WO2004092670A1 - Procede et installation de traitement d'un bain de liquide riche en oxygene recueilli en pied d'une colonne de distillation cryogenique - Google Patents

Procede et installation de traitement d'un bain de liquide riche en oxygene recueilli en pied d'une colonne de distillation cryogenique Download PDF

Info

Publication number
WO2004092670A1
WO2004092670A1 PCT/FR2004/050132 FR2004050132W WO2004092670A1 WO 2004092670 A1 WO2004092670 A1 WO 2004092670A1 FR 2004050132 W FR2004050132 W FR 2004050132W WO 2004092670 A1 WO2004092670 A1 WO 2004092670A1
Authority
WO
WIPO (PCT)
Prior art keywords
vaporizer
column
oxygen
liquid
distillation column
Prior art date
Application number
PCT/FR2004/050132
Other languages
English (en)
Inventor
Jean-Yves Lehman
Bernard Saulnier
Original Assignee
L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to US10/552,124 priority Critical patent/US7380414B2/en
Priority to EP04724040A priority patent/EP1616139A1/fr
Publication of WO2004092670A1 publication Critical patent/WO2004092670A1/fr
Priority to US12/116,672 priority patent/US20080289361A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04418Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system with thermally overlapping high and low pressure columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • F25J3/0486Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04884Arrangement of reboiler-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • F25J3/04933Partitioning walls or sheets
    • F25J3/04939Vertical, e.g. dividing wall columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/44Particular materials used, e.g. copper, steel or alloys thereof or surface treatments used, e.g. enhanced surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/903Heat exchange structure

Definitions

  • the invention relates to the field of cryogenic separation of air, and more generally to cryogenic processes in which a liquid bath rich in oxygen must be vaporized.
  • the cryogenic distillation of the air is ensured in distillation columns and in the tank of some of these columns an oxygen-rich liquid is collected, in particular in the low pressure column of a column system, such as a double air separation column.
  • This oxygen-rich liquid is continuously vaporized to ensure reboiling of the column, by means of a vaporizer installed in the tank and supplied with a heat transfer fluid such as nitrogen gas collected at the top of the column.
  • This vaporization of oxygen gradually leads to a gradual increase in the concentration of the liquid bath treated by the vaporizer in impurities heavier than oxygen.
  • these compounds mention may be made of light hydrocarbons, CO 2 and nitrogen oxides.
  • This concentration is dangerous in the long term because one can then reach a threshold from which, in certain areas of the vaporizer where the liquid oxygen is completely vaporized, a deposit of hydrocarbons in the pure state can occur on the vaporizer leading to combustion. said hydrocarbons.
  • This combustion can propagate to aluminum which, for reasons of cost and energy efficiency, generally constitutes the basic material of the vaporizer.
  • the accumulation of inert compounds can also be dangerous when these compounds solidify in an amount such that they block the channels of the vaporizer. It is then necessary to stop the installation to restore its proper functioning.
  • a partial solution to this problem could be to replace the aluminum vaporizer with a copper vaporizer, which does not risk igniting on contact with hydrocarbons.
  • this solution would be expensive, in particular because the exchanger should have substantially larger dimensions, with equal performance, than an aluminum exchanger.
  • Another solution consists in purging part of the oxygen-rich liquid. Such a purge occurs naturally if the installation is used to produce liquid oxygen or gaseous oxygen at high pressure by a process called "internal compression", or gaseous oxygen at low pressure. But if the oxygen is withdrawn from the column above the vaporizer (which is the case in installations producing krypton or xenon), or if the liquid oxygen withdrawn is only partially vaporized and if its part not vaporized is returned to the column, the problem arises identically.
  • the purge flow can be as low as 0.01% of the total treated air flow. But in current practice, the purge flow is 0.1 to 0.2% of the total flow of treated air. The lower the purge flow, for an initial purity of air, the more one takes the risk of a dangerous accumulation of hydrocarbons and other impurities in the oxygen-rich liquid. It is generally estimated that with a purge flow rate greater than or equal to 10% of the total treated air flow, there is no longer any danger in using an aluminum vaporizer.
  • the object of the invention is to propose an alternative solution to that which has just been written, in which any risk of explosion of any vaporizer would be eliminated, and which would be easier to manage, while making it possible not to reject definitively outside the installation only a minimum quantity of treated air.
  • the subject of the invention is a process for treating a bath of liquid containing at least 70 mol%. of oxygen collected at the bottom of a column or of a cryogenic distillation column element forming part of a column system used for the separation of air, according to which a vaporization of said liquid bath is carried out continuously by means of at least a first vaporizer in aluminum and a part of said bath of oxygen-rich liquid is purged in order to avoid an excessive accumulation of flammable impurities in said bath, said purged part is sent in at least a second vaporizer, the oxygen vaporized by said second vaporizer is returned in said cryogenic distillation column, and in that one purges part of the bath of oxygen-rich liquid treated by said second vaporizer characterized in that the second vaporizer is by its construction and / or its material less flammable than the first vaporizer .
  • a vaporization of said liquid bath is carried out continuously by means of at least a first vaporizer in aluminum and a part of said bath of oxygen-rich liquid
  • the oxygen-rich liquid treated by said second vaporizer is purged at a flow rate equal to at most 1% of the total air flow supplying the distillation column system.
  • the oxygen-rich liquid treated by said second vaporizer is purged at a flow rate equal to at most 0.2% of the air flow supplying said distillation column.
  • a cryogenic distillation column or column element in the tank of which is disposed at least a first aluminum vaporizer for the treatment of a bath of liquid rich in oxygen, comprising purging means for bringing a part of said bath into at least a second vaporizer, means for returning the oxygen vaporized by said second vaporizer to said column, and means for purging a part of said bath sent into said second vaporizer characterized in that the second vaporizer is by its construction and / or its material less flammable than the first vaporizer.
  • the cryogenic distillation column or column element comprises a partition dividing its tank into a first and a second compartment, in that said at least first vaporizer is arranged in the first compartment, in that said at least second vaporizer is arranged in the second compartment, and in that said partition has a height such that it allows the supply of the second compartment with oxygen-rich liquid from the first compartment by overflow.
  • cryogenic distillation column or column element characterized in that it comprises means for measuring the level of liquid enriched in oxygen present in the compartments defined by the partition.
  • an air distillation apparatus comprising a cryogenic distillation column according to claim 6, 7, 8 or 9, characterized in that the column in the tank of which the first vaporizer is the low pressure column of a double column comprising a medium pressure column and the low pressure column thermally connected to each other by means of the first vaporizer and comprising means for sending a nitrogen-enriched gas from the medium pressure column to the first vaporizer and possibly the second vaporizer.
  • the basic idea of the invention consists in purging the aluminum vaporizer (s) conventionally used by sending the liquid purged in at least one other vaporizer made of a metal such as copper which can be placed either inside or outside the column.
  • the copper vaporizer can safely tolerate large concentrations of impurities in the oxygen-rich liquid it processes, and only a minimal amount of liquid can be purged from this copper vaporizer.
  • the vaporized oxygen is returned to the column, and an excellent material balance is obtained from the operation of cryogenic separation of the initial mixture (generally air), while retaining a very satisfactory operating safety of the installation.
  • copper is just one example of a metal that can be used to make up the other vaporizer; any other metal with comparable thermal conductivity and flammability characteristics could be used.
  • FIG. 2 which shows schematically front view in longitudinal section (Figure 2a) and top view in cross section ( Figure 2b) a portion of cryogenic air distillation column equipped with a second embodiment of a device according to the invention.
  • FIG. 1 represents a portion of an installation 1 for cryogenic air distillation, comprising, as is known, two superimposed columns.
  • the lower part of this installation is composed of a medium pressure column 2, and the upper part of installation 1 is composed of a low pressure column 3. These two columns are separated by a partition 4.
  • a very liquid bath rich in oxygen 5 (at least 70%; contents of 95% or more are commonly obtained) is collected in the lower part of the low pressure column 3.
  • This lower part of the low pressure column 3 also contains an aluminum vaporizer 6 . Its function is to ensure vaporization of the liquid oxygen contained in the liquid 5, so as to reboil the low pressure column 3. Inside this vaporizer, heat exchanges are ensured by means of nitrogen.
  • this liquid oxygen purged through line 9 is introduced into a heat exchanger 10.
  • this exchanger 10 is located outside the cryogenic separation installation. It consists of a tank 11 at the bottom of which is deposited oxygen-rich liquid 12. The lower part of the tank 11 also contains a copper vaporizer 13, the role of which is to ensure the boiling of oxygen enclosed by the bath 12.
  • This copper vaporizer 13 is, like the aluminum vaporizer 6 of the cryogenic separation installation 1, supplied with gaseous nitrogen taken from the middle column pressure, by means of a pipe 14. This gaseous nitrogen condenses in the copper vaporizer 13, and a pipe 15 ensures its evacuation from the vaporizer 13 and its return to the medium pressure column 2.
  • a pipe 16 pricked on the upper part of the exchanger 10 ensures the return of gaseous oxygen in the low pressure column 3, while a pipe 17 ensures a purge of a fraction of the liquid 12, this fraction therefore constituting the only quantity of liquid rich in oxygen discharged of the whole installation.
  • the copper vaporizer 13 can be replaced by a copper vaporizer or another metal such as aluminum but which is by its construction less flammable than the vaporizer 6, for example the second vaporizer can be a tubular vaporizer.
  • the second vaporizer is located inside the cold box which is used to isolate the column system 1.
  • the flow of oxygen-rich liquid 5 sent via line 9 into the exchanger 10 is an operating parameter of the installation which can be controlled at will by the user. If one wishes to ensure that, whatever the initial cleanliness of the air treated by the distillation installation 1, there is absolutely no danger of finding in this liquid 5 an excessive concentration of impurities, the flow rate of liquid 5 sent in line 9 must be greater than or equal to 10% of the total amount of air treated by column 1. Of course, if we treat air having initially a relatively high purity, we can be satisfied with a Significantly lower purge flow.
  • a purge flow of the oxygen-rich liquid 5 towards the exchanger 10 of at least 0.5% is accepted as constituting a good synthesis between economic considerations (which recommend a low flow so as not to give too large a size to the exchanger 10) and safety considerations (which recommend a high purge flow to be sure not to exceed in the oxygen-rich liquid 5 of the low pressure column 3 too high concentrations of impurities).
  • the other important parameter of the installation according to the invention that must be adjusted is the purge flow rate of the oxygen-rich liquid 12 present inside the exchanger 10, and discharged through line 17. It is this purge flow which represents the only part of the materials treated by the installation which will be evacuated and definitively lost if it does not undergo subsequent treatment. It is, of course, advantageous to limit this purge flow to the lowest possible value, compatible with the security requirements of the operation of the installation, and in particular of the exchanger 10. As the vaporizer 13 of this exchanger 10 is made of copper, it is able to withstand very substantially higher concentrations of flammable impurities than an aluminum vaporizer would do.
  • the size of the exchanger 10 and of the copper vaporizer 13 which contains it depends closely on the flow rate of oxygen-rich liquid 5 which they are required to treat. The higher this flow rate, the larger the exchanger 10 and the vaporizer 13. If the space available outside of column 1 is relatively limited, the exchanger 10 can only be given a small footprint: under these conditions the installation can only treat a flow of liquid rich in fairly limited oxygen 5. This type of installation as shown in FIG. 1 is therefore rather to be recommended in cases where the air treated by the cryogenic separation column 1 originally has an already relatively high purity. Otherwise, it may be recommended to use an installation according to the invention as shown in FIG. 2.
  • the tank of the low pressure column 3 is divided into two compartments by a partition 18 of height H.
  • the partition 18 is wedge-shaped, the first compartment 19 represents approximately three quarters of the lower part of the low pressure column 3, and the second compartment 20 represents the remaining quarter.
  • the first compartment 19 is installed at least one (or, as in the example shown, several) vaporizer 21, 22, 23 made of aluminum, and in compartment 20 is installed at least one vaporizer 24 made of copper.
  • the height H of the partition 18 is calculated in such a way that the oxygen-rich liquid 5 present in the first compartment 19, when the low pressure column 3 operates in steady state, overflows over the partition 18 to pass into the second compartment 20.
  • This flow of liquid 5 flowing from the first compartment 19 into the second compartment 20 therefore represents the purge flow rate of the oxygen-rich liquid.
  • the purged liquid forms a bath 5 'which is treated by the copper vaporizer 24. Under the effect of this treatment, the bath 5' is enriched in impurities.
  • the vaporizer 24 being made of copper, this enrichment in impurities is tolerable without deteriorating the conditions of safety of the operation of the installation.
  • a line 25 purges the liquid 5 ′ rich in oxygen and in impurities present in the second compartment 20, in a similar manner to the line 17 of the first embodiment of the invention shown in FIG. 1.
  • the copper vaporizer 24 can be as large as the interior space of the low pressure column 3 allows, in relation to the size of the aluminum vaporizer (s) 21, 22, 23 necessary for the treatment of the oxygen-rich bath 5.
  • L the installation is preferably provided with means making it possible to detect the levels reached by the oxygen-rich liquid 5, 5 'in the compartments 19, 20 defined by the partition 18. In this way, the operation of the installation can be controlled, in particular by regulating the purge flow rate circulating in line 25, so as in particular to avoid any return of liquid oxygen 5 ′ concentrated in impurities from the second compartment 20 into the first compartment 19.
  • a flow of gaseous oxygen (not illustrated) is withdrawn from the lower part of the low pressure column 3 and heats up in the exchange line of the device to form a gaseous product.
  • the device can also produce liquid products.
  • the inside of column 3 a configuration such that the deconcentrated liquid oxygen in impurities descending from column 3 goes favorably in the first compartment 19 containing the or the aluminum vaporizers 21, 22, 23. Likewise, it is recommended to favor the mixing of this liquid oxygen deconcentrated in impurities with the liquid oxygen 5 already present in the first compartment 19.
  • the different vaporizers can be operated not with nitrogen gas taken from the top of the medium pressure column 2, but with air or any other heat transfer fluid, the supply would be independent of the rest of the cryogenic separation column 1.
  • the invention is applicable to any type of cryogenic distillation column in the tank from which an oxygen-rich liquid requiring purging is collected, the double column installation which has been described being only a preferred example. .

Abstract

Procédé de traitement d'un bain de liquide (5) contenant au moins 70% mol. d'oxygène recueilli en pied d'une colonne (1) ou d'un élément (3) de colonne de distillation cryogénique. On réalise en continu une vaporisation dudit bain de liquide (5) au moyen au moins d'un premier vaporiseur (6, 21, 22, 23) en aluminium et on purge une partie dudit bain de liquide riche en oxygène (5) afin d'éviter une accumulation d'impuretés inflammables excessive dans ledit bain (5). On envoie ladite partie purgée dans au moins un second vaporiseur (13, 24) qui est de par sa construction et/ou de par son matériau moins inflammable que le premier vaporiseur, on renvoie l'oxygène vaporisé par ledit second vaporiseur dans ladite colonne de distillation cryogénique (1), et on purge une partie du bain de liquide (5', 12) riche en oxygène traité par ledit second vaporiseur (13, 24). Installation pour la mise en œuvre de ce procédé.

Description

Procédé et installation de traitement d'un bain de liquide riche en oxygène recueilli en pied d'une colonne de distillation cryogénique.
L'invention concerne le domaine de la séparation cryogénique de l'air, et plus généralement les procédés cryogéniques dans lesquels un bain liquide riche en oxygène doit être vaporisé.
La distillation cryogénique de l'air est assurée dans des colonnes de distillation et dans la cuve de certaines de ces colonnes on recueille un liquide riche en oxygène, en particulier dans la colonne basse pression d'un système de colonnes, telle qu'une double colonne de séparation d'air. Ce liquide riche en oxygène est continûment vaporisé afin d'assurer le rebouillage de la colonne, au moyen d'un vaporiseur installé dans la cuve et alimenté par un fluide caloporteur tel que de l'azote gazeux recueilli en tête de la colonne.
Cette vaporisation de l'oxygène entraîne progressivement une augmentation progressive de la concentration du bain liquide traité par le vaporiseur en impuretés plus lourdes que l'oxygène. Parmi ces composés, on peut citer les hydrocarbures légers, le CO2 et les oxydes d'azote. Cette concentration est dangereuse à terme car on peut alors atteindre un seuil à partir duquel, dans certaines zones du vaporiseur où l'oxygène liquide se vaporise entièrement, peut se produire un dépôt d'hydrocarbures à l'état pur sur le vaporiseur entraînant une combustion desdits hydrocarbures. Cette combustion peut se propager à l'aluminium qui, pour des raisons de coût et de rendement énergétique, constitue généralement le matériau de base du vaporiseur. D'autre part, l'accumulation de composés inertes peut aussi être dangereuse lorsque ces composés se solidifient en une quantité telle qu'ils bouchent les canaux du vaporiseur. Il est alors nécessaire d'arrêter l'installation pour restaurer son bon fonctionnement.
Une solution partielle à ce problème pourrait être de remplacer le vaporiseur en aluminium par un vaporiseur en cuivre, qui ne risque pas de s'enflammer au contact des hydrocarbures. Mais cette solution serait coûteuse, en particulier parce que l'échangeur devrait avoir des dimensions sensiblement plus importantes, à performances égales, qu'un échangeur en aluminium.
Une autre solution, classiquement retenue, consiste à purger une partie du liquide riche en oxygène. Une telle purge s'effectue naturellement si on utilise l'installation pour produire de l'oxygène liquide ou de l'oxygène gazeux à haute pression par un procédé dit « de compression interne », ou de l'oxygène gazeux à basse pression. Mais si l'oxygène est soutiré de la colonne au-dessus du vaporiseur (ce qui est le cas dans les installations produisant du krypton ou du xénon), ou si l'oxygène liquide soutiré n'est que partiellement vaporisé et si sa partie non vaporisée est renvoyée dans la colonne, le problème se pose de manière identique. Dans ces conditions, il faut soit purger un grand débit d'oxygène liquide, le faire transiter dans des absorbeurs pour le débarrasser de ses impuretés et le renvoyer vers le vaporiseur, soit ne soutirer qu'un faible débit d'oxygène liquide, mais le rejeter à l'extérieur du système sans le valoriser. Comme cette dernière solution a un coût en termes de matière et d'énergie perdues, on a intérêt à minimiser autant que possible la fraction d'oxygène liquide purgée.
Si l'air traité par l'installation de distillation cryogénique est très propre, le débit de purge peut être aussi bas que 0,01% du débit d'air total traité. Mais dans la pratique courante, le débit de purge est de 0,1 à 0,2% du débit total d'air traité. Plus le débit de purge est faible, à pureté initiale de l'air égale, plus on prend le risque d'une accumulation dangereuse d'hydrocarbures et autres impuretés dans le liquide riche en oxygène. On estime généralement qu'avec un débit de purge supérieur ou égal à 10% du débit total d'air traité, il n'y a plus aucun danger à utiliser un vaporiseur en aluminium.
Une solution proposée par le document WO-A-99/39143 consiste à purger une fraction de liquide riche en oxygène suffisamment importante pour une exploitation sûre du vaporiseur, et à envoyer le liquide purgé dans un second vaporiseur extérieur à l'installation, dans lequel on tolérera que le liquide concentré qui s'y trouve atteigne des teneurs en impuretés élevées, et à gérer le risque correspondant. Un réchauffage à une température relativement élevée dans ce vaporiseur extérieur peut être pratiqué périodiquement afin d'éliminer les impuretés qui y sont présentes.
Le but de l'invention est de proposer une solution alternative à celle qui vient être d'écrite, dans laquelle tout risque d'explosion d'un vaporiseur quelconque serait supprimé, et qui serait plus aisée à gérer, tout en permettant de ne rejeter définitivement hors de l'installation qu'une quantité minimale d'air traité.
A cet effet l'invention a pour objet un procédé de traitement d'un bain de liquide contenant au moins 70% mol. d'oxygène recueilli en pied d'une colonne ou d'un élément de colonne de distillation cryogénique faisant partie d'un système de colonnes utilisé pour la séparation de l'air, selon lequel on réalise en continu une vaporisation dudit bain de liquide au moyen au moins d'un premier vaporiseur en aluminium et on purge une partie dudit bain de liquide riche en oxygène afin d'éviter une accumulation d'impuretés inflammables excessive dans ledit bain, on envoie ladite partie purgée dans au moins un second vaporiseur, on renvoie l'oxygène vaporisé par ledit second vaporiseur dans ladite colonne de distillation cryogénique, et en ce qu'on purge une partie du bain de liquide riche en oxygène traité par ledit second vaporiseur caractérisé en ce que le second vaporiseur est par sa construction et/ou son matériau moins inflammable que le premier vaporiseur. Selon d'autres aspects facultatifs :
- ladite partie purgée envoyée dans ledit second vaporiseur représente au moins 0,5% mol. du débit d'air total alimentant le système de colonnes de distillation .
- ladite partie purgée envoyée dans ledit second vaporiseur représente au moins 10% mol., de préférence au moins 20% mol. du débit d'air total alimentant le système de colonnes de distillation.
- on purge du liquide riche en oxygène traité par ledit second vaporiseur selon un débit égal à au plus 1% du débit d'air total alimentant le système de colonnes de distillation.
- on purge du liquide riche en oxygène traité par ledit second vaporiseur selon un débit égal à au plus 0,2% du débit d'air alimentant ladite colonne de distillation.
Selon un autre objet de l'invention, il est prévu une colonne ou élément de colonne de distillation cryogénique, dans la cuve de laquelle est disposé au moins un premier vaporiseur en aluminium pour le traitement d'un bain de liquide riche en oxygène, comprenant des moyens de purge pour amener une partie dudit bain dans au moins un second vaporiseur, des moyens pour renvoyer l'oxygène vaporisé par ledit second vaporiseur dans ladite colonne, et de moyens pour purger une partie dudit bain envoyé dans ledit second vaporiseur caractérisée en ce que le second vaporiseur est de par sa construction et/ou son matériau moins inflammable que le premier vaporiseur.
Selon d'autres aspects de l'invention :
- ledit au moins second vaporiseur est disposé dans la cuve d'un échangeur de chaleur disposé à l'extérieur de ladite colonne. - la colonne ou élément de colonne de distillation cryogénique comporte une cloison divisant sa cuve en un premier et un second compartiment, en ce que ledit au moins premier vaporiseur est disposé dans le premier compartiment, en ce que ledit au moins second vaporiseur est disposé dans le second compartiment, et en ce que ladite cloison a une hauteur telle qu'elle permet l'alimentation du second compartiment en liquide riche en oxygène en provenance du premier compartiment par débordement.
- la colonne ou élément de colonne de distillation cryogénique selon la revendication 8, caractérisé en ce qu'elle comporte des moyens pour mesurer le niveau de liquide enrichi en oxygène présent dans les compartiments définis par la cloison.
Selon un autre objet de l'invention, il est prévu un appareil de distillation d'air comprenant une colonne de distillation cryogénique selon la revendication 6, 7, 8 ou 9, caractérisé en ce que la colonne dans la cuve de laquelle est disposé le premier vaporiseur est la colonne basse pression d'une double colonne comprenant une colonne moyenne pression et la colonne basse pression reliées thermiquement entre elles au moyen du premier vaporiseur et comprenant des moyens pour envoyer un gaz enrichi en azote de la colonne moyenne pression au premier vaporiseur et éventuellement au second vaporiseur.
Comme on l'aura compris, l'idée de base de l'invention consiste à purger le ou les vaporiseurs en aluminium classiquement utilisés en envoyant le liquide purgé dans au moins un autre vaporiseur en un métal tel que le cuivre qui peut être disposé soit à l'intérieur, soit à l'extérieur de la colonne. Le vaporiseur en cuivre peut tolérer sans danger d'importantes concentrations en impuretés dans le liquide riche en oxygène qu'il traite, et on peut ne purger qu'une quantité minimale de liquide à partir de ce vaporiseur en cuivre. L'oxygène vaporisé est renvoyé dans la colonne, et on obtient un excellent bilan matière de l'opération de séparation cryogénique du mélange initial (généralement de l'air), tout en conservant une sécurité de fonctionnement de l'installation très satisfaisante. Bien entendu, le cuivre n'est qu'un exemple de métal pouvant être utilisé pour constituer l'autre vaporiseur ; tout autre métal présentant des caractéristiques de conductivité thermique et d'ininflammabilité comparables serait utilisable.
L'invention sera mieux comprise à la lecture de la description qui suit, donnée en référence aux figures annexées suivantes : - la figure 1 qui montre schématiquement vue de face en coupe longitudinale une portion de colonne de distillation cryogénique de l'air équipée d'un premier mode de réalisation d'un dispositif selon l'invention ;
- la figure 2 qui montre schématiquement vue de face en coupe longitudinale (figure 2a) et vue de dessus en coupe transversale (figure 2b) une portion de colonne de distillation cryogénique de l'air équipée d'un second mode de réalisation d'un dispositif selon l'invention.
La figure 1 représente une portion d'une installation 1 de distillation cryogénique de l'air, comportant comme il est connu deux colonnes superposées. La partie inférieure de cette installation est composée d'une colonne moyenne pression 2, et la partie supérieure de l'installation 1 est composée d'une colonne basse pression 3. Ces deux colonnes sont séparées par une cloison 4. Un bain de liquide très riche en oxygène 5 (au moins 70% ; des teneurs de 95% ou davantage sont couramment obtenues) est recueilli dans la partie inférieure de la colonne basse pression 3. Cette partie inférieure de la colonne basse pression 3 renferme également un vaporiseur 6 en aluminium. Sa fonction est d'assurer une vaporisation de l'oxygène liquide renfermé dans le liquide 5, de manière à assurer le rebouillage de la colonne basse pression 3. A l'intérieur de ce vaporiseur, des échanges thermiques sont assurés au moyen d'azote prélevé dans la partie supérieure de la colonne moyenne pression 2 à l'aide d'une conduite 7 qui introduit l'azote à l'état gazeux dans le vaporiseur 6. Comme il est connu, les échanges thermiques à l'intérieur du vaporiseur 6 provoquent la condensation de cet azote gazeux, qui revient sous forme liquide dans la colonne basse pression 2, grâce à une conduite 8. Comme il et également connu, une partie du liquide 5 riche en oxygène est purgée hors de la colonne basse pression 3, au moyen d'une conduite 9, de manière à limiter la concentration en impuretés dans le bain riche en oxygène 5.
Selon l'invention, cet oxygène liquide purgé par la conduite 9 est introduit dans un échangeur de chaleur 10. Dans la forme de réalisation représentée sur la figure 1 , cet échangeur 10 est situé hors de l'installation de séparation cryogénique. Il se compose d'une cuve 11 dans le fond de laquelle se dépose du liquide riche en oxygène 12. La partie inférieure de la cuve 11 renferme également un vaporiseur en cuivre 13, dont le rôle est d'assurer une ébullition de l'oxygène renfermé par le bain 12. Ce vaporiseur en cuivre 13 est, de même que le vaporiseur en aluminium 6 de l'installation de séparation cryogénique 1 , alimenté en azote gazeux prélevé dans la colonne moyenne pression, au moyen d'une conduite 14. Cet azote gazeux se condense dans le vaporiseur en cuivre 13, et une conduite 15 assure son évacuation du vaporiseur 13 et son retour dans la colonne moyenne pression 2. Une conduite 16 piquée sur la partie supérieure de l'échangeur 10 assure le retour de l'oxygène gazeux dans la colonne basse pression 3, alors qu'une conduite 17 assure une purge d'une fraction du liquide 12, cette fraction constituant donc la seule quantité de liquide riche en oxygène évacuée de l'ensemble de l'installation.
Le vaporiseur en cuivre 13 peut être remplacé par un vaporiseur en cuivre ou en un autre métal tel que l'aluminium mais qui est de par sa construction moins inflammable que le vaporiseur 6, par exemple le second vaporiseur peut être un vaporiseur tubulaire.
Le second vaporiseur se trouve à l'intérieure de la boîte froide qui sert à isoler le système de colonnes 1.
Le débit de liquide riche en oxygène 5 envoyé par la conduite 9 dans l'échangeur 10 est un paramètre de fonctionnement de l'installation qui peut être commandé à volonté par l'utilisateur. Si on veut s'assurer que, quelle que soit la propreté initiale de l'air traité par l'installation de distillation 1 , il n'y ait strictement aucun danger de retrouver dans ce liquide 5 une concentration en impuretés excessive, le débit de liquide 5 envoyé dans la conduite 9 doit être supérieure ou égale à 10% de la quantité totale d'air traité par la colonne 1. Bien entendu, si on traite un air présentant initialement une pureté relativement élevée, on pourra se contenter d'un débit de purge sensiblement inférieur. Un débit de purge du liquide riche en oxygène 5 vers l'échangeur 10 d'au moins 0,5% est admis comme constituant une bonne synthèse entre les considérations économiques (qui recommandent un débit faible pour ne pas donner une taille trop importante à l'échangeur 10) et des considérations d'ordre sécuritaire (qui recommandent un débit de purge élevé pour être assuré de ne pas dépasser dans le liquide riche en oxygène 5 de la colonne basse pression 3 des concentrations d'impuretés trop élevées).
L'autre paramètre important de l'installation selon l'invention qu'il faut régler est le débit de purge du liquide riche en oxygène 12 présent à l'intérieur de l'échangeur 10, et évacué par la conduite 17. C'est ce débit de purge qui représente la seule partie des matières traitées par l'installation qui sera évacuée et définitivement perdue si elle ne subit pas de traitement ultérieur. On a, bien entendu, intérêt à limiter ce débit de purge à la valeur la plus basse possible, compatible avec les exigences de sécurité du fonctionnement de l'installation, et en particulier de l'échangeur 10. Comme le vaporiseur 13 de cet échangeur 10 est en cuivre, il est apte à supporter des concentrations en impuretés inflammables très sensiblement plus importantes que ne le ferait un vaporiseur en aluminium. Dans ces conditions, on impose un débit de purge passant par la conduite 17 généralement inférieur à 1% du débit total d'air traité par l'installation. Un calcul économique montre qu'au- delà de cette valeur de 1%, il devient souvent moins coûteux en énergie de réaliser une vaporisation irréversible du liquide riche en oxygène 5 purgé hors de l'installation. Cela dit, même avec un air traité par l'installation initialement très chargé en impuretés inflammables, il est possible en toute sécurité de purger une quantité de liquide riche en oxygène par la conduite 17 de l'échangeur 10 inférieure à 0,2% de la quantité totale d'air traité par l'installation.
La taille de l'échangeur 10 et du vaporiseur en cuivre 13 qui le renferme dépendent étroitement du débit de liquide riche en oxygène 5 qu'ils sont amenés à traiter. Plus ce débit est important, et plus l'échangeur 10 et le vaporiseur 13 doivent être de grande taille. Si la place dont on dispose à l'extérieur de la colonne 1 est relativement limitée, on ne pourra conférer à l'échangeur 10 qu'un encombrement faible : dans ces conditions l'installation ne pourra traiter qu'un débit de liquide riche en oxygène 5 assez limité. Ce type d'installation telle que représentée sur la figure 1 est donc plutôt à recommander dans les cas où l'air traité par la colonne de séparation cryogénique 1 présente à l'origine une pureté déjà relativement élevée. Dans le cas contraire, il peut être recommandé d'utiliser une installation selon l'invention telle que représentée sur la figure 2.
Dans cet exemple, la cuve de la colonne basse pression 3 est divisé en deux compartiments par une cloison 18 de hauteur H. Dans l'exemple représenté, la cloison 18 est en forme de coin, le premier compartiment 19 représente environ les trois quarts de la partie inférieure de la colonne basse pression 3, et le second compartiment 20 représente le quart restant. Dans le premier compartiment 19 est installé au moins un (ou, comme dans l'exemple représenté, plusieurs) vaporiseur 21 , 22, 23 en aluminium, et dans le compartiment 20 est installé au moins un vaporiseur 24 en cuivre. La hauteur H de la cloison 18 est calculée de telle manière que le liquide riche en oxygène 5 présent dans le premier compartiment 19, lorsque la colonne basse pression 3 fonctionne en régime permanent, déborde par-dessus la cloison 18 pour passer dans le second compartiment 20. Ce flot de liquide 5 s'écoulant du premier compartiment 19 dans le second compartiment 20 représente donc le débit de purge du liquide riche en oxygène. Arrivé dans le deuxième compartiment 20, le liquide purgé forme un bain 5' qui est traité par le vaporiseur en cuivre 24. Sous l'effet de ce traitement, le bain 5' s'enrichit en impuretés. Le vaporiseur 24 étant en cuivre, cet enrichissement en impuretés est tolérable sans détériorer les conditions de sécurité du fonctionnement de l'installation. Une conduite 25 assure une purge du liquide 5' riche en oxygène et en impuretés présentes dans le second compartiment 20, de manière analogue à la conduite 17 du premier mode de réalisation de l'invention représenté sur la figure 1.
Le vaporiseur en cuivre 24 peut être aussi gros que le permet l'espace intérieur de la colonne basse pression 3, en relation avec la taille du ou des vaporiseurs en aluminium 21, 22, 23 nécessaires au traitement du bain riche en oxygène 5. L'installation est de préférence munie de moyens permettant de détecter les niveaux atteints par le liquide riche en oxygène 5, 5' dans les compartiments 19, 20 définis par la cloison 18. De cette façon, on peut piloter le fonctionnement de l'installation, notamment en réglant le débit de purge circulant dans la conduite 25, de manière notamment à éviter tout retour d'oxygène liquide 5' concentré en impuretés depuis le second compartiment 20 dans le premier compartiment 19.
Un débit d'oxygène gazeux (non-illustré) est soutiré de la partie inférieure de la colonne basse pression 3 et se réchauffe dans la ligne d'échange de l'appareil pour former un produit gazeux. L'appareil peut également produire des produits liquides. Par contre, il n'est pas possible d'utiliser ce genre d'appareil pour produire de l'oxygène gazeux par vaporisation d'un débit liquide pressurisé.
Pour une bonne exploitation de l'installation, on a intérêt à donner à l'intérieur de la colonne 3 une configuration telle que l'oxygène liquide déconcentré en impuretés descendant de la colonne 3 aille de manière privilégiée dans le premier compartiment 19 renfermant le ou les vaporiseurs en aluminium 21 , 22, 23. De même, il est recommandé de favoriser le mélange de cet oxygène liquide déconcentré en impuretés avec l'oxygène liquide 5 déjà présent dans le premier compartiment 19. En variante, pour tous les exemples qui ont été décrits, on peut faire fonctionner les différents vaporiseurs non pas à l'aide d'azote gazeux prélevé en tête de la colonne moyenne pression 2, mais avec de l'air ou tout autre fluide caloporteur dont l'alimentation serait indépendante du restant de la colonne de séparation cryogénique 1.
Bien entendu, l'invention est applicable à tout type de colonne de distillation cryogénique dans la cuve de laquelle on recueille un liquide riche en oxygène nécessitant une purge, l'installation à double colonne qui a été décrite n'étant qu'un exemple privilégié.

Claims

REVENDICATIONS
1. Procédé de traitement d'un bain de liquide (5) contenant au moins 70% mol. d'oxygène recueilli en pied d'une colonne (1) ou d'un élément (3) de colonne de distillation cryogénique faisant partie d'un système de colonnes utilisé pour la séparation de l'air, selon lequel on réalise en continu une vaporisation dudit bain de liquide (5) au moyen au moins d'un premier vaporiseur (6, 21, 22, 23) en aluminium et on purge une partie dudit bain de liquide riche en oxygène (5) afin d'éviter une accumulation d'impuretés inflammables excessive dans ledit bain (5),on envoie ladite partie purgée dans au moins un second vaporiseur (13, 24), on renvoie l'oxygène vaporisé par ledit second vaporiseur dans ladite colonne de distillation cryogénique (1 ), et en ce qu'on purge une partie du bain de liquide (5', 12) riche en oxygène traité par ledit second vaporiseur (13, 24) caractérisé en ce que le second vaporiseur est par sa construction et/ou son matériau moins inflammable que le premier vaporiseur.
2. Procédé selon la revendication 1, caractérisé en ce que ladite partie purgée envoyée dans ledit second vaporiseur (13, 24) représente au moins 0,5% mol. du débit d'air total alimentant le système de colonnes de distillation .
3. Procédé selon la revendication 2, caractérisé en ce que ladite partie purgée envoyée dans ledit second vaporiseur (13, 24) représente au moins 10% mol., de préférence au moins 20% mol. du débit d'air total alimentant le système de colonnes de distillation.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'on purge du liquide (5', 12) riche en oxygène traité par ledit second vaporiseur (13, 24) selon un débit égal à au plus 1% du débit d'air total alimentant le système de colonnes de distillation.
5. Procédé selon la revendication 4, caractérisé en ce qu'on purge du liquide riche (5', 12) en oxygène traité par ledit second vaporiseur (13, 24) selon un débit égal à au plus 0,2% du débit d'air alimentant ladite colonne de distillation (1).
6. Colonne (1) ou élément (3) de colonne de distillation cryogénique, dans la cuve de laquelle est disposé au moins un premier vaporiseur (6, 21 , 22, 23) en aluminium pour le traitement d'un bain de liquide (5) riche en oxygène, comprenant des moyens de purge (9, 18) pour amener une partie dudit bain (5) dans au moins un second vaporiseur (13, 24) des moyens (16) pour renvoyer l'oxygène vaporisé par ledit second vaporiseur (13, 24) dans ladite colonne (1), et de moyens (17, 25) pour purger une partie dudit bain (5', 12) envoyé dans ledit second vaporiseur caractérisée en ce que le second vaporiseur est de par sa construction et/ou son matériau moins inflammable que le premier vaporiseur.
7. Colonne (1) ou élément (3) de colonne de distillation cryogénique selon la revendication 6, caractérisé en ce que ledit au moins second vaporiseur (13) est disposé dans la cuve d'un échangeur de chaleur (10) disposé à l'extérieur de ladite colonne (1).
8. Colonne (1) ou élément (3) de colonne de distillation cryogénique selon la revendication 6, caractérisé en ce qu'elle comporte une cloison (18) divisant sa cuve en un premier (19) et un second (20) compartiment, en ce que ledit au moins premier vaporiseur (21 , 22, 23) est disposé dans le premier compartiment (19), en ce que ledit au moins second vaporiseur (24) est disposé dans le second compartiment (20), et en ce que ladite cloison (18) a une hauteur (H) telle qu'elle permet l'alimentation du second compartiment (20) en liquide riche en oxygène (5) en provenance du premier compartiment (19) par débordement.
9. Colonne (1) ou élément (3) de colonne de distillation cryogénique selon la revendication 8, caractérisé en ce qu'elle comporte des moyens pour mesurer le niveau de liquide enrichi en oxygène (5, 5') présent dans les compartiments (19, 20) définis par la cloison (18).
10. Appareil de distillation d'air comprenant une colonne (3) de distillation cryogénique selon la revendication 6, 7, 8 ou 9, caractérisé en ce que la colonne dans la cuve de laquelle est disposé le premier vaporiseur (6) est la colonne basse pression (3) d'une double colonne (1) comprenant une colonne moyenne pression (2) et la colonne basse pression reliées thermiquement entre elles au moyen du premier vaporiseur et comprenant des moyens pour envoyer un gaz enrichi en azote (14) de la colonne moyenne pression au premier vaporiseur et éventuellement au second vaporiseur (13) pour le(s) chauffer.
PCT/FR2004/050132 2003-04-10 2004-03-29 Procede et installation de traitement d'un bain de liquide riche en oxygene recueilli en pied d'une colonne de distillation cryogenique WO2004092670A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/552,124 US7380414B2 (en) 2003-04-10 2004-03-29 Method and system for treating an oxygen-rich liquid bath collected at the foot of a cryogenic distillation column
EP04724040A EP1616139A1 (fr) 2003-04-10 2004-03-29 Procede et installation de traitement d'un bain de liquide riche en oxygene recueilli en pied d'une colonne de distillation cryogenique
US12/116,672 US20080289361A1 (en) 2003-04-10 2008-05-07 Method and System for Treating an Oxygen-Rich Liquid Bath Collected at the Foot of a Cryogenic Distillation Column

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR03/50097 2003-04-10
FR0350097A FR2853723B1 (fr) 2003-04-10 2003-04-10 Procede et installation de traitement d'un bain de liquide riche en oxygene recueilli en pied d'une colonne de distillation cryogenique

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/116,672 Continuation US20080289361A1 (en) 2003-04-10 2008-05-07 Method and System for Treating an Oxygen-Rich Liquid Bath Collected at the Foot of a Cryogenic Distillation Column

Publications (1)

Publication Number Publication Date
WO2004092670A1 true WO2004092670A1 (fr) 2004-10-28

Family

ID=33042046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/050132 WO2004092670A1 (fr) 2003-04-10 2004-03-29 Procede et installation de traitement d'un bain de liquide riche en oxygene recueilli en pied d'une colonne de distillation cryogenique

Country Status (4)

Country Link
US (2) US7380414B2 (fr)
EP (1) EP1616139A1 (fr)
FR (1) FR2853723B1 (fr)
WO (1) WO2004092670A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2853723B1 (fr) * 2003-04-10 2007-03-30 Air Liquide Procede et installation de traitement d'un bain de liquide riche en oxygene recueilli en pied d'une colonne de distillation cryogenique
FR2916523B1 (fr) * 2007-05-21 2014-12-12 Air Liquide Capacite de stockage, appareil et procede de production de monoxyde de carbone et/ou d'hydrogene par separation cryogenique integrant une telle capacite.
US9453674B2 (en) 2013-12-16 2016-09-27 Praxair Technology, Inc. Main heat exchange system and method for reboiling
US11320198B2 (en) * 2020-06-25 2022-05-03 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude Method for improved startup of an air separation unit having a falling film vaporizer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650482A (en) * 1948-04-29 1953-09-01 Kellogg M W Co Method of separating gas mixtures
US2664719A (en) * 1950-07-05 1954-01-05 Union Carbide & Carbon Corp Process and apparatus for separating gas mixtures
US4337070A (en) * 1979-05-30 1982-06-29 Linde Aktiengesellschaft Continuous system of rectification
EP0447943A1 (fr) * 1990-03-20 1991-09-25 Air Products And Chemicals, Inc. Procédé cryogénique de séparation d'air
US5071458A (en) * 1989-07-28 1991-12-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Vaporization-condensation apparatus for air distillation double column, and air distillation equipment including such apparatus
WO1999039143A1 (fr) * 1998-01-30 1999-08-05 Linde Aktiengesellschaft Procede et dispositif pour vaporiser de l'oxygene liquide
US6347662B1 (en) * 1999-02-01 2002-02-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Heat exchanger, in particular plate heat exchanger for an air separation unit
US6393864B1 (en) * 1999-07-07 2002-05-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Bath reboiler-condenser consisting of brazed plates and its application to an air distillation plant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594085A (en) * 1984-11-15 1986-06-10 Union Carbide Corporation Hybrid nitrogen generator with auxiliary reboiler drive
GB0005374D0 (en) * 2000-03-06 2000-04-26 Air Prod & Chem Apparatus and method of heating pumped liquid oxygen
FR2853723B1 (fr) * 2003-04-10 2007-03-30 Air Liquide Procede et installation de traitement d'un bain de liquide riche en oxygene recueilli en pied d'une colonne de distillation cryogenique

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650482A (en) * 1948-04-29 1953-09-01 Kellogg M W Co Method of separating gas mixtures
US2664719A (en) * 1950-07-05 1954-01-05 Union Carbide & Carbon Corp Process and apparatus for separating gas mixtures
US4337070A (en) * 1979-05-30 1982-06-29 Linde Aktiengesellschaft Continuous system of rectification
US5071458A (en) * 1989-07-28 1991-12-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Vaporization-condensation apparatus for air distillation double column, and air distillation equipment including such apparatus
EP0447943A1 (fr) * 1990-03-20 1991-09-25 Air Products And Chemicals, Inc. Procédé cryogénique de séparation d'air
WO1999039143A1 (fr) * 1998-01-30 1999-08-05 Linde Aktiengesellschaft Procede et dispositif pour vaporiser de l'oxygene liquide
US6347662B1 (en) * 1999-02-01 2002-02-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Heat exchanger, in particular plate heat exchanger for an air separation unit
US6393864B1 (en) * 1999-07-07 2002-05-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Bath reboiler-condenser consisting of brazed plates and its application to an air distillation plant

Also Published As

Publication number Publication date
EP1616139A1 (fr) 2006-01-18
US20080289361A1 (en) 2008-11-27
FR2853723A1 (fr) 2004-10-15
FR2853723B1 (fr) 2007-03-30
US7380414B2 (en) 2008-06-03
US20060075778A1 (en) 2006-04-13

Similar Documents

Publication Publication Date Title
EP0410832B1 (fr) Appareil de vaporisation-condensation pour double colonne de distillation d'air
EP0130122B1 (fr) Dispositif pour vaporiser un liquide par échange de chaleur avec un deuxième fluide et installation de distillation d'air comprenant un tel dispositif
EP0122166A1 (fr) Procédé et appareil pour produire un gaz à haute pureté par vaporisation d'un liquide cryogénique
EP0796134B1 (fr) Procede de traitement du gaz naturel contenant de l'eau et des hydrocarbures condensables
EP2252550B1 (fr) PROCEDE DE RECYCLAGE DE SILANE (SiH4)
FR2773793A1 (fr) Procede et systeme pour separer un glycol de courants de glycol/saumure
EP0178207A1 (fr) Procédé et installation de fractionnement cryogénique de charges gazeuses
FR2540739A1 (fr) Dispositif et installations pour la distillation par evaporation en couches minces, en particulier pour hydrocarbures, et procede de mise en oeuvre de ce dispositif
FR2807504A1 (fr) Colonne pour separation cryogenique de melanges gazeux et procede de separation cryogenique d'un melange contenant de l'hydrogene et du co utilisant cette colonne
EP0870729A1 (fr) Procédé et dispositif pour la réalisation de produits chimiques de haute pureté pour l'industrie micro-électronique
FR2666517A1 (fr) Vaporisateur rapide multi-etages a plaques bosselees.
WO2008139085A2 (fr) Procédé de mise en froid d'une ligne d'échange cryogénique
EP1616139A1 (fr) Procede et installation de traitement d'un bain de liquide riche en oxygene recueilli en pied d'une colonne de distillation cryogenique
EP1357341B1 (fr) Procédé et installation d'échantillonage de liquides cryogéniques, ainsi qu'une unité de séparation d'air pourvue d'une telle installation
EP0255527A1 (fr) Procede pour generer du froid et pour l'utiliser, et dispositif pour la mise en uvre de ce procede
FR2545588A1 (fr) Appareil de refrigeration et piege frigorifique comprenant un tel appareil
EP0914584B1 (fr) Procede et installation de production d'un gaz de l'air a debit variable
WO2018211229A1 (fr) Procede d'analyse des traces de contaminants d'un liquide cryogenique
EP0528709B2 (fr) Procédé de séparation d'un mélange de gaz par absorption
EP0732556A1 (fr) Procédé et appareil de vaporisation d'un débit liquide
FR2901713A1 (fr) Procede de distribution de produits precurseurs, notamment pyrophoriques
FR2755873A1 (fr) Installation de recuperation de composes volatils
WO1995030469A1 (fr) Procede et dispositif pour extraire par adsorption selective un compose hydrocarbone volatil d'un melange gazeux, et applications
EP0049676B1 (fr) Procédé et colonne d'extraction par solvant
FR2754736A1 (fr) Procede de regeneration d'un compose liquide de la famille des glycols, utilise dans la deshydratation d'un gaz

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004724040

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006075778

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10552124

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004724040

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10552124

Country of ref document: US