at least one tubular element constituting a vertical chimney with cylindrical walls, as well as injection means arranged inside this vertical chimney, this chimney being open to its lower end to allow the entry of coolant and coolant liquid, and at its upper end to allow the discharge of this cooled liquid or a gel or a suspension composed of this liquid and crystals of this frozen liquid in the annular space between this tubular element and the vertical walls of the enclosure.
  • the section of the tubular element is preferably similar to the section of said annular space.
  • the section of the tubular element is advantageously a fraction of the section of said annular space.
  • the refrigeration chamber and said means for injecting the refrigerant are arranged to maintain the pressure of the cold accumulating and coolant liquid and of the refrigerant in the vicinity of the zone injection, at a value greater than this vaporization pressure of the refrigerant, evaluated at the freezing temperature of the storage fluid cold and coolant.
  • said means for injecting the refrigerant comprise at least one injector immersed in the mass of coolant and coolant liquid, contained in said enclosure, surmounted by a vertical column of this liquid, the height of which is at least such that the hydrostatic pressure generated in the injection zone, increased by the suction pressure of the gaseous refrigerant, is greater than the saturation vapor pressure of this fluid, evaluated at the freezing temperature of the cold accumulating liquid and coolant.
  • the enclosure preferably comprises at least one tubular element constituting a vertical chimney with cylindrical walls, as well as means for injecting refrigerant arranged in the lower part of this vertical chimney.
  • the upper end of the vertical chimney is disposed above the free level of cold accumulating liquid and freezable coolant, contained in the refrigeration chamber, and it is surmounted by a deflector arranged to channel said liquid containing crystals of this frozen liquid in suspension and / or to prevent entrainment of this liquid by the gaseous refrigerant aspirated at the top of the refrigeration chamber by a compressor.
  • the device comprises a first refrigeration enclosure and a second cold storage enclosure, the two enclosures being connected to each other by a circuit designed to convey a mixture of cold accumulating and coolant liquid and frozen crystals of this liquid , in the form of a gel or a suspension of fluid consistency, the means for injecting the refrigerant are arranged in the lower part of the refrigeration chamber.
  • said injection means comprise a chamber connected to a supply of cold accumulator and heat transfer fluid under pressure and provided with a outlet orifice opening into the refrigeration chamber, and a nozzle for injecting the refrigerant into this chamber in the direction of the outlet orifice, so that the jet of refrigerant thus formed is surrounded by a sheath of liquid cold accumulator and coolant in movement which isolates it from the walls of this chamber.
  • Said nozzle can be replaced by an injection manifold constituted by a central tube provided with a series of injection orifices and surrounded by a coaxial tube provided with a series of outlet orifices arranged opposite the orifices d injection, these orifices being arranged two by two to form a series of injectors.
  • FIG. 1 represents an advantageous embodiment of the device according to the invention in which the generation and accumulation of cold takes place in the same enclosure.
  • FIG. 2 represents a schematic partial view of the device according to the invention in which the generation of cold takes place in a different enclosure from that in which the accumulation takes place,
  • FIG. 3 represents a variant of the device of FIG. 2,
  • FIG. 4 represents a particular form of a refrigerant injector
  • FIG. 5 represents a sectional view of a ramp of refrigerant injectors usable in any of the devices illustrated by FIGS. 1 to 3.
  • FIG. 1 illustrates a first embodiment of a device for generating and using cold, which comprises a refrigeration enclosure 10 surrounded by a thermal insulation sheath 11 and containing a mass 12 of frozen cold accumulator liquid which also serves as a coolant in a circuit of use (not shown), comprising for example heat exchangers, and equipped with an outlet duct 13 for this cold liquid and a return pipe 14 of this liquid heated in the use circuit.
  • An injector 15 of refrigerant 16 is disposed inside the enclosure 10 below the free level 20 of the mass 12 of liquid.
  • a refrigerant suction mouth 17 15, in the gaseous state, is provided at the upper end of this enclosure.
  • the external refrigerant circuit comprises, for example, in a manner known per se, a compressor (not shown) connected to the suction mouth 17 and a condenser (not shown) connected to the injector 15, by the through an adjustable valve 18 making it possible to adjust the flow rate of refrigerant injected into the mass of coolant and coolant liquid 12 and consequently the refrigeration capacity of the installation.
  • the object of the injector is to inject refrigerant in the liquid or partially liquid state into the liquid 12.
  • the suction mouth 17 is formed at the upper end of the enclosure 10 so that it can collecting the refrigerant in the gaseous state above the free level 20 of the liquid 12 has a suction pressure lower than the saturated vapor pressure Ps of the refrigerant.
  • the injector 15 is disposed inside a tubular element 19 in the form of a cylindrical chimney, open at its two ends, the upper end of which opens out above the free level 20 of the liquid 12 contained in the enclosure 10 .
  • the pressure exerted on the refrigerant at the time of its injection into the liquid 12 is equal to the pressure of the gaseous refrigerant filling the top of the enclosure 10 increased by the hydrostatic pressure of the column of liquid surmounting the injector 15.
  • This pressure is maintained at a value greater than the saturated vapor pressure Ps of the refrigerant evaluated at the temperature of freezing of the liquid 12 in which the latter is found due to its passage through the mass of crystals as described below. This pressure is thus sufficient to prevent the vaporization of the refrigerant in the liquid state immediately at the outlet of the injector. As a result, any risk of icing of the orifices and internal and external walls of the injector is eliminated.
  • the refrigerant for example isobutane or preferably octafluorocyclobutane C4F8 designated by R-C318, can be either completely in the liquid state, or preferably partially in the gaseous state at its outlet from the valve.
  • expansion valve 18 according to its temperature on arrival via line 16 in this valve 18.
  • the gas bubbles, not shown, accompanying the droplets 16a of liquid refrigerant leaving the injector 15 set the entire column of heat-transfer liquid and accumulator in upward movement of cold delimited by the tubular element 19 and overhanging the injector 15, thus entraining these droplets 16a even if their specific mass is greater than that of said accumulator liquid (case of R-C318).
  • the crystals contained in the gel or the suspension 27 separate from the cold accumulating and heat-transfer liquid in said annular space because the speed of the downward current of the liquid in this space is less than said speed of spontaneous settling of said crystals.
  • the free level 20 of the accumulator liquid contained in the enclosure defines a separation surface between an upper porous layer 21 of almost dry crystals of accumulator liquid.
  • cold and frozen heat transfer fluid constituted for example by water or by a solution of mineral salts in water or another aqueous solution, and a lower layer 22 of these same crystals impregnated with this liquid.
  • the crystal clusters 21 and 22 have a much more homogeneous and compact porous structure than those formed hitherto in cold storage chambers where aggregates of crystals were accumulated. macroscopic of solid consistency mixed with freezable liquid.
  • the closed circuit circulation generated inside the enclosure 10, causes the liquid 12 to circulate continuously through the layers 21 and 22 of crystals while being maintained at a temperature very close to the freezing temperature of this liquid. .
  • This cold-charged liquid is evacuated through the outlet duct 13 in the direction of the use circuit during the cold restitution phases. It is completely recycled through the tubular element 19 during the phases of cold accumulation and partially during the cold restitution phases.
  • the height of the enclosure 10 In order for the device to function properly, that is to say for the condition relating to the hydrostatic pressure at the level of the injector to be effectively fulfilled, the height of the enclosure 10 must be sufficient.
  • the nature of the refrigerant, the pressure of the suction of this fluid in the gaseous state above the free level of the liquid 12 inside the enclosure 10, and the height of said free level must be chosen in such a way that the saturated vapor pressure of the refrigerant, evaluated at the freezing temperature of the liquid 12, is less than the sum of said suction pressure and the hydrostatic pressure of this liquid at the level of the injector .
  • the refrigerant is chosen in such a way that the suction pressure P a is close to atmospheric pressure to minimize the cost of the enclosure 10, and preferably slightly higher than atmospheric pressure to avoid any risk of entry d air in the enclosure. This condition is fulfilled with isobutane and perfluorinated refrigerant R-C318.
  • h 1 be the height of the column of liquid above the injector Up to the vaporization level 23 of the droplets 16a of refrigerant
  • h 2 the height of the column going from the vaporization level 23 to the free level 20 of the liquid separating the mass porous ice crystals 22 impregnated with water from the porous mass of dry crystals 21, and
  • h 3 the height between this free level 20 and the upper level of the liquid emerging from the chimney 19;
  • h 3 must be greater than the maximum thickness of the dry layer 21.
  • the height h 1 is advantageously between 0.5 and 2 m while the height h 2 + h 3 is advantageously between 0.5 and 4 m .
  • the injector 15 can be arranged at a certain height h o inside the tubular element 19, when the height of the storage enclosure 10 is high.
  • the maximum height of the mass of crystals formed by layers 21 and 22 exceeds 3 or 4 meters, it may be advantageous to give the height h o a value sufficient for the hydrostatic pressure of the column of liquid of height h1 + h2 + h3 is limited, for example to 3 meters, in order to avoid that the suction pressure of gaseous refrigerant must be, to generate the vaporization of this fluid, too much lower than the saturated vapor pressure Ps, ce which would adversely affect the thermodynamic efficiency of the installation.
  • P 1 is the specific mass of the coolant and coolant accumulator liquid and P m the average specific mass of the column of accumulator liquid charged with bubbles overhanging the evaporation level 23.
  • C is the average volume concentration of gaseous refrigerant bubbles in this column.
  • P m 0.8 P 1 .
  • H be the maximum height of the mass 22 of crystals impregnated with liquid at the end of an accumulation phase. If the porosity of the dry mass 21 overhanging the free level 20 is substantially the same as that of the mass 22, the thickness of the mass 21 is approximately 0.1H for cold storage liquids and heat transfer compounds composed essentially of water.
  • the hydrostatic pressure ⁇ P of the column of liquid located above the vaporization level is:
  • the suction pressure P a of the gaseous refrigerant prevailing in the upper part of the enclosure 10 must be adjusted to a value 0.24 bar lower than the pressure prevailing in the chimney at vaporization level 23, pressure substantially equal to the saturated vapor pressure P s of the refrigerant at the freezing temperature of the liquid, ie 0oC in this example. If P 3 at 0oC is 1.28 bar (refrigerant R-C318), the suction pressure P a must be approximately 1.04 bar.
  • the refrigeration capacity of the system per m 2 of section of the chimney is usually between: 40,000 and 800,000 KFrig / hm 2 and the corresponding flow rate of vaporized refrigerant between: 150 and 3,000 m 3 / hm 2 when the refrigerant consists of isobutane (R-600a) or octafluorocyclobutane (R-C318).
  • the updraft must have a sufficient speed to prevent the formation by decantation of a plug of agglomerated ice crystals capable of blocking the upper part of the chimney.
  • This speed is usually between 0.05m / s and 2m / s and preferably greater than 0.3 m / s.
  • the chimney 19 is surmounted by a deflector 24 designed to prevent liquid splashes in the suction line 17 and so that the gel or the suspension of ice crystals which are generated by the evaporation of the refrigerant in the column of liquid delimi ted by this chimney, pours on the upper surface of the layer of dry crystals 21 in a very uniform manner.
  • this liquid is driven in an upward movement fast enough in the chimney 19 to prevent the formation of any ice crystal plug by decantation at the top of this chimney. Furthermore, this speed is sufficient to guarantee good separation between the gaseous refrigerant and the liquid in the region where the latter is poured from the chimney 19 into the space filled with gaseous refrigerant situated in the upper part of the enclosure 10, region where the thickness of the vein of moving liquid is small.
  • the overflow formed by the upper end of the tubular element 19 prevents entrainment of the liquid with the gaseous refrigerant aspirated by the compressor connected to the suction mouth 17.
  • the return duct 14 of the operating circuit is equipped with a series of sprinkling or spraying members 25 designed to distribute uniformly, in the form of fine rain, the cold accumulator and coolant liquid heated after it has passed through the circuit. of use over the entire surface of the dry crystals.
  • a grid 26 is provided at the base of the enclosure 10, above the outlet duct 13, to prevent partial obstruction of the bottom of the enclosure 10 by crystals of solidified liquid when the crystal layer 22 s' thickens and fills substantially all of the interior space of this enclosure 10, at the end of a cold accumulation phase. This avoids that, during a subsequent cold restitution phase, the liquid stream is concentrated on a portion of the section of the mass of crystals, which could lead to a non-uniform melting of this mass. Any risk of obstruction of the pipe 13 is also eliminated.
  • the enclosure 10 and the chimney 19 are cylindrical with a circular section or not, their walls do not having no roughness capable of catching the layers of crystals 21 and 22.
  • the layer of dry crystals tends to thicken since new crystals are constantly poured out by the upper opening of the chimney 19. This layer thickens and becomes heavier and causes a progressive sinking of the mass of crystals.
  • the melting of the solidified liquid crystals takes place more quickly at the top than at the bottom of the mass.
  • the upper layer is constantly sprayed with heated liquid which gradually cools down through the mass. Due to this faster surface fusion, the mass floating on the liquid will tend to go up by Archimedes' push. This rise takes place in a global manner, without cracking or reorganization of the structure, in the manner of a piston sliding along the walls, provided that these walls are smooth, cylindrical and have no roughness capable of braking or retaining the crystals in their movement.
  • FIG. 2 describes an installation for refrigerating and / or crystallizing a cold accumulating and heat-transfer liquid using substantially the same fundamental principles as those which were used in the previous installation, but where the function of accumulation of Ice crystals for cold storage is separate from the crystal generation function.
  • This installation comprises a refrigeration enclosure 30 surrounded by an insulating thermal sheath 31 and a crystal storage enclosure (not shown).
  • the enclosure 30 is equipped at its lower end with one or more injectors 32 arranged on a portion of the horizontal section of the enclosure 30 and supplied with refrigerant 33 supplied by a supply duct on which a valve is mounted adjustable 34.
  • valve 34 The role of the valve 34 is to regulate the flow rate of the vaporized liquid refrigerant leaving the condenser (not shown) at a pressure of the order of 4 bars and injected into the liquid at a pressure close to 2 bars.
  • the top of the enclosure 30 is provided with a suction pipe 35 for the refrigerant in the vapor state at a pressure of the order of 1 bar for example, by a compressor not shown.
  • the injection pressure and / or the height of the column of accumulator liquid are chosen in such a way that the refrigerant is injected in the form of a liquid, possibly mixed with a few bubbles of vapor, created in the valve 34, and vaporizes only at a certain height h 1 inside the enclosure 30.
  • This vaporization causes the cooling of the liquid and then the formation of microscopic crystals of this frozen liquid.
  • These crystals are mixed with the liquid and form a very fluid gel or suspension which is transferred and concentrated in a storage enclosure of cylindrical shape, substantially identical to the enclosure 10 of FIG. 1, but devoid of the central chimney 19.
  • a discharge duct 36 opens at 37 in the vicinity of the free surface 38 of the liquid to collect the fluid suspension and to transport it via a pump 39 to the storage enclosure mentioned above.
  • a return conduit 40 makes it possible to bring the liquid freed of crystals collected at the bottom of the storage enclosure to the bottom of the enclosure 30.
  • this intense current of liquid in closed circuit in the enclosure 30, prevents the formation of any plug of agglomerated crystals by spontaneous settling of these crystals in the vicinity of the free surface 38 of this liquid and also ensures effective separation of the fluid. gaseous refrigerant vaporized in its mass.
  • the enclosure 30 can function either as a crystallization enclosure where the above-mentioned gel or suspension of crystals is produced, or as a refrigeration enclosure, without freezing, of the liquid according to the value of the flow rate of this circulating liquid through this heat exchanger.
  • the currents of liquid in closed circuit generated in the enclosure 30 by siphon effect, as described previously guarantee a good separation, in the vicinity of the free surface 38 of the mass of liquid, between this liquid and the fluid. gaseous refrigerant contained in this liquid.
  • the flow rate of the accumulating liquid charged with said suspension of crystals of this frozen liquid, of fluid consistency, maintained by the pump 39 is maintained at a value sufficient for the flow of this liquid to be turbulent through the entire hydraulic circuit comprising the line 36, the pump 39 and the utilization circuit not shown comprising at least one heat exchanger, and also the line 40 if the liquid return still contains ice crystals, in order to prevent any decantation of the crystals and any formation of an ice plug inside this hydraulic circuit.
  • This refrigeration and / or crystallization enclosure is particularly simple and makes it possible to use standard cylindrical tanks for the manufacture of the enclosures. It also allows the implementation of a modular concept, based on the use of a single enclosure supplying sequentially or continuously a group of cold storage enclosures and / or heat exchangers mounted in parallel or in series on a circuit of use.
  • the storage enclosures can have a cylindrical shape of circular, rectangular or square section, and be juxtaposed or distant from each other.
  • the crystallization enclosure can be mounted near or at a distance from the cold storage enclosures as required or according to the space available.
  • a centralized control possibly programmed, can be designed to control the entire installation automatically. than. Such equipment is of course conceivable only for large installations.
  • One of its advantages is due to the fact that the entire installation can be adapted to changing needs by adding or removing one or more storage enclosures.
  • all vital organs subject to a certain wear and requiring a certain maintenance are perfectly accessible and replaceable.
  • Fig. 3 illustrates a variant of the refrigeration and / or crystallization installation illustrated in FIG. 2. It includes, as before, a refrigeration enclosure 50 surrounded by an insulating sheath 51 and containing a cold accumulating and heat-transfer liquid 52 taken from the annular space comprised between the tubular element 55 and the wall of the enclosure by a evacuation duct 53 and reinjected inside the enclosure by means of the pump 39 and a return duct 54 at the bottom of the tubular element 55 surmounted by a deflector 56.
  • this element is intended to facilitate the pouring of the mixture of liquid and crystals of this frozen liquid or quite simply of liquid cooled free of crystals, in the direction of the arrows A and to contribute to degassing, that is to say to the effective separation gaseous refrigerant from the liquid.
  • the evacuation duct 53 has its mouth in the annular space formed between the walls of the enclosure and the tubular element 55.
  • a conduit 53 ′ shown in broken lines opens out inside this element, below the area for injecting the refrigerant.
  • At least one injector 57 of the type of those shown in more detail in FIGS. 4 and 5, is disposed inside the tubular element 55.
  • This injector is supplied with refrigerant by a conduit 58 connected to an adjustable valve 59 and in liquid through the conduit 65 by means of the pump 64.
  • the refrigerant is collected in the gaseous state at the top of the enclosure 50 by a conduit 60.
  • the bubbles formed by the vaporization of this fluid cause, by siphon effect, an upward flow of liquid in the element tubular 55 and a downward current outside this element, as shown by arrows A.
  • Part of the cooled liquid or of the mixture of this liquid with crystals of this frozen liquid is recycled, as shown by arrows 8.
  • Another, much weaker part is sucked through the evacuation duct 53, by the pump 39, the outlet of which is connected to the actual inlet of a use circuit.
  • This use circuit can again be constituted by an enclosure for accumulating crystals and / or by at least one heat exchanger. On leaving the operating circuit, the liquid can be partially or totally freed of the crystals which it contained when it entered this circuit and be heated above its freezing temperature when the operating circuit includes heat exchangers. heat.
  • the refrigerant, in the liquid state may be less dense or more dense than the cold accumulating and heat-transfer liquid.
  • an evacuation orifice communicating with a suction pump to recover any refrigerant, not evaporated after its injection, and which could accumulate, in the long run, at the bottom of the crystallization enclosure.
  • the injector 57 of FIG. 3 is constituted by the injector shown in FIG. 4. It consists of a chamber 71 supplied with coolant and coolant liquid by the pump 64, through the pipe 65, under a pressure higher than the saturated vapor pressure of the refrigerant evaluated at the freezing temperature of the liquid. , this chamber 71 opening into the crystallization enclosure by at least one outlet orifice 73, in an area where the pressure of the liquid can be equal to or even lower than said saturated vapor pressure Ps.
  • the refrigerant, coming from the adjustable valve 59, is injected under pressure inside the chamber 71 by at least one nozzle 70 in the direction of the outlet orifice 73.
  • the jet of refrigerant is surrounded by a coat of liquid which isolates it thermally from the mass of the injector, which prevents icing of the latter despite the fact that the vaporization of the refrigerant begins to occur already inside the orifice 73 inside laughing which the pressure drops rapidly.
  • FIG. 5 A variant of such an injector is shown in FIG. 5.
  • the individual injector of FIG. 4 is replaced by a ramp of injectors 80, composed by the combination of a central tube 81 provided with a series of calibrated orifices 82 and surrounded by a peripheral tube 83 provided with a series of orifices 84 arranged respectively opposite the orifices 82.
  • the tube 81 is intended to convey the refrigerant under pressure and the peripheral tube 83 is intended to convey the liquid also under pressure.
  • the refrigerant is injected in the form of a fine jet, illustrated by the arrows A, into a sheath of coolant and coolant liquid illustrated by the arrows B
  • the orifices 84 are dimensioned in such a way that the flow of liquid or approximately two to twenty times greater than the flow rate of the refrigerant.
  • the refrigerant is surrounded by a mantle of liquid which isolates it from the tube 83 of the injector, thus preventing icing of the latter, despite the fact that the vaporization of the refrigerant already begins inside the tube 83.
  • the two exemplary embodiments of injectors illustrated in FIGS. 4 and 5 make it possible to dynamically create conditions equivalent to those obtained statically by the hydrostatic pressure prevailing at the injector when the enclosure containing the liquid has a sufficient height. They have the advantage of allowing the use of crystallization chambers of low height because the vaporization of the refrigerant takes place at the level of the injector 57.
  • P f is the pressure of the refrigerant in the injection nozzle 70 or in the central tube 81 of FIG. 5
  • P 1 the pressure of the accumulator liquid in the injection chamber 71 or respectively inside the tube 83 and P 2 its pressure in the enclosure 50, in the vicinity of the injection orifices, these quantities of the as follows: P f > P 1 > P 2
  • the concentration of the crystals in suspension in the liquid produced in the crystallization chambers is a function of the ratio existing between the flow rate of the liquid sampled in these chambers and the refrigeration power of the installation determined by the flow rate of refrigerant vaporized.
  • the crystallization chambers function as installations Economic refrigerators for cooling with high thermodynamic efficiency of a cold storage and heat transfer liquid at a temperature above its freezing temperature, while ensuring good separation between the gaseous refrigerant and this liquid.

Abstract

Le procédé et le dispositif sont caractérisés en ce qu'ils permettent d'engendrer, par effet siphon, dans une enceinte (10) contenant un liquide (12) congelable accumulateur de froid, un courant de liquide en circuit hydraulique fermé, ce courant comportant au moins un courant ascendant localisé au-dessus de moyens d'injection (15) d'un fluide frigorigène (16) et contenant des bulles de ce fluide frigorigène vaporisé, et au moins un courant descendant dépourvu de fluide frigorigène à l'état gazeux.

Description

PROCEDE POUR GENERER DU FROID ET POUR L'UTILISER, ET DISPOSITIF POUR LA MISE EN OEUVRE DE CE PROCEDE
La présente invention concerne un procédé pour générer du froid et pour l'utiliser soit directement, soit indirectement après stockage momentané et restitution, dans lequel on effectue un refroidissement et/ou une congélation partielle d'un liquide accumulateur de froid et caloporteur remplissant partiellement au moins une enceinte de réfrigération, en procédant à une injection liquide dans une masse dudit liquide accumulateur de froid et caloporteur, contenue dans ladite enceinte de réfrigération, et à une vaporisation de ce fluide frigorigène directement dans ce liquide, et en recueillant le fluide frigorigène à l'état gazeux à la partie supérieure de cette enceinte, audessus d'une surface libre du liquide accumulateur de froid et caloporteur, et dans lequel on prélève du liquide accumulateur de froid et caloporteur dans cette enceinte, et on le véhicule dans un circuit d'utilisation de froid et/ou vers au moins une enceinte de stockage de froid, puis on le réintroduit dans ladite enceinte de réfrigération.
Elle concerne également un dispositif pour la mise en oeuvre de ce procédé, comportant au moins une enceinte de réfrigération contenant un liquide accumulateur de froid et caloporteur, remplissant partiellement cette enceinte, des moyens pour injecter et vaporiser un fluide frigorigène au moins partiellement à l'état liquide dans une masse de ce liquide accumulateur de froid et caloporteur, des moyens pour recueillir le fluide frigorigène à l'état gazeux à la partie supérieure de cette enceinte, au-dessus d'une surface libre du liquide accumulateur de froid et caloporteur, et des moyens pour prélever du liquide accumulateur de froid et caloporteur dans cette enceinte et pour le véhiculer dans un circuit d'utilisation de froid et/ou vers au moins une enceinte de stockage de froid, puis pour le réintroduire dans ladite enceinte de réfrigération.
Ces dernières années, différents procédés de génération et d'accumulation de froid ont été développés pour tenter de résoudre le problème posé par le fait que le graphique d'utilisation du froid dans une installation est généralement irrégulier et passe souvent par un maximum momentané. Dans un procédé de génération et d'accumulation de froid particulièrement avantageux décrit dans le brevet suisse No. 628.417 déposée le 6.01.1978, on produit des cristaux d'un liquide accumulateur de froid et caloporteur congelé, -ce liquide étant généralement constitué par de l'eau ou par une solution aqueuse -, dans une masse de ce liquide contenue dans une enceinte de cristallisation en vaporisant un fluide frigorigène injecté dans cette masse de liquide, tout en recueillant et en aspirant ce fluide frigorigène à l'état gazeux au haut de cette enceinte de cristallisation au-dessus de la surface libre de cette masse liquide. Le mélange de liquide accumulateur de froid et caloporteur et de cristaux de ce liquide congelé ainsi formé est amené dans une enceinte de stockage de froid où l'on accumule ces cristaux sous forme d' un amas solide imprégné de liquide.
Un premier problème rencontré avec ce procédé est que les cristaux microscopiques produits dans 1'enceinte de cristallisation, dont la masse spécifique est inférieure à celle du liquide accumulateur de froid et caloporteur, tendent à s'agglomérer et à s'accumuler par décantation au voisinage de la surface libre du liquide accumulateur. Il en résulte le risque qu'un bouchon de cristaux agglomérés se forme au voisinage de la surface libre du liquide accumulateur contenu dans l'enceinte de cristallisation. Ce bouchon remplit rapidement l'espace de l'enceinte surmontant l'injecteur, ce qui contrarie la vaporisation du fluide frigorigène et/ou nécessite son interruption.
Un deuxième problème rencontré avec ce procédé provient de la difficulté de transporter lesdits cristaux et/ou de les accumuler sous forme d'un amas poreux, homogène et compact, car ces cristaux forment avec le liquide accumulateur prélevé dans l'enceinte un mélange hétérogène, de consistance partiellement solide, d'agglomérats de cristaux de grandes dimensions pouvant aller jusqu'à plusieurs cm, ces agglomérats étant produits dans la masse du liquide accumulateur de froid et caloporteur et/ou détachés du bouchon susmentionné.
Un troisième problème rencontré avec ce procédé est qu'une partie du fluide frigorigène gazeux injecté et/ou produit par vaporisation dans l'enceinte de cristallisation risque d'être entraînée avec le liquide accumulateur de froid et caloporteur, contenant lesdits cristaux, prélevé dans l'enceinte pour être véhiculé vers un circuit d'échange de froid, directement ou après son passage dans une enceinte de stockage de froid. Il en résulte des inconvénients multiples, dont la nécessité de purger fréquemment les différents éléments du circuit parcouru par le mélange véhiculé.
Un quatrième problème rencontré avec ce procédé est que les systèmes connus qui le mettent en oeuvre sont confrontés au problème du givrage de l'injecteur du fluide frigorigène. Ce givrage est observé à l'extérieur de l'injecteur qui est immergé dans la masse de liquide accumulateur de froid et caloporteur, mais aussi en partie à l'intérieur du corps de l'injecteur lorsque le fluide frigorigène contient une proportion même infime de ce liquide accumulateur et caloporteur. Divers moyens mécaniques ou thermiques sont actuellement utilisés pour dégivrer périodiquement l'injecteur. Toutefois, ces moyens courants abaissent le rendement thermodynamique de l'installation et sont coûteux et peu fiables. En outre, ils nécessitent l'interruption périodique du cycle de production de froid, ce qui diminue la puissance frigorigène moyenne de l'installation.
La présente invention a pour objet la mise à disposition d'un procédé et d'un dispositif de mise en oeuvre de ce procédé permettant de pallier l'ensemble des inconvénients mentionnés ci-dessus.
Elle a pour premier objet de maintenir dans toute la masse de liquide accumulateur de froid et caloporteur où sont générés lesdits cristaux un gel ou une suspension de cristaux homogène, de consistance fluide en prévenant la formation de bouchons et/ou d'autres agglomérats de cristaux de consistance solide.
Elle a pour deuxième objet d'assurer, dans une enceinte de réfrigération contenant un liquide accumulateur de froid et caloporteur refroidi et/ou partiellement congelé par vaporisation directe d'un fluide frigorigène dans la masse de ce liquide, une bonne séparation du fluide frigorigène gazeux de ladite masse de liquide au voisinage de la surface libre de cette masse de liquide.
Elle a également pour objet de permettre de véhiculer efficacement et économiquement ledit gel ou ladite suspension de cristaux, sans employer des pompes de circulation, vers une enceinte d'accumulation de ces cristaux en vue du stockage de froid, cette enceinte pouvant être ou non confondue avec l'enceinte de cristallisation.
Elle a enfin comme objet de supprimer le risque de givrage du ou des injecteurs du fluide frigorigène et d'éviter à l'utilisateur la contrainte d'arrêter régulièrement l'installation pour procéder à un tel dégivrage.
Ces buts sont atteints par le procédé selon l'invention, caractérisé en ce que l'on engendre dans ladite enceinte, un courant de liquide en circuit hydraulique fermé, ce courant comportant au moins un courant ascendant de liquide accumulateur de froid et caloporteur localisé sensiblement au-dessus d'une zone d'injection de fluide frigorigène au moins partiellement à l'état liquide, localisée sur une portion de la section horizontale de l'enceinte, et au moins un courant descendant essentiellement constitué de liquide accumulateur de froid et caloporteur dépourvu de fluide frigorigène à l'état gazeux, ce courant en circuit hydraulique fermé étant produit par un effet siphon et provoqué par l'abaissement de la densité moyenne du mélange de liquide et de bulles de fluide frigorigène vaporisé au-dessus de ladite zone d'injection.
On règle avantageusement le débit d'injection dudit fluide frigorigène de telle manière que sa vaporisation engendre un gel ou une suspension fluide et homogène de cristaux de liquide accumulateur de froid et caloporteur congelé dans la masse de liquide en mouvement.
Ledit courant ascendant est de préférence engendré de telle manière que sa vitesse soit un multiple de la vitesse de décantation spontanée desdits cristaux en suspension lorsque le liquide accumulateur de froid et caloporteur est immobilisé. Ledit courant descendant est avantageusement engendré de telle manière que sa vitesse soit inférieure à la vitesse de décantation spontanée desdits cristaux en suspension lorsque le liquide est immobilisé, de manière à accumuler lesdits cristaux sous la forme d'une masse poreuse compacte dans la zone du courant descendant, tout en laissant ce liquide traverser cette masse en se débarrassant des cristaux qu'il contenait en suspension avant de retourner au bas de la zone du courant ascendant, dans laquelle il se recharge desdits cristaux produits par la vaporisation de fluide frigorigène. Selon un mode de réalisation particulier, on engendre ledit courant descendant de telle manière que sa vitesse soit un multiple de ladite vitesse de décantation spontanée.
Pour réaliser ledit effet siphon, on maintient avantageusement la concentration voluraétrique de bulles entre 10 et 70% dans ledit courant ascendant, en ajustant le débit de fluide frigorigène liquide injecté en fonction du débit de ce courant ascendant. Pour obtenir cette concentration volumétrique de bulles, ce débit est ajusté pour vaporiser, de préférence, dans ledit courant ascendant entre 150 et 3'000 m3 de fluide frigorigène gazeux par heure et par m2 de section de ce courant ascendant correspondant à une puissance frigorifique approximativement comprise entre 40'000 et 800'000 KFrig/h.m2. La vitesse dudit courant ascendant est avantageusement comprise entre 0,05 et 2 m/s. La vitesse dudit courant descendant est avantageusement comprise entre 0,05 et 2 m/s. On maintient avantageusement la pression Pv de vaporisation du fluide frigorigène à une valeur comprise entre 1 et 2 bars et l'on maintient la pression Pa d'aspiration du f luide frigorigène à l'état gazeux au haut de ladite enceinte, à une valeur au moins approximativement voisine de 1 à 1,5 bars. Selon un premier mode de réalisation, on règle le débit du fluide frigorigène vaporisé dans ledit courant ascendant et le débit du liquide accumulateur de froid et caloporteur prélevé dans ladite enceinte, de manière que la concentration desdits cristaux dans le gel ou la suspension soit comprise entre 0,1 et 2% . Selon un deuxième mode de réalisation, on règle le débit du fluide frigorigène vaporisé dans ledit courant ascendant et le débit du liquide prélevé dans ladite enceinte, de manière que la concentration desdits cristaux dans le gel ou la sus pension soit comprise entre 2 et 25%.
Selon un mode de réalisation particulier, on peut prélever le liquide accumulateur de froid et caloporteur dans la zone du courant descendant et/ou dans la zone de courant ascendant, pour le faire circuler en circuit fermé à travers un circuit d'utilisation comportant au moins un échangeur de chaleur et le réinjecter dans l'enceinte.
Selon un autre mode de réalisation, on peut prélever le liquide accumulateur de froid et caloporteur dans ladite enceinte de réfrigération, dans la zone du courant descendant et/ou dans la zone de courant ascendant, et on le transfère dans une enceinte de stockage de froid séparée contenant également du liquide accumulateur de froid et caloporteur, de manière à accumuler lesdits cristaux sous la forme d'une masse poreuse compacte dans cette enceinte de stockage, tout en laissant ce liquide traverser cette masse en se débarrassant des cristaux qu'il contenait en suspension avant de retourner au bas de la zone du courant ascendant, dans laquelle il se recharge desdits cristaux produits par la vaporisation de fluide frigorigène.
Ledit courant ascendant est avantageusement engendré dans au moins un élément tubulaire vertical disposé dans l'enceinte de réfrigération et associé à au moins un injecteur de fluide frigorigène au moins partiellement à l'état liquide, cet injecteur étant disposé à l'intérieur de cet élément tubulaire. On provoque dans ce cas la vaporisation de ce fluide frigorigène à l'intérieur de cet élément, par contact direct avec le liquide accumulateur de froid et caloporteur, pour refroidir ce liquide et engendrer un gel ou une suspension fluide de cristaux de ce liquide congelé et on déverse ledit liquide sous ladite forme de gel ou de suspension fluide dans l'enceinte au haut dudit élément tubulaire vertical. Le fluide frigorigène à l'état gazeux est recueilli au haut de l'enceinte.
Dans le cas où ledit liquide de l'enceinte contient un gel ou une suspension de cristaux de ce liquide congelé, on maintient sans interruption, dans tout ledit circuit fermé, un écoulement turbulent dudit liquide. Pour résoudre le problème du givrage de l'injecteur, l'on maintient la pression du fluide frigorigène et du liquide accumulateur de froid et caloporteur au voisinage d'une zone d'injection de ce fluide frigorigène dans la masse de ce liquide a une valeur supérieure à la pression de vapeur saturante du fluide frigorigène, évaluée à la température de congélation du liquide accumulateur de froid et caloporteur, et l'on maintient la pression du fluide frigorigène gazeux au-dessus de ladite surface libre de ce liquide à une pression d'aspiration inférieure à cette pression de vapeur saturante.
Selon un mode de réalisation avantageux, on effectue ladite injection dans une zone de l'enceinte de réfrigération où la pression hydrostatique du liquide accumulateur de froid et caloporteur, augmenté de la pression d'aspiration du fluide frigorigène gazeux au-dessus de la surface libre dudit liquide, est supérieure à ladite pression de vapeur saturante, la vaporisation du fluide frigorigène se produisant dans la masse de liquide accumulateur de froid et caloporteur en mouvement ascensionnel à une hauteur supérieure à celle de la zone d'injection. Dans ce cadre, on maintient de préférence ladite pression d'aspiration à une valeur inférieure de 0.2 à 0.8 bar à ladite pression de vapeur saturante du fluide frigorigène évaluée à la température de congélation du liquide accumulateur de froid et caloporteur.
On peut injecter le fluide frigorigène au bas d'une colonne verticale de liquide accumulateur de froid et caloporteur dont la hauteur est au moins telle que la pression totale de ce liquide, au voisinage de ladite zone d'injection, soit supérieure à la pression de vapeur saturante de ce fluide à ladite température de congélation.
On peut également effectuer l'injection du fluide frigorigène sous forme d'un Jet débouchant à l'intérieur d'un espace, situé à l'intérieur de ladite enceinte de réfrigération, rempli de liquide accumulateur de froid et caloporteur maintenu à une pression P1 supérieure à ladite pression de vapeur saturante Ps, et en ce que l'on forme un jet de ce liquide débouchant de cet espace dans la masse de liquide accumulateur de froid et caloporteur contenue à l'intérieur de ladite enceinte, à une pression P2 inférieure à P1, le jet dudit liquide entourant le jet de fluide frigorigène d'un manteau, isolant thermiquement ce Jet du corps de l'injecteur. Ce Jet de liquide accumulateur de froid et caloporteur peut être coaxial au jet de fluide frigorigène et le débit du Jet de ce liquide est avantageusement supérieur au débit du jet de fluide frigorigène.
On notera que ce procédé de génération de froid n'est pas limité à une utilisation destinée au stockage de froid, mais peut également être employé avantageusement en vue du transport et de l'échange de froid dans un circuit d'utilisation au moyen d'un liquide accumulateur de froid et caloporteur contenant des cristaux de ce liquide à l'état congelé en suspension.
Dans ce cas, l'on fait de préférence circuler ledit liquide accumulateur de froid et caloporteur en circuit fermé hors de l'enceinte de réfrigération en prélevant, dans cette enceinte, du liquide accumulateur de froid et caloporteur chargé dudit gel ou de ladite suspension desdits cristaux de consistance fluide, en faisant circuler ce liquide à travers au moins un échangeur de chaleur, puis, en faisant retourner ce liquide dans ladite enceinte. Une partie au moins des cristaux sont fondus dans ledit échangeur, et on transfère ledit liquide vers l'enceinte de stockage en maintenant, de préférence sans interruption, un débit de liquide accumulateur de froid et caloporteur suffisant pour y assurer en tout point un écoulement turbulent entre les deux enceintes pour éviter la formation de bouchons de cristaux de glace agglomérés.
Le dispositif pour la mise en oeuvre de ce procédé tel que défini ci-dessus, est caractérisé en ce que lesdits moyens pour injecter et vaporiser le fluide frigorigène sont agencés pour injecter et vaporiser ce fluide dans une partie limitée de la section horizontale de ladite enceinte de réfrigération, de manière à engendrer dans ladite enceinte de réfrigération, par effet siphon, un courant de liquide en circuit hydraulique fermé, ce courant comportant au moins un courant ascendant de liquide accumulateur de froid et caloporteur contenu dans l'enceinte de réfrigération, ce courant étant localisé sensiblement au-dessus desdits moyens pour injecter le fluide frigorigène et conte nant des bulles de fluide frigorigène vaporisé, et au moins un courant descendant essentiellement dépourvu de fluide frigorigène à l'état gazeux.
Selon un mode de réalisation avantageux, lesdits moyens pour injecter le fluide frigorigène comportent au moins un injecteur surmonté d'une colonne verticale de liquide accumulateur de froid et caloporteur dont la hauteur est au moins telle que la pression hydrostatique engendrée dans la zone d'injection, augmentée de la pression d'aspiration du frigorigène gazeux au haut de l'enceinte de réfrigération, est supérieure à la pression de vapeur saturante de ce fluide évaluée à la température de congélation dudit liquide.
Selon une autre forme de réalisation, l'enceinte de réfrigération comporte de préférence au moins un élément tubulaire constituant une cheminée verticale a parois cylindriques, ainsi que des moyens d'injection disposés à l'intérieur de cette cheminée verticale, cette cheminée étant ouverte à son extrémité inférieure pour permettre l'entrée de liquide accumulateur de froid et caloporteur, et à son extrémité supérieure pour permettre le déversement de ce liquide refroidi ou d'un gel ou d'une suspension composée de ce liquide et de cristaux de ce liquide congelé dans l'espace annulaire compris entre cet élément tubulaire et les parois verticales de l'enceinte. La section de l'élément tubulaire est de préférence semblable à la section dudit espace annulaire.
Lorsque le dispositif comporte une enceinte unique pour la génération et le stockage desdits cristaux, la section de l'élément tubulaire est avantageusement une fraction de la section dudit espace annulaire.
Selon un mode de réalisation avantageux pour permettre la résolution du problème de givrage, l'enceinte de réfrigération et lesdits moyens pour injecter le fluide frigorigène sont agencés pour maintenir la pression du liquide accumulateur de froid et caloporteur et du fluide frigorigène au voisinage de la zone d'injection, à une valeur supérieure à cette pression de vaporisation du fluide frigorigène, évaluée à la température de congélation du liquide accumulateur de froid et caloporteur.
Selon un mode de réalisation avantageux, lesdits moyens pour injecter le fluide frigorigène comportent au moins un injecteur immergé dans la masse de liquide accumulateur de froid et caloporteur, contenue dans ladite enceinte, surmontée d'une colonne verticale de ce liquide, dont la hauteur est au moins telle que la pression hydrostatique engendrée dans la zone d'injection, augmentée de la pression d'aspiration du frigorigène gazeux, est supérieure à la pression de vapeur saturante de ce fluide, évaluée à la température de congélation du liquide accumulateur de froid et caloporteur.
L'enceinte comporte de préférence au moins un élément tubulaire constituant une cheminée verticale à parois cylindriques, ainsi que des moyens d'injection de fluide frigorigène disposés dans la partie inférieure de cette cheminée verticale.
Dans ce cas, l'extrémité supérieure de la cheminée verticale est disposée au-dessus du niveau libre de liquide accumulateur de froid et caloporteur congelable, contenu dans l'enceinte de réfrigération, et elle est surmontée d'un déflecteur agencé pour canaliser ledit liquide contenant des cristaux de ce liquide congelé en suspension et/ou pour prévenir l'entraînement de ce liquide par le fluide frigorigène gazeux aspiré au haut de l'enceinte de réfrigération par un compresseur.
Dans le cas où le dispositif comprend une première enceinte de réfrigération et une seconde enceinte de stockage du froid, les deux enceintes étant reliées entre elles par un circuit conçu pour véhiculer un mélange de liquide accumulateur de froid et caloporteur et de cristaux congelés de ce liquide, sous forme d'un gel ou d'une suspension de consistance fluide, les moyens pour injecter le fluide frigorigène sont disposés dans la partie inférieure de l'enceinte de réfrigération.
Selon un autre mode de réalisation avantageux, lesdits moyens d'injection comportent une chambre connectée à une amenée de liquide accumulateur de froid et caloporteur sous pression et munie d'un orifice de sortie débouchant dans l ' enceinte de réfrigération, et une buse d'injection du fluide frigorigène dans cette chambre en direction de l'orifice de sortie, de manière que le jet de fluide frigorigène ainsi formé soit entouré d'une gaine de liquide accumulateur de froid et caloporteur en mouvement qui l'isole des parois de cette chambre.
Ladite buse peut être remplacée par une rampe d'injection constituée par un tube central pourvu d'une série d'orifices d'injection et entouré d'un tube coaxial muni d'une série d'orifices de sortie disposés en regard des orifices d'injection, ces orifices étant agencés deux à deux pour former une série d'injecteurs.
La présente invention sera mieux comprise en référence à la description d'exemples de réalisation préférés et du dessin annexé dans lequel :
La figure 1 représente une forme de réalisation avantageuse du dispositif selon l'invention dans lequel la génération et l'accumulation de froid s'effectuent dans une même enceinte.
La figure 2 représente une vue partielle schématique du dispositif selon l'invention dans lequel la génération de froid s'effectue dans une enceinte différente de celle dans laquelle s'effectue l'accumulation,
La figure 3 représente une variante du dispositif de la fig. 2,
La figure 4 représente une forme particulière d'un injecteur de fluide frigorigène, et
La figure 5 représente une vue en coupe d'une rampe d'injecteurs de fluide frigorigène utilisable dans l'un quelconque des dispositifs illustrés par les figures 1 à 3.
La figure 1 illustre une première forme de réalisation d'un dispositif pour générer et utiliser du froid, qui comporte une enceinte de réfrigération 10 entourée d'une gaine d'isolation thermique 11 et contenant une masse 12 de liquide congelable accumulateur de froid qui sert également de caloporteur dans un circuit d'utilisation (non représenté), comprenant par exemple des échangeurs de chaleur, et équipée d'un conduit de sortie 13 de ce liquide froid et d'un conduit de retour 14 de ce liquide réchauffé dans le circuit d'utilisation. Un injecteur 15 de fluide frigorigène 16 est disposé à l'intérieur de l'enceinte 10 en dessous du niveau libre 20 de la masse 12 de liquide. Une bouche 17 d'aspiration de fluide frigorigène 15, à l'état gazeux, est ménagée à l'extrémité supérieure de cette enceinte.
Le circuit extérieur du fluide frigorigène comporte, par exemple, d'une manière connue en soi, un compresseur (non représenté) raccordé à la bouche d'aspiration 17 et un condenseur (non représenté) raccordé à l'injecteur 15, par l'intermédiaire d'une vanne réglable 18 permettant de régler le débit de fluide frigorigène injecté dans la masse de liquide accumulateur de froid et caloporteur 12 et par voie de conséquence la puissance frigorifique de l'installation. L'injecteur a pour objet d'injecter du fluide frigorigène à l'état liquide ou partiellement liquide dans le liquide 12. La bouche d'aspiration 17 est ménagée à l'extrémité supérieure de l'enceinte 10 de telle manière qu'elle puisse recueillir le fluide frigorigène à l'état gazeux au-dessus du niveau libre 20 du liquide 12 a une pression d'aspiration inférieure à la pression de vapeur saturante Ps du fluide frigorigène.
L'injecteur 15 est disposé à l'intérieur d'un élément tubulaire 19 en forme de cheminée cylindrique, ouvert à ses deux extrémités, dont l'extrémité supérieure débouche au-dessus du niveau libre 20 du liquide 12 contenu dans l'enceinte 10.
Dans l'exemple illustré, la pression exercée sur le fluide frigorigène au moment de son injection dans le liquide 12, est égale à la pression du fluide frigorigène gazeux remplissant le haut de l'enceinte 10 augmentée de la pression hydrostatique de la colonne de liquide surmontant l'injecteur 15.
Cette pression est maintenue à une valeur supérieure à la pression de vapeur saturante Ps du fluide frigorigène évaluée à la température de congélation du liquide 12 à laquelle se trouve ce dernier en raison de son passage dans la masse de cristaux comme décrit ci-après. Cette pression est ainsi suffisante pour empêcher la vaporisation du fluide frigorigène à l'état liquide immédiatement à la sortie de l'injecteur. De ce fait, on supprime tout risque de givrage des orifices et des parois internes et externes de l'injecteur.
Le fluide frigorigène, par exemple de l'isobutane ou de préférence de l'octafluorocyclobutane C4F8 désigné par R-C318, peut être soit totalement à l'état liquide, soit de préférence partiellement à l'état gazeux à sa sortie de la vanne de détente 18 selon sa température à son arrivée par la conduite 16 dans cette vanne 18. Les bulles de gaz, non représentées, accompagnant les gouttelettes 16a de frigorigène liquide sortant de l'injecteur 15 mettent en mouvement ascensionnel toute la colonne de liquide caloporteur et accumulateur de froid délimitée par l'élément tubulaire 19 et surplombant l'injecteur 15, entraînant ainsi ces gouttelettes 16a même si leur masse spécifique est supérieure à celle dudit liquide accumulateur (cas du R-C318). Pendant leur montée, les gouttelettes se vaporisent et d'autres bulles 16b se forment dans la colonne, au-dessus de l'injecteur 15, à l'endroit où la pression est réduite à une valeur voisine de Ps. Du fait de l'abaissement de la densité moyenne du liquide dans la colonne contenue dans l'élément 19 et provoqué par la présence des bulles, il se crée rapidement par effet siphon un courant ascendant à l'intérieur de l'élément tubulaire 19 et un courant descendant dans l'espace annulaire situé entre l'élément tubulaire 10 et la paroi verticale de l'enceinte 10.
La vaporisation du fluide frigorigène dans la masse de liquide accumulateur contenue dans la cheminée 19 abaisse progressivement la température de ce liquide jusqu'à sa température de congélation puis génère, grâce à l'existence d'un courant ascendant de débit élevé, un gel ou une suspension 27 de cristaux microscopiques de liquide accumulateur de froid et caloporteur congelé, de consistance parfaitement fluide, et dont la concentration pondérale en cristaux est faible, de l'ordre d'une fraction de pour mille à quelques pour cent. Grâce au fait que la vitesse du courant ascendant du liquide à l'intérieur de l'élément tubulaire 19 est supérieure à la vitesse de décantation spontanée des cristaux formant le gel ou la suspension 27 lorsque le liquide est immobilisé, celle-ci demeure homogène. Les cristaux contenus dans le gel ou la suspension 27 se séparent du liquide accumulateur de froid et caloporteur dans ledit espace annulaire car la vitesse du courant descendant du liquide dans cet espace est inférieure à ladite vitesse de décantation spontanée desdits cristaux.
Ce résultat, essentiel au bon fonctionnement de l'installation comme accumulateur de froid, est obtenu en donnant à la section de l'élément tubulaire 19 une valeur qui est une fraction de celle de la section dudit espace annulaire.
Dans la pratique, lorsque l'on a déjà accumulé des cristaux dans l'enceinte 10, le niveau libre 20 du liquide accumulateur contenu dans l'enceinte définit une surface de séparation entre une couche poreuse supérieure 21 de cristaux quasiment secs de liquide accumulateur de froid et caloporteur congelé, constitué par exemple par de l'eau ou par une solution de sels minéraux dans l'eau ou une autre solution aqueuse, et une couche inférieure 22 de ces mêmes cristaux imprégnés de ce liquide.
Grâce à la consistance fluide du gel ou de la suspension, les amas de cristaux 21 et 22 ont une structure poreuse bien plus homogène et compacte que ceux formés Jusqu'ici dans les enceintes de stockage de froid où l'on accumulait des agrégats de cristaux macroscopiques de consistance solide mélangés à du liquide congelable..
La circulation en circuit fermé, générée à l'intérieur de l'enceinte 10, fait que le liquide 12 circule en permanence à travers les couches 21 et 22 de cristaux en étant maintenu à une température très voisine de la température de congélation de ce liquide. Ce liquide chargé de froid est évacué à travers le conduit de sortie 13 en direction du circuit d'utilisation lors des phases de restitution de froid. Il est totalement recyclé à travers l'élément tubulaire 19 lors des phases d'accumulation de froid et partiellement lors des phases de restitution de froid.
Pour que le dispositif puisse fonctionner convenablement, c'est-à-dire pour que la condition relative à la pression hydrostatique au niveau de l'injecteur soit effectivement réalisée, la hauteur de l'enceinte 10 doit être suffisante. Dans la pratique, la nature du fluide frigorigène, la pression de l'aspiration de ce fluide à l'état gazeux au- dessus du niveau libre du liquide 12 à 1 'intérieur de l'enceinte 10, et la hauteur dudit niveau libre doivent être choisies de telle manière que la pression de vapeur saturante du fluide frigorigène, évaluée à la température de congélation du liquide 12, soit inférieure à la somme de ladite pression d'aspiration et de la pression hydrostatique de ce liquide au niveau de l'injecteur. On choisit le fluide frigorigène de telle manière que la pression d'aspiration Pa soit voisine de la pression atmosphérique pour minimiser le coût de l'enceinte 10, et de préférence légèrement supérieure à .la pression atmosphérique pour éviter tout risque d'entrée d'air dans l'enceinte. Cette condition est remplie avec l' isobutane et le frigorigène perfluoré R-C318.
Soit h1 la hauteur de la colonne de liquide surmontant l'injecteur Jusqu'au niveau de vaporisation 23 des gouttelettes 16a de fluide frigorigène, h2 la hauteur de la colonne allant du niveau de vaporisation 23 au niveau libre 20 du liquide séparant la masse poreuse de cristaux de glace 22 imprégnée d'eau de la masse poreuse de cristaux secs 21, et h3 la hauteur entre ce niveau libre 20 et le niveau supérieur du liquide débouchant de la cheminée 19; h3 doit être plus grand que l'épaisseur maximum de la couche sèche 21. La hauteur h1 est avantageusement comprise entre 0,5 et 2 m alors que la hauteur h2 + h3 est avantageusement comprise entre 0,5 et 4 m. Une hauteur h2 + h3 trop importante provoquerait une trop grande différence de pression entre la pression de vapeur saturante Ps du fluide frigorigène régnant au niveau d'évaporation 23 et la pression d'aspiration Pa au haut de l'enceinte 10, et nécessiterait un travail trop important du compresseur, la conséquence étant un abaissement du rendement thermodynamique de l'installation. Pour limiter la hauteur h2 + h3, l'injecteur 15 peut être disposé à une certaine hauteur ho à l'intérieur de l'élément tubulaire 19, lorsque la hauteur de l'enceinte de stockage 10 est élevée.
Si la hauteur maximum de l'amas de cristaux formé par les couches 21 et 22 dépasse 3 ou 4 mètres, il peut être avantageux de donner à la hauteur ho une valeur suffisante pour que la pression hydrostatique de la colonne de liquide de hauteur h1 + h2 + h3 soit limitée, par exemple à 3 mètres, afin d'éviter que la pression d'aspiration de fluide frigorigène gazeux ne doive être, pour générer la vaporisation de ce fluide, trop inférieure à la pression de vapeur saturante Ps, ce qui nuirait au rendement thermodynamique de l'installation.
Pour que le dispositif fonctionne, et de plus avec un bon échange thermique entre les masses de cristaux 21 et 22 et le liquide accumulateur de froid et caloporteur en circulation, il faut que se créent dans l'enceinte, par effet siphon, un courant ascendant intense du liquide le long d'une colonne disposée au-dessus de l'injecteur, par exemple à l'intérieur de l'élément cylindrique 19, et un courant descendant autour de cette colonne, à travers l'amas de cristaux.
Ce but est atteint si :
(1) ΔP = P1.g.h2 - Pm.g.(h2 + h3) > 0
où P1 est la masse spécifique du liquide accumulateur de froid et caloporteur et Pm la masse spécifique moyenne de la colonne de liquide accumulateur chargé de bulles surplombant le niveau d'évaporation 23.
On a :
(2) Pm P1-(1 - C)
où C est la concentration moyenne en volume de bulles de fluide frigorigène gazeux dans cette colonne. Un exemple numérique aidera à comprendre le fonctionnement du système. Avec une concentration moyenne de bulles C de l'ordre de 20% ,Pm = 0.8 P1.
(1) donne alors
(3) 0.8(h2 + h3) > 0
D'où :
(4) h2 > 4h3
Soit H la hauteur maximale de la masse 22 de cristaux imprégnés de liquide à la fin d'une phase d'accumulation. Si la porosité de la masse sèche 21 surplombant le niveau libre 20 est sensiblement la même que celle de la masse 22, l'épaisseur de la masse 21 est d'environ 0,1.H pour des liquides accumulateurs de froid et caloporteurs composés essentiellement d'eau.
P.ex. si H = 3m, cette épaisseur est de 0.3m; comme h3 doit lui être supérieure pour assurer un déversement correct du liquide accumulateur au-dessus de sa surface, hu = 0.5m.
La relation (4) donne alors h2 > 2m.
En pratique, on prendra par exemple h2 = 2.5m pour qu'un courant ascendant de liquide de débit suffisant s'établisse dans la cheminée 19.
Dès lors h2 + h3 = 3m.
La pression hydrostatique Δ P de la colonne de liquide située au- dessus du niveau de vaporisation est :
(5) ΔP = Pm.g.(h2 + h3)
Dans l'exemple considéré
Pm = 0.8.103K/m3, de sorte que P = 0.24 bar. Il en résulte que l'on doit régler la pression d'aspiration Pa du fluide frigorigène gazeux régnant dans la partie supérieure de l'enceinte 10 à une valeur inférieure de 0.24 bar à la pression régnant dans la cheminée au niveau de vaporisation 23, pression sensiblement égale à la pression de vapeur saturante Ps du fluide frigorigène à la température de congélation du liquide, soit 0ºC dans cet exemple. Si P3 à 0ºC vaut 1.28 bar (frigorigène R-C318), la pression d'aspiration Pa doit être d'environ 1.04 bar.
Si, pour éviter tout risque de givrage de l'injecteur 15, on prend h1 = 1m la pression P1 régnant dans le liquide au voisinage de la zone d'injection du fluide frigorigène est alors de 1.28 + 0.1 = 1.38 bar.
D'une manière générale, l'expérience montre que le dispositif décrit ci-dessus permet aisément d'obtenir une concentration volumétrique moyenne C de bulles comprise entre 10 et 70% au sommet de la cheminée 19 et une concentration de cristaux de glace microscopiques formant ledit gel ou ladite suspension dans le liquide déversé depuis le haut de cette cheminée 19 de l'ordre d'une fraction de pour cent à quelques pour cent.
La puissance de réfrigération du système par m2 de section de la cheminée est usuellement comprise entre : 40'000 et 800'000 KFrig/h.m2 et le débit correspondant de frigorigène vaporisé compris entre : 150 et 3'000 m3/h.m2 lorsque le frigorigène est constitué par de l'isobutane (R-600a) ou de l'octafluorocyclobutane (R-C318).
D'une manière générale, le courant ascendant doit avoir une vitesse suffisante pour empêcher la formation par décantation d'un bouchon de cristaux de glace agglomérés susceptible d'obturer la partie supérieure de la cheminée. Cette vitesse est usuellement comprise entre 0.05m/s et 2m/s et de préférence supérieure à 0,3 m/s.
La cheminée 19 est surmontée d'un déflecteur 24 conçu pour prévenir des projections de liquide dans la conduite d'aspiration 17 et pour que le gel ou la suspension de cristaux de glace qui sont générés par l'évaporation du fluide frigorigène dans la colonne de liquide délimi tée par cette cheminée, se déverse sur la surface supérieure de la couche de cristaux secs 21 de manière bien uniforme.
Grâce à la circulation en circuit fermé du liquide 12 dans l'enceinte 10, ce liquide est animé d'un mouvement ascendant suffisamment rapide dans la cheminée 19 pour prévenir la formation de tout bouchon de cristaux de glace par décantation au haut de cette cheminée. Par ailleurs, cette vitesse est suffisante pour garantir une bonne séparation entre le fluide frigorigène gazeux et le liquide dans la région où celui-ci est déversé de la cheminée 19 dans l'espace rempli de fluide frigorigène gazeux situé dans la partie supérieure de l'enceinte 10, région où l'épaisseur de la veine de liquide en mouvement est petite.
Le déversoir constitué par l'extrémité supérieure de l'élément tubulaire 19 prévient l'entraînement du liquide avec le fluide frigorigène gazeux aspiré par le compresseur relié à la bouche d'aspiration 17.
Le conduit de retour 14 du circuit d'utilisation est équipé d'une série d'organes d'arrosage ou de pulvérisation 25 conçus pour répartir uniformément, sous forme de pluie fine, le liquide accumulateurde froid et caloporteur réchauffé après son passage dans le circuit d'utilisation sur toute la surface des cristaux secs.
Une grille 26 est ménagée à la base de l'enceinte 10, au-dessus du conduit de sortie 13, pour empêcher l'obstruction partielle du fond de l'enceinte 10 par des cristaux de liquide solidifié lorsque la couche de cristaux 22 s'épaissit et remplit sensiblement tout l'espace intérieur de cette enceinte 10, à la fin d'une phase d'accumulation de froid. On évite ainsi que, lors d'une phase de restitution de froid subséquente, le courant de liquide soit concentré sur une portion de la section de la masse de cristaux, ce qui pourrait conduire à une fusion non uniforme de cette masse. On supprime également tout risque d'obstruction de la conduite 13.
Dans l'exemple illustré, l'enceinte 10 ainsi que la cheminée 19 sont cylindriques avec une section circulaire ou non, leurs parois ne présentant aucune aspérité susceptible d'accrocher les couches de cristaux 21 et 22. Pendant la phase de génération et d'accumulation de froid, la couche de cristaux secs a tendance à s'épaissir étant donné que de nouveaux cristaux sont constamment déversés par l'ouverture supérieure de la cheminée 19. Cette couche s'épaissit et s'alourdit et provoque un enfoncement progressif de la masse de cristaux. Pendant la phase d'utilisation du froid stocké, la fusion des cristaux de liquide solidifié s'effectue plus rapidement au sommet qu'au bas de la masse. En effet, la couche supérieure est constamment arrosée de liquide réchauffé qui se refroidit progressivement en traversant la masse. En raison de cette fusion superficielle plus rapide, la masse flottant sur le liquide aura tendance, à remonter par poussée d'Archimède. Cette montée s'effectue de façon globale, sans fissuration ni réorganisation de la structure, à la manière d'un piston coulissant le long des parois, à condition que ces parois soient lisses, cylindriques et ne présentent aucune aspérité susceptible de freiner ou de retenir les cristaux dans leur déplacement.
Les conditions physiques mentionnées ci-dessus peuvent également être obtenues dans d'autres installations ou en faisant varier différents paramètres, ce qui permet d'aboutir aux diverses réalisations décrites plus en détail ci-dessous.
La figure 2 décrit une installation de réfrigération et/ou de cristallisation d'un liquide accumulateur de froid et caloporteur utilisant sensiblement les mêmes principes fondamentaux que ceux qui ont été mis en oeuvre dans l'installation précédente, mais où la fonction d'accumulation de cristaux de glace pour le stockage de froid est séparée de la fonction de génération de cristaux. Cette installation comporte une enceinte de réfrigération 30 entourée d'une gaine thermiqueraent isolante 31 et d'une enceinte de stockage de cristaux (non représentée). L'enceinte 30 est équipée à son extrémité inférieure d'un ou de plusieurs injecteurs 32 disposés sur une portion de la section horizontale de l'enceinte 30 et alimentés en fluide frigorigène 33 amené par un conduit d'alimentation sur lequel est montée une vanne réglable 34. Le rôle de la vanne 34 est de régler le débit du fluide frigorigène liquide vaporisé sortant du condenseur (non représenté) à une pression de l'ordre de 4 bars et injecté dans le liquide à une pression voisine de 2 bars. Le haut de l'enceinte 30 est pourvu d'un conduit d'aspiration 35 du fluide frigorigène à l'état vapeur à une pression de l'ordre de 1 bar par exemple, par un compresseur non représenté.
Comme précédemment, la pression d'injection et/ou la hauteur de la colonne de liquide accumulateur sont choisis de telle manière que le fluide frigorigène soit injecté sous forme de liquide, éventuellement mélangé à quelques bulles de vapeur, créées dans la vanne 34, et ne se vaporise qu'à une certaine hauteur h1 à l'intérieur de l'enceinte 30. Cette vaporisation provoque le refroidissement du liquide puis la formation de cristaux microscopiques de ce liquide congelé. Ces cristaux sont mélangés au liquide et forment un gel ou une suspension très fluide qui est transvasée et concentrée dans une enceinte de stockage de forme cylindrique, sensiblement identique à l'enceinte 10 de la fig. 1, mais dépourvue de la cheminée centrale 19. Un conduit d'évacuation 36 débouche en 37 au voisinage de la surface libre 38 du liquide pour recueillir la suspension fluide et pour la transporter via une pompe 39 vers l'enceinte de stockage mentionnée précédemment. Un conduit de retour 40 permet d'amener au bas de l'enceinte 30 le liquide débarrassé de cristaux recueilli au bas de l'enceinte de stockage.
Comme le montrent les flèches A, B et C, il s'établit dans l'enceinte 30 par effet siphon un courant ascendant au centre de cette enceinte et descendant au voisinage de sa paroi extérieure 44 . Ce débit est un multiple du débit du liquide prélevé dans l'enceinte 30 par la pompe 39.
Comme précédemment, cet intense courant de liquide en circuit fermé dans l'enceinte 30, prévient la formation de tout bouchon de cristaux agglomérés par décantation spontanée de ces cristaux au voisinage de la surface libre 38 de ce liquide et assure aussi une séparation efficace du fluide frigorigène gazeux vaporisé dans sa masse.
On peut également faire circuler le liquide prélevé dans l'enceinte 30 par la pompe 39 à travers un échangeur de chaleur (non représenté) au lieu d'une enceinte de stockage de froid comme décrit précédemment. Dans ce cas, l'enceinte 30 peut fonctionner, soit comme une enceinte de cristallisation où est produit le gel ou la suspension de cristaux susmentionnée, soit comme une enceinte de réfrigération, sans congélation, du liquide selon la valeur du débit de ce liquide circulant à travers cet échangeur de chaleur. Dans les deux cas, les courants de liquide en circuit fermé engendrés dans l'enceinte 30 par effet siphon, comme décrit précédemmment, garantissent une bonne séparation, au voisinage de la surface libre 38 de la masse de liquide, entre ce liquide et le fluide frigorigène gazeux contenu dans ce liquide.
Dans le cas où l'enceinte de réfrigération 30 fonctionne comme une enceinte de cristallisation, on maintient le débit du liquide accumulateur chargé de ladite suspension de cristaux de ce liquide congelé, de consistance fluide, mis en circulation par la pompe 39, à une valeur suffisante pour que l'écoulement de ce liquide soit turbulent à travers tout le circuit hydraulique comprenant la conduite 36, la pompe 39 et le circuit d'utilisation non représenté comportant au moins un échangeur de chaleur, et aussi la conduite 40 si le liquide de retour contient encore des cristaux de glace, de manière à prévenir toute décantation des cristaux et toute formation d'un bouchon de glace à l'intérieur de ce circuit hydraulique.
Cette enceinte de réfrigération et/ou de cristallisation est particulièrement simple et permet d'utiliser des cuves cylindriques standards pour la fabrication des enceintes. Elle permet en outre la mise en oeuvre d'un concept modulaire, basé sur l'utilisation d'une enceinte unique alimentant séquentiellement ou en continu un groupe d'enceintes de stockage de froid et/ou d'échangeurs de chaleur montés en parallèle ou en série sur un circuit d'utilisation. Les enceintes de stockage peuvent avoir une forme cylindrique de section circulaire, rectangulaire ou carrée, et être juxtaposées ou éloignées les unes des autres. L'enceinte de cristallisation peut être montée à proximité ou à distance des enceintes de stockage de froid selon les besoins ou selon la place disponible. Une commande centralisée, éventuellement programmée, peut être conçue pour piloter toute l'installation de façon automati que. Un tel équipement n'est bien entendu concevable que pour de grandes installations. Un de ses avantages est dû au fait que toute l'installation peut être adaptée à l'évolution des besoins par l'adjonction ou la suppression d'une ou plusieurs enceintes de stockage. En outre, tous les organes vitaux soumis à une certaine usure et nécessitant un certain entretien sont parfaitement accessibles et remplaçables.
La fig. 3 illustre une variante de l'installation de réfrigération et/ou de cristallisation illustrée par la fig. 2. Elle comporte comme précédemment une enceinte de réfrigération 50 entourée d'une gaine isolante 51 et contenant un liquide accumulateur de froid et caloporteur 52 prélevé dans l'espace annulaire compris entre l'élément tubulaire 55 et la paroi de l'enceinte par un conduit d'évacuation 53 et réinjecté à l'intérieur de l'enceinte par l'intermédiaire de la pompe 39 et d'un conduit de retour 54 au bas de l'élément tubulaire 55 surmonté d'un déflecteur 56. Comme précédemment cet élément est destiné à faciliter le déversement du mélange de liquide et de cristaux de ce liquide congelé ou tout simplement de liquide refroidi exempt de cristaux, dans le sens des flèches A et à contribuer au dégazage, c'est-à-dire à la séparation efficace du fluide frigorigène gazeux du liquide. Dans l'exemple de réalisation représenté, le conduit d'évacuation 53 a son embouchure dans l'espace annulaire ménagé entre les parois de l'enceinte et l'élément tubulaire 55. Toutefois, on peut également envisager de prélever le liquide refroidi à l'intérieur de l'élément tubulaire. A cet effet, un conduit 53' représenté en traits interrompus débouche à l'intérieur de cet élément, en dessous de la zone d'injection du fluide frigorigène.
Au moins un injecteur 57 du type de ceux représentés plus en détail par les figures 4 et 5, est disposé à l'intérieur de l'élément tubulaire 55. Cet injecteur est alimenté en fluide frigorigène par un conduit 58 relié à une vanne réglable 59 et en liquide par le conduit 65 au moyen de la pompe 64. Comme précédemment, le fluide frigorigène est recueilli à l'état gazeux au sommet de l'enceinte 50 par un conduit 60. Les bulles formées par la vaporisation de ce fluide provoquent, par effet siphon, un courant de liquide ascendant dans l'élé ment tubulaire 55 et un courant descendant à l'extérieur de cet élément, comme le montrent les flèches A. Une partie du liquide refroidi ou du mélange de ce liquide avec des cristaux de ce liquide congelé est recyclée, comme le montrent les flèches 8. Une autre partie, beaucoup plus faible, est aspirée à travers le conduit d'évacuation 53, par la pompe 39 dont la sortie est raccordée à l'entrée proprement dite d'un circuit d'utilisation.
Ce circuit d'utilisation peut à nouveau être constitué par une enceinte d'accumulation des cristaux et/ou par au moins un échangeur de chaleur. A sa sortie du circuit d'utilisation, le liquide peut être débarrassé partiellement ou totalement des cristaux qu'il contenait à son entrée dans ee circuit et être réchauffé au-dessus de sa température de congélation lorsque le circuit d'utilisation comporte des échangeurs de chaleur.
On s'arrange, en réglant au moyen de la vanne 59 le débit du fluide frigorigène vaporisé qui détermine la puissance de réfrigération de l'installation, pour que la vitesse du liquide circulant en circuit fermé dans l'enceinte soit en tout point suffisante pour empêcher tout formation d'un bouchon de cristaux de glace agglomérés au voisinage de la surface libre 63 du liquide par décantation de ces cristaux. En outre, on s'arrange, en réglant le débit du liquide extrait par la pompe 61 en fonction du débit de frigorigène évaporé, pour que le gel ou la suspension fluide de cristaux en circulation en circuit fermé dans l'enceinte 50 ait une concentration donnée, par exemple comprise entre 0, 1 et 25%.
Comme mentionné précédemment en référence aux fig. 1 et 2, le fluide frigorigène, à l'état liquide peut être moins dense ou plus dense que le liquide accumulateur de froid et caloporteur. Dans ce dernier cas, il serait avantageux de prévoir à la base d'une des enceintes représentées par les fig. 1 à 3, un orifice d'évacuation communiquant avec une pompe d'aspiration pour récupérer tout fluide frigorigène, non évaporé après son injection, et qui pourrait s'accumuler, à la longue, au bas de l'enceinte de cristallisation. Pour éviter le risque de givrage de l'injecteur dans les enceintes représentées par les fig. 1 à 3, notamment lorsque la hauteur totale de l'enceinte (cas de la figure 3) est limitée, et par conséquent insuffisante pour permettre de réaliser par voie hydrostatique des conditions de surpression définie précédemment en référence aux fig. 1 et 2, on obtient cette surpression par voie dynamique. A cet effet, l'injecteur 57 de la fig. 3 est constitué par l'injecteur représenté à la fig. 4. Il se compose d'une chambre 71 alimentée en liquide accumulateur de froid et caloporteur par la pompe 64 , à travers la conduite 65, sous une pression supérieure à la pression de vapeur saturante du fluide frigorigène évaluée à la température de congélation du liquide, cette chambre 71 débouchant dans l'enceinte de cristallisation par au moins un orifice de sortie 73, dans une zone où la pression du liquide peut être égale ou même inférieure à ladite pression de vapeur saturante Ps. Le fluide frigorigène, en provenance de la vanne réglable 59, est injecté sous pression à l'intérieur de la chambre 71 par au moins une buse 70 en direction de l'orifice de sortie 73. Ainsi le Jet de liquide frigorigène est entouré d'un manteau de liquide qui l'isole thermiquement de la masse de l'injecteur, ce qui prévient le givrage de ce dernier en dépit du fait que la vaporisation du fluide frigorigène commence à se produire déjà à l'intérieur de l'orifice 73 à l'intérieur duquel la pression chute rapidement.
Une variante d'un tel injecteur est représentée par la fig. 5. Dans ce cas, l'injecteur individuel de la fig. 4 est remplacé par une rampe d'injecteurs 80, composée par la combinaison d'un tube central 81 pourvu d'une série d'orifices calibrés 82 et entouré d'un tube périphérique 83 pourvu d'une série d'orifices 84 disposés respectivement en regard des orifices 82. Le tube 81 est destiné à véhiculer le fluide frigorigène sous pression et le tube périphérique 83 est destiné à véhiculer du liquide également sous pression. En raison de la disposition et des dimensions des orifices respectifs 82 et 84, le fluide frigorigène est injecté sous la forme d'un jet fin, illustré par les flèches A, dans une gaine de liquide accumulateur de froid et caloporteur illustrée par les flèches B. Dans la pratique, les orifices 84 sont dimensionnés de telle manière que le débit de liquide soit approximativement de deux à vingt fois supérieur au débit du fluide frigorigène. Comme précédemment le fluide frigorigène est entouré d'un manteau de liquide qui l'isole du tube 83 de l'injecteur, prévenant ainsi le givrage de ce dernier, en dépit du fait que la vaporisation du fluide frigorigène débute déjà à l'intérieur du tube 83.
Les deux exemples de réalisation d'injecteurs illustrés par les fig. 4 et 5 permettent de créer, d'une manière dynamique, des conditions équivalentes à celles obtenues d'une manière statique par la pression hydrostatique régnant au niveau de l'injecteur lorsque l'enceinte contenant le liquide a une hauteur suffisante. Ils présentent l'avantage de permettre l'utilisation d'enceintes de cristallisation de faible hauteur du fait que la vaporisation du fluide frigorigène s'effectue au niveau de l'injecteur 57.
Si Pf est la pression du fluide frigorigène dans la buse d'injection 70 ou dans le tube central 81 de la fig. 5, P1 la pression du liquide accumulateur dans la chambre d'injection 71 ou respectivement à l'intérieur du tube 83 et P2 sa pression dans l'enceinte 50, au voisinage des orifices d'injection, on liera ces grandeurs de la manière suivante : Pf > P1 > P2
Par ailleurs, on aura également nécessairement les relations suivantes: P1 > Ps et Ps > Pa pour que le système puisse fonctionner, Ps et Pa ayant les significations données plus haut.
En référence aux fig. 2 à 5, la concentration des cristaux en suspension dans le liquide, produits dans les enceintes de cristallisation est fonction du rapport existant entre le débit du liquide prélevé dans ces enceintes et la puissance de réfrigération de l'installation déterminée par le débit de fluide frigorigène vaporisé.
En accroissant suffisamment ce rapport, il est possible de refroidir le liquide prélevé dans ces enceintes sans le congeler. Dans ce cas, les enceintes de cristallisation fonctionnent comme des installations frigorifiques économiques de refroidissement à haut rendement thermodynamique d'un liquide accumulateur de froid et caloporteur à une température supérieure à sa température de congélation, tout en assurant une bonne séparation entre le fluide frigorigène gazeux et ce liquide.
La présente invention n'est pas limitée aux formes de réalisation décrites mais peut subir différentes modifications et se présenter sous diverses variantes évidentes pour l'homme de l'art.

Claims

Revendications
1. Procédé pour générer du froid et pour l'utiliser soit directement, soit indirectement après stockage momentané et restitution, dans lequel on effectue un refroidissement et/ou une congélation partielle d'un liquide accumulateur de froid et caloporteur remplissant partiellement au moins une enceinte de réfrigération, en procédant à une injection d'un fluide frigorigène au moins partiellement à l'état liquide dans une masse dudit liquide accumulateur de froid et caloporteur, contenue dans ladite enceinte de réfrigération, et à une vaporisation de ce fluide frigorigène directement dans ce liquide, et en recueillant le fluide frigorigène à l'état gazeux à la partie supérieure de cette enceinte, au-dessus d'une surface libre du liquide accumulateur de froid et caloporteur, et dans lequel on prélève du liquide accumulateur de froid et caloporteur dans cette enceinte, et on le véhicule dans un circuit d'utilisation de froid et/ou vers au moins une enceinte de stockage de. froid, puis on le réintroduit dans ladite enceinte de réfrigération, caractérisé en ce que l'on engendre dans ladite enceinte un courant de liquide en circuit hydraulique fermé, ce courant comportant au moins un courant ascendant de liquide accumulateur de froid et caloporteur, localisé sensiblement au-dessus d'une zone d'injection de fluide frigorigène au moins partiellement à l'état liquide, localisée sur une portion de la section horizontale de l'enceinte, et au moins un courant descendant essentiellement constitué de liquide accumulateur de froid et caloporteur dépourvu de fluide frigorigène à l'état gazeux, ce courant en circuit hydraulique fermé étant produit par un effet siphon et provoqué par l'abaissement de la densité moyenne du mélange de liquide et de bulles de fluide frigorigène vaporisé au-dessus de ladite zone d'injection.
2. Procédé selon la revendication 1, caractérisé en ce que l'on règle le débit d'injection dudit fluide frigorigène de telle manière que sa vaporisation engendre un gel ou une suspension fluide et homogène de cristaux de liquide accumulateur de froid et caloporteur congelé dans la masse de ce liquide en mouvement.
3. Procédé selon la revendication 2, caractérisé en ce que l'on engen dre ledit courant ascendant de telle manière que sa vitesse soit un multiple de la vitesse de décantation spontanée desdits cristaux en suspension lorsque le liquide accumulateur de froid et caloporteur est immobilisé.
4. Procédé selon la revendication 2, caractérisé en ce que l'on engendre ledit courant descendant de telle manière que sa vitesse soit inférieure à la vitesse de décantation spontanée desdits cristaux en suspension lorsque le liquide accumulateur de froid et caloporteur est immobilisé, de manière à accumuler lesdits cristaux sous la forme d'une masse poreuse compacte dans la zone du courant descendant, tout en laissant ce liquide accumulateur de froid et caloporteur traverser cette masse en se débarrassant des cristaux qu'il contenait en suspension avant de retourner au bas de la zone du courant ascendant, dans laquelle il se recharge desdits cristaux produits par la vaporisation de fluide frigorigène.
5. Procédé selon la revendication 1, caractérisé en ce que l'on engendre ledit courant descendant, de telle manière que sa vitesse soit un multiple de ladite vitesse de décantation spontanée.
6. Procédé selon la revendication 1, caractérisé en ce que l'on prélève le liquide accumulateur de froid et caloporteur, dans la zone du courant descendant et/ou dans la zone du courant ascendant, en dessous de ladite zone d'injection, pour le faire circuler en circuit fermé à travers un circuit d'utilisation comportant au moins un échangeur de chaleur et en ce qu'on le réinjecte dans l'enceinte.
7. Procédé selon la revendication 2, caractérisé en ce que l'on prélève le liquide accumulateur de froid et caloporteur dans ladite enceinte de réfrigération, dans la zone du courant descendant et/ou dans la zone de courant ascendant, en dessous de ladite zone d'injection, et en ce qu'on le transfère dans une enceinte de stockage de froid séparée contenant également du liquide accumulateur de froid et caloporteur, de manière à accumuler lesdits cristaux sous la forme d'une masse poreuse compacte dans cette enceinte de stockage, tout en laissant ce liquide accumulateur de froid et caloporteur traverser cette masse en se débarrassant des cristaux qu'il contenait en suspension avant de retourner au bas de la zone du courant ascendant, dans laquelle il se recharge desdits cristaux produits par la vaporisation de fluide frigorigène.
8. Procédé selon la revendication 4, caractérisé en ce que l'on engendre ledit courant ascendant dans au moins un élément tubulaire vertical disposé dans l ' enceinte de réfrigération , et associé à au moins un injecteur de fluide frigorigène au moins partiellement à l'état liquide, cet injecteur étant disposé à l'intérieur de cet élément tubulaire, en ce que l'on provoque la vaporisation de ce fluide frigorigène à l'intérieur de cet élément par contact direct avec le liquide accumulateur de froid et caloporteur, pour refroidir ce liquide et engendrer un gel ou une suspension fluide de cristaux de liquide accumulateur de froid et caloporteur congelé, en ce que l'on déverse ce liquide sous ladite forme de gel ou de suspension fluide dans ladite enceinte au haut dudit élément tubulaire vertical, et en ce que l'on recueille le fluide frigorigène à l'état gazeux au haut de cette enceinte.
9. Procédé selon la revendication 7, dans lequel ledit liquide accumulateur de froid et caloporteur contenu dans l'enceinte de réfrigération contient un gel ou une suspension de cristaux de ce liquide congelé, caractérisé en ce que l'on transfère ledit liquide vers l'enceinte de stockage en maintenant un écoulement turbulent dudit liquide pour éviter la formation de bouchons de cristaux de glace agglomérés entre les deux enceintes.
10. Procédé selon la revendication 1, caractérisé en ce que l'on maintient la pression du fluide frigorigène et du liquide accumulateur de froid et caloporteur au voisinage d'une zone d'injection du fluide frigorigène dans la masse de ce liquide à une valeur supérieure à la pression de vapeur saturante du fluide frigorigène, évaluée à la température de congélation du liquide accumulateur de froid et caloporteur, et en ce que l'on maintient la pression du fluide frigorigène gazeux au-dessus de ladite surface libre de ce liquide à une pression d'aspiration inférieure à cette pression de vapeur saturante.
11. Procédé selon la revendication 10, caractérisé en ce que l'on effectue ladite injection dans une zone de l'enceinte de réfrigération où la pression hydrostatique du liquide accumulateur de froid et caloporteur, augmentée de la pression d'aspiration du fluide frigorigène gazeux au-dessus de la surface libre dudit liquide, est supérieure à ladite pression de vapeur saturante, la vaporisation du fluide frigorigène se produisant dans la masse de liquide accumulateur de froid et caloporteur en mouvement ascensionnel à une hauteur supérieure à celle de la zone d'injection.
12. Procédé selon la revendication 11, caractérisé en ce que l'on maintient ladite pression d'aspiration à une valeur inférieure de 0.2 à 0.8 bar à ladite pression de vapeur saturante du fluide frigorigène évaluée à la température de congélation du liquide accumulateur de froid et caloporteur.
13- Procédé selon la revendication 11, caractérisé en ce que l'on injecte le fluide frigorigène au bas d'une colonne verticale de liquide accumulateur de froid et caloporteur dont la hauteur est au moins telle que la pression totale de ce liquide au voisinage de ladite zone d'injection soit supérieure à la pression de vapeur saturante de ce fluide à ladite température de congélation.
14. Procédé selon la revendication 10, caractérisé en ce que l'on effectue l'injection du fluide frigorigène sous forme d'un Jet débouchant à l'intérieur d'un espace, situé à l'intérieur de ladite enceinte de réfrigération, rempli de liquide accumulateur de froid et caloporteur maintenu à une pression P1 supérieure à ladite pression de vapeur saturante Ps, et en ce que l'on forme un Jet de ce liquide débouchant de cet espace dans la masse de liquide accumulateur de froid et caloporteur contenue à l'intérieur de ladite enceinte, à une pression P2 inférieure à P1, le jet dudit liquide entourant le Jet de fluide frigorigène d'un manteau, isolant thermiqueraent ce jet du corps de l'injecteur.
15. Procédé selon la revendication 14, caractérisé en ce que le Jet de liquide accumulateur de froid et caloporteur est coaxial au jet de fluide frigorigène et en ce que le débit du jet de ce liquide est supérieur au débit du Jet de fluide frigorigène.
16. Procédé selon la revendication 5, destiné au transport de froid généré dans ladite enceinte de réfrigération, caractérisé en ce que l'on fait circuler ledit liquide accumulateur de froid et caloporteur en circuit fermé hors de l'enceinte de réfrigération, en prélevant dans cette enceinte du liquide accumulateur de froid et caloporteur chargé dudit gel ou de ladite suspension de cristaux de consistance fluide, en faisant circuler ce liquide à travers au moins un échangeur de chaleur puis en faisant retourner ce liquide dans ladite enceinte, en ce que l'on fait fondre au moins une partie desdits cristaux dans ledit échangeur et en ce que l'on maintient sans interruption dans ledit circuit fermé un débit de liquide accumulateur de froid et caloporteur suffisant pour y maintenir en tout point un écoulement turbulent.
17. Dispositif pour générer du froid et pour l'utiliser soit directement, soit indirectement après stockage momentané et restitution, pour la mise en oeuvre du procédé selon la revendication 1, comportant au moins une enceinte de réfrigération contenant un liquide accumulateur de froid et caloporteur, remplissant partiellement cette enceinte, des moyens pour injecter et vaporiser un fluide frigorigène au moins partiellement à l'état liquide dans une masse de ce liquide accumulateur de froid et caloporteur, des moyens pour recueillir le fluide frigorigène à l'état gazeux à la partie supérieure de cette enceinte, au-dessus d'une surface libre du liquide accumulateur de froid et caloporteur, et des moyens pour prélever du liquide accumulateur de froid et caloporteur dans cette enceinte et pour le véhiculer dans un circuit d'utilisation de froid et/ou vers au moins une enceinte de stockage de froid, puis pour le réintroduire dans ladite enceinte de réfrigération, caractérisé en ce que lesdits moyens pour injecter et vaporiser le fluide frigorigène sont agencés pour injecter et vaporiser ce fluide dans une partie limitée de la section horizontale de ladite enceinte de réfrigération, de manière à engendrer dans ladite enceinte de réfrigération, par effet siphon, un courant de liquide en circuit hydraulique fermé, ce courant comportant au moins un courant ascendant de liquide accumulateur de froid et caloporteur contenu dans l'enceinte de réfrigération, ce courant étant localisé sensiblement au-dessus desdits moyens pour injecter le fluide frigorigène et contenant des bulles de fluide frigorigène vaporisé, et au moins un courant descendant essentiellement dépourvu de fluide frigorigène à l'état gazeux.
18. Dispositif selon la revendication 17, caractérisé en ce que lesdits moyens pour injecter le fluide frigorigène comportent au moins un injecteur (15, 32, 57) surmonté d'une colonne verticale de liquide accumulateur de froid et caloporteur dont la hauteur est au moins telle que la pression hydrostatique engendrée dans la zone d'injection, augmentée de la pression d ' aspiration du fluide frigorigène gazeux au haut de l'enceinte de réfrigération, est supérieure à la pression de vapeur saturante de ce fluide évaluée à la température de congélation dudit liquide accumulateur de froid et caloporteur.
19. Dispositif selon la revendication 18, caractérisé en ce que l'enceinte de réfrigération (10, 50) comporte au moins un élément tubulaire (19, 55) constituant une cheminée verticale à parois cylindriques, et en ce que les moyens d'injection sont disposés à l'intérieur de cette cheminée verticale, cette cheminée étant ouverte à son extrémité inférieure pour permettre l'entrée de liquide accumulateur de froid et caloporteur et à son extrémité supérieure pour permettre le déversement de ce liquide refroidi ou d'un gel ou d'une suspension composée de ce liquide et de cristaux de ce liquide congelé, dans l'espace annulaire compris entre cet élément tubulaire et les parois verticales de l'enceinte de réfrigération.
20. Dispositif selon la revendication 19, caractérisé en ce que la section de l'élément tubulaire (55) est semblable à la section dudit espace annulaire.
21. Dispositif selon la revendication 19 comportant une enceinte unique (10) pour la génération et l'accumulation desdits cristaux, caractérisé en ce que la section de l'élément tubulaire (19) est une fraction de la section dudit espace annulaire.
22. Dispositif selon la revendication 17, caractérisé en ce que l'enceinte de réfrigération (10, 30, 50) et lesdits moyens (70, 71, 72, 73) pour injecter le fluide frigorigène sont agencés pour maintenir la pression du liquide accumulateur de froid et caloporteur et du fluide frigorigène au voisinage de la zone d'injection, à une valeur supérieure à cette pression de vaporisation du fluide frigorigène, évaluée à la température de congélation du liquide accumulateur de froid et caloporteur.
23- Dispositif selon la revendication 22, caractérisé en ce que lesdits moyens pour injecter le fluide frigorigène comportent au moins un injecteur (15, 32) immergé dans la masse de liquide accumulateur de froid et caloporteur contenue dans ladite enceinte, surmontée d'une colonne verticale de ce liquide dont la hauteur est au moins telle que la pression hydrostatique engendrée dans la zone d'injection, augmentée de la pression d'aspiration du frigorigène gazeux, est supérieure à la pression de vapeur saturante de ce fluide, évaluée à la température de congélation du liquide accumulateur de froid et caloporteur.
24. Dispositif selon la revendication 19, caractérisé en ce que l'extrémité supérieure de la cheminée verticale est disposée au-dessus du niveau libre du liquide accumulateur de froid et caloporteur congelable contenu dans l'enceinte de réfrigération et en ce qu'elle est surmontée d'un déflecteur (24, 57) agencé pour canaliser ledit liquide contenant des cri3taux de ce liquide congelé en suspension et/ou pour prévenir l'entraînement de ce liquide par le fluide frigorigène gazeux aspiré au haut de l'enceinte de réfrigération par un compresseur.
25. Dispositif selon la revendication 23, comportant ladite enceinte (30) de réfrigération et une seconde enceinte d'accumulation de ce froid, les deux enceintes étant reliées entre elles par un circuit conçu pour véhiculer un mélange de liquide accumulateur de froid et caloporteur de cristaux congelés de ce liquide, sous forme d'un gel ou d'une suspension de consistance fluide, caractérisé en ce que les moyens (32) pour injecter le fluide frigorigène sont disposés dans la partie inférieure de l'enceinte (30) de réfrigération.
26. Dispositif selon la revendication 22, caractérisé en ce que lesdits moyens d'injection comportent une chambre (71) connectée à une amenée (72) de liquide accumulateur de froid et caloporteur sous pression et munie d'un orifice de sortie (73) débouchant dans l'enceinte de réfrigération, et une buse (70) d'injection du liquide frigorigène dans cette chambre (71) en direction de l'orifice de sortie (73), de manière que le jet de fluide frigorigène ainsi formé soit entouré d'une gaine de liquide accumulateur de froid et caloporteur en mouvement qui l'isole des parois de cette chambre (71).
27. Dispositif selon la revendication 22, caractérisé en ce qu'il comporte une rampe d'injection constituée par un tube central (81) pourvu d'une série d'orifices (82), et d'un tube coaxial (83), muni d'une série d'orifices (84) disposés en regard des orifices (82), ces orifices étant agencés deux à deux pour former une série d'injecteurs (80).
EP87900635A 1986-01-18 1987-01-16 Procede pour generer du froid et pour l'utiliser, et dispositif pour la mise en uvre de ce procede Withdrawn EP0255527A1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CH179/86 1986-01-18
CH181/86 1986-01-18
CH17886 1986-01-18
CH17986 1986-01-18
CH18186 1986-01-18
CH178/86 1986-01-18

Publications (1)

Publication Number Publication Date
EP0255527A1 true EP0255527A1 (fr) 1988-02-10

Family

ID=27171874

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87900635A Withdrawn EP0255527A1 (fr) 1986-01-18 1987-01-16 Procede pour generer du froid et pour l'utiliser, et dispositif pour la mise en uvre de ce procede

Country Status (4)

Country Link
US (1) US4840652A (fr)
EP (1) EP0255527A1 (fr)
JP (1) JPS63502923A (fr)
WO (1) WO1987004510A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2724201B2 (ja) * 1989-04-01 1998-03-09 株式会社前川製作所 直接接触式氷蓄熱方法並に装置
JPH07104083B2 (ja) * 1990-12-28 1995-11-13 鹿島建設株式会社 冷媒噴出式氷利用蓄熱方法及び装置
JPH04305226A (ja) * 1991-01-25 1992-10-28 Senichi Masuda ガス中窒素酸化物の低減方法
US5481882A (en) * 1992-02-28 1996-01-09 Kabushiki Kaisha Toshiba Latent heat accumulation system
US5598712A (en) * 1992-02-28 1997-02-04 Kabushiki Kaisha Toshiba Latent heat accumulation system
JP2512852B2 (ja) * 1992-07-16 1996-07-03 鹿島建設株式会社 製氷用の冷媒
US6672104B2 (en) 2002-03-28 2004-01-06 Exxonmobil Upstream Research Company Reliquefaction of boil-off from liquefied natural gas
CA2425350A1 (fr) * 2003-04-14 2004-10-14 Peter Alex Robinet d'arret de contenant avec mise a l'air libre
CA2441991C (fr) * 2003-09-19 2012-11-13 Ronald R. Chisholm Dispositif de transvasement de fluide
US20050115606A1 (en) * 2003-10-01 2005-06-02 Chisholm Ronald R. System for effecting liquid transfer from an elevated supply container
CH699431B1 (fr) * 2006-04-20 2010-03-15 Heig Vd Haute Ecole D Ingenier Procédé d'accumulation et de restitution de froid et dispositif pour la mise en œuvre de ce procédé.
GB0921315D0 (en) 2009-12-05 2010-01-20 Lemay Patrick An improved opened geothermal energy system
DE102015000238A1 (de) * 2015-01-08 2016-07-14 Optimize Gmbh Latentwärmespeicher und Verfahren zu dessen Betrieb
EP4019106A1 (fr) * 2020-12-23 2022-06-29 Yara International ASA Cristalliseur, procédé de cristallisation et utilisation du cristalliseur pour la mise en uvre du procédé

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2020719A (en) * 1934-06-12 1935-11-12 Girdler Corp Process and apparatus for solidifying material in finely subdivided form
US2699045A (en) * 1950-04-28 1955-01-11 Bradford E Bailey Method of manufacturing ice
NL250214A (fr) * 1959-04-06
US3259181A (en) * 1961-11-08 1966-07-05 Carrier Corp Heat exchange system having interme-diate fluent material receiving and discharging heat
US3247678A (en) * 1963-10-02 1966-04-26 John W Mohlman Air conditioning with ice-brine slurry
GB1148295A (en) * 1966-05-25 1969-04-10 Carves Simon Ltd Improvements in or relating to desalination
DE2541910A1 (de) * 1974-09-30 1976-04-15 Laing Thermische langzeitspeicher
CH628417A5 (de) * 1978-01-06 1982-02-26 Laszlo Simon Anlage zum speichern von kontinuierlich erzeugter kaelte und zum stossweisen abgeben mindestens eines teils der gespeicherten kaelte.
US4452621A (en) * 1982-09-27 1984-06-05 Mobil Oil Corporation Direct cooling crystallization
CH659314A5 (de) * 1982-10-27 1987-01-15 Sulzer Ag Als direkt wirkender verdampfer ausgebildeter energiespeicher.
JPS60126530A (ja) * 1983-12-08 1985-07-06 Hitachi Zosen C B I Kk 冷却方法及び装置
FR2584174A1 (fr) * 1985-06-27 1987-01-02 Coldeco Sa Procede de generation, d'accumulation et de restitution de frigories et dispositif pour la mise en oeuvre de ce procede

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8704510A1 *

Also Published As

Publication number Publication date
JPS63502923A (ja) 1988-10-27
WO1987004510A1 (fr) 1987-07-30
US4840652A (en) 1989-06-20

Similar Documents

Publication Publication Date Title
WO1987004510A1 (fr) Procede pour generer du froid et pour l'utiliser, et dispositif pour la mise en oeuvre de ce procede
EP0255526B1 (fr) Procede d'accumulation et de restitution de froid et dispositif pour la mise en uvre de ce procede
FR2540739A1 (fr) Dispositif et installations pour la distillation par evaporation en couches minces, en particulier pour hydrocarbures, et procede de mise en oeuvre de ce dispositif
FR2593802A1 (fr) Installation de purification de l'eau
EP3594601B1 (fr) Système de stockage thermique (sst) par matériaux à changement de phase (mcp) comprenant un dispositif de contrôle de la cristallisation par injection de gaz
EP0166655B1 (fr) Procédé et installation de refroidissement, au moyen d'un fluide frigorigène d'une poudre
FR2554572A1 (fr) Systeme de chauffage d'un liquide
FR2565337A1 (fr) Refrigerant a point de rosee
CH635669A5 (fr) Machine pour la fabrication de glacons.
CA2210234A1 (fr) Procede et dispositif de fabrication et de separation de particules solides
EP1402221A1 (fr) Dispositif et procede de stockage et de regeneration d'un fluide frigo-porteur sous forme diphasique
FR3098288A1 (fr) Système de stockage et de récupération de chaleur à l’axe horizontal
WO2004092670A1 (fr) Procede et installation de traitement d'un bain de liquide riche en oxygene recueilli en pied d'une colonne de distillation cryogenique
FR3018199B1 (fr) Dispositif de distillation par polarisation et nebulisation dans une bouteille electrostatique
EP2971760A1 (fr) Centrale solaire a concentration a fonctionnement ameliore
CH530601A (fr) Procédé de conservation de produits périssables
FR2584174A1 (fr) Procede de generation, d'accumulation et de restitution de frigories et dispositif pour la mise en oeuvre de ce procede
BE568496A (fr)
EP2622287B1 (fr) Systeme de refrigeration par adsorption
FR2654817A1 (fr) Dispositif de traitement thermique, notamment pour les industries chimiques et alimentaires.
FR3025875A1 (fr) Caloduc et procede de realisation d'un caloduc
EP4347076A1 (fr) Echangeur thermique avec extracteurs de vapeur
BE403149A (fr)
FR2599269A1 (fr) Separateur d'huile pour machine frigorifique.
BE337942A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870917

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19880824

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19890801

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PFAU, JEAN

Inventor name: SIMON, LASZLO