WO1995030469A1 - Procede et dispositif pour extraire par adsorption selective un compose hydrocarbone volatil d'un melange gazeux, et applications - Google Patents

Procede et dispositif pour extraire par adsorption selective un compose hydrocarbone volatil d'un melange gazeux, et applications Download PDF

Info

Publication number
WO1995030469A1
WO1995030469A1 PCT/FR1995/000590 FR9500590W WO9530469A1 WO 1995030469 A1 WO1995030469 A1 WO 1995030469A1 FR 9500590 W FR9500590 W FR 9500590W WO 9530469 A1 WO9530469 A1 WO 9530469A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
heat
mixture
fraction
during
Prior art date
Application number
PCT/FR1995/000590
Other languages
English (en)
Inventor
Jantinus Mulder
Original Assignee
Jantinus Mulder
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jantinus Mulder filed Critical Jantinus Mulder
Publication of WO1995030469A1 publication Critical patent/WO1995030469A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0027Condensation of vapours; Recovering volatile solvents by condensation by direct contact between vapours or gases and the cooling medium
    • B01D5/003Condensation of vapours; Recovering volatile solvents by condensation by direct contact between vapours or gases and the cooling medium within column(s)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0036Multiple-effect condensation; Fractional condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0054General arrangements, e.g. flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/403Further details for adsorption processes and devices using three beds

Definitions

  • the invention relates to the extraction of a volatile hydrocarbon compound by selective adsorption of a gas mixture, with a view to reducing the concentration of this compound in the gas mixture, and it applies in particular to the purification of a gas or mixture of carrier gases (for example air or nitrogen) containing hydrocarbon vapors (for example alkanes or cyclic hydrocarbons).
  • a gas or mixture of carrier gases for example air or nitrogen
  • hydrocarbon vapors for example alkanes or cyclic hydrocarbons
  • Such a mixture is formed in particular above the liquid charge during the loading, storage and transport of liquid hydrocarbons and it constitutes a possible source of pollution. It is therefore necessary to treat it to eliminate harmful compounds or at least sufficiently reduce their concentration before sending the purified gas to the atmosphere.
  • the defect of activated carbon is its poor conductivity of heat. This plays a significant role during the desorption, based on purging or by vacuum, of a relatively large volume of activated carbon.
  • the process takes place adiabatically.
  • the partial pressure of the adsorbed components decreases when the temperature drops and requires a higher vacuum for desorption
  • the combination of the above effects has the effect of stopping the desorption process completely after a certain time due to a relatively low usable adsorption capacity.
  • the invention relates essentially to a method using a supply of heat during desorption.
  • An object of the invention is to significantly reduce the energy expenditure required by the supply of heat to the adsorbent during the desorption phase, for example saving 2/3 of the usual expenditure and reducing the dimensions of the installation. by the same factor.
  • Another object of the invention is to avoid the side effects of known thermal desorption processes in which steam is injected onto the adsorbent (undesirable polymerizations, cracking, formation of dioxides, water losses, reduction in duration of adsorbents).
  • Another object of the invention is to facilitate the desorption of heavy compounds compared to their desorption by vacuum.
  • the invention also aims to facilitate the adsorption of compounds which are unstable on contact with activated carbon, such as ketones for example.
  • the invention uses the energy of condensation of the hydrocarbon compound and / or the energy produced by a displacement of this compound from the adsorbent to a condenser, to supply the heat necessary for the desorption of the hydrocarbon compound (thermal balance) .
  • the mixture to be treated is sent, by successive charges, on an adsorbent chosen to selectively adsorb said compound, said adsorbent being subjected alternately to an intake phase during which a charge of mixture is admitted on contact.
  • the method of the invention still has one or more of the following characteristics:
  • a fluid is circulated in a heat exchanger placed in contact with the adsorbent to introduce heat into the adsorbent;
  • a purge gas is used to sweep the adsorbent during the regeneration phase and entrain the released gaseous fraction and after condensation of the mixture constituted by the purge gas and the released gaseous fraction, the uncondensed fraction of this mixture is recovered;
  • the uncondensed fraction is sent to an absorber against the current of an absorbent so that it is cooled and at least partially liquefied;
  • the non-condensed fraction is used as the gas mixture to be treated with the adsorbent;
  • the heat transfer fluid is circulated by carrying out during this circulation a heat exchange with said fraction gaseous released and displaced to achieve said condensation.
  • the new load of mixture to be treated is sent to another volume of adsorbent and this other volume of adsorbent is then regenerated during a next intake phase on a volume of adsorbent different from said other volume of adsorbent;
  • Excess heat is introduced into the adsorber from an external source, during regeneration and / or just before said regeneration during a rest period;
  • the invention also relates to a device for implementing this process which comprises at least one adsorber containing an adsorbent capable of preferentially adsorbing the hydrocarbon compound, means for regulating the admission of the mixture into the adsorber, means for evacuating the heat of adsorption, means for extracting the fraction of the non-adsorbed mixture from the adsorber, means for releasing the fraction of the mixture which has been adsorbed, a displacer for displacing the released gaseous fraction towards a condenser, means for separating the condensate of the non-condensed residual gases, and means for collecting the condensed hydrocarbon compound, is characterized in that a heat exchanger heat is disposed in the adsorber in contact with the adsorbent, and in that the device comprises means for transferring to a fluid circulating in the exchanger during desorption at least part of
  • the device of the invention also has one or more of the following characteristics: - the adsorbent is arranged in a column and the exchanger is located in the lower part of the column, means are provided for regulate the sending of a coolant into the heat exchanger, so that the heat of adsorption is removed during the intake phase. - Means are provided for admitting said fluid from the heat exchanger into the condenser in contact with the released and displaced gaseous fraction.
  • means are provided for carrying out heat exchange in the displacer with said heat exchange fluid in order to raise the temperature of this fluid
  • - means are provided for sending a purge gas into the adsorber and means for recovering the non-condensed part in the condenser of the mixture of purge gases and said released gaseous fraction
  • the device comprises an absorber and means for making circulating said non-condensed part against the flow of an absorbent agent in said absorber to cool it and at least partially liquefy it.
  • the device comprises a second condenser and means for sending said non-condensed part into this second condenser to cool it and at least partially liquefy it,
  • the device comprises several adsorbers, means for distributing the mixing charges in the adsorbers and means for regulating the circulation of the fluids which supply the heat exchangers placed in contact with the adsorbents, so that each adsorbent is alternately fed with a load and regenerated,
  • the device comprises several displacers combined with the adsorbers,
  • - fig. 1 is a block diagram of the implementation of the invention
  • - fig. 2 is an energy diagram for implementing the invention
  • - fig. 3 is a diagram of an elementary device using two adsorbers
  • FIG. 4 is a diagram of a variant device of FIG. 3 further comprising an absorber
  • FIG. 5 is a diagram of another variant of the device of FIG. 3 comprising a two-stage capacitor
  • - figs. 6 to 9 are partial diagrams of alternative embodiments comprising three or four adsorbers.
  • the device shown in fig. 1 essentially comprises an adsorber (1), a displacer (2) and a condenser (3). connected by a set of pipes, valves and circulation pumps.
  • the gaseous charge to be treated, represented by the arrow (4) is sent by a low inlet (5) of the adsorber (1) on a solid adsorbent (6).
  • a heat exchanger (7) in which one can circulate, by a system of pipes (8,9.12.13) and pumps (10) either a cold liquid coming from an external source (1 1), or a hot liquid from the condenser (3).
  • a system of pipes (8,9.12.13) and pumps (10) either a cold liquid coming from an external source (1 1), or a hot liquid from the condenser (3).
  • the charge to be treated is admitted into the adsorber while a cold liquid, for example water at 10 ° C, is allowed to circulate in the heat exchanger (7) and the purified gas is evacuated from the adsorber through a high outlet (14) to be sent to the atmosphere or to a facility or to be recycled for further purification.
  • adsorbent is chosen in a manner known per se according to the compounds to be adsorbed and the conditions of use. Activated carbon is generally suitable.
  • the heat exchanger is preferably placed in the lower fraction of the adsorbent column where most of the adsorption takes place.
  • the upper fraction of the adsorbent column rather constitutes a cleaning section.
  • the feed to the load is interrupted and a purging gas is admitted into the adsorber through a high inlet (15) while a hot fluid is allowed to circulate in the heat exchanger ( 7).
  • the hydrocarbon extracted from the adsorbent is evacuated with the purge gas through the outlet (5) and the pipes (16, 17) to the condenser (3) under the action of the displacer (2).
  • the displacer is constituted in a manner known per se by a pump or a set of pumps (for example a liquid ring vacuum pump, a fan or a compressor).
  • the gas mixture is cooled by a liquid which heats up on contact with the mixture while part of the gaseous hydrocarbon liquefies; the liquid hydrocarbon is separated and evacuated by an appropriate outlet (18) while the heated liquid is sent into the exchanger (7) by the system (8-10, 12, 13) to introduce the required heat into the adsorbent for regeneration.
  • the purge gas containing the residual gaseous hydrocarbon is evacuated from the condenser by a pipe (19) to be recycled at the inlet of the adsorber.
  • Heat exchange fluid is any fluid which may be suitable for this purpose, such as water, glycol, petroleum product, etc.
  • This fluid liquid or gaseous, can itself be heated by a succession of heat exchanges or can be a single fluid which circulates, in closed circuit between the condenser, the displacer and the heat exchangers, thanks to pipes, suitable valves and pumps.
  • the object of the invention is always to recover the heat developed in the condenser D3 and the displacer C l to heat. directly or indirectly, the fluid which circulates in the heat exchanger during the desorption.
  • Fig. 2 is a diagram illustrating the energy exchanges involved in the implementation of the invention.
  • arrows 1 to 6 have the following meanings: Arrow 1: Electric energy introduced. Fl'.che 2: Mechanical and thermodynamic energy. Arrow 3: Energy recovered. Arrow 4: Latent heat of the desorbed compounds, Arrow 5: Heat losses.
  • FIGS 3 to 5 are more detailed diagrams of an installation with two adsorbers D l. D2 working alternately. one of the adsorbents being in the adsorption phase while the other adsorbent is in the regeneration phase.
  • the circulation of fluids is regulated by a set of valves VI - 1 to VI -4. V 2- 1 to V 2-4. V 7- 1 to V 7-8.
  • PCV 1 and piping has to I.
  • the purified gases are evacuated through the outlet pipe h and the condensed compound is evacuated through the pipe q.
  • V ⁇ open VI .1 open. V 1.2 and V 2.1 closed.
  • V 7-8 and V 7-6 open, the other V7 closed: the mixture to be treated is introduced into the adsorber D 1.
  • the temperature of the adsorbent tends to increase during adsorption due to the loss of energy kinetics of the molecules of the hydrocarbon component which are adsorbed, but the adsorbent is cooled by the circulation in the exchanger El of the cold liquid coming from the source 1 1 by the circuit t, V 7-8, c. d, V 7-6 and u.
  • the adsorption capacity of the adsorbent depends on the vapor pressure of the components to be removed at the temperature established by the heat exchange surface El.
  • the total amount of heat to be removed is a function of the difference between this adsorption capacity and the charge which remained on the surface of the adsorbent after the previous regeneration.
  • the refrigerant enters the exchanger via line c and leaves it via the upper line d. Above the saturated front of the adsorbent, the degree of saturation drops rapidly, towards the exit of the adsorbent column.
  • the upper layer of low saturation adsorbent constitutes the column cleaning section and must be thick enough to maintain the emission level throughout the adsorption.
  • the adsorbent layer between the saturated front and the minimum required thickness of the cleaning layer is the buffer zone of the adsorbent column.
  • the purified gas leaves the system via line e, the valve V 1.3 open and the outlet pipe h. valve V 3.3 being closed.
  • the duration of the adsorption phase is chosen in a manner known per se according to the concentration of the component to be eliminated, the degree of elimination desired, the quantity of adsorbent and its capacity.
  • the adsorber of the adsorber D2 is regenerated. To this end. a heating fluid is led to the top of the heat exchange surface E2 via line 1.
  • the desorption process begins as soon as the vapor pressure of the adsorbed components is sufficient to balance the pressure prevailing in the adsorber D2, which depends on the desorption rate, the nature of the components desorbed and the volumetric capacity of the displacer Cl.
  • a purge gas is introduced through line i. valve V 2-4 being open. This gas introduced from above is distributed over the adsorbent and migrates down through the adsorbent.
  • valve V 2-2 being open and valve V 2. 1 being closed, and through line m. in the suction inlet of the displacer C l. while the heating fluid leaves the exchanger via line k.
  • the desorption phase is stopped after a predetermined duration, or as a function of the pressure drop in the adsorber or as a function of the product recovery rate.
  • the gas mixture consisting of the desorbed compounds, the residual carrier gas and the purge gas is transferred by the displacer C 1, and the line n. in section S I of gas / liquid separation of condenser D3.
  • the condensing pressure in the condenser D3 is defined by the pressure control valve PCV1 and remains at the setpoint as long as non-condensable components are in the desorbed mixture.
  • the liquids drip into a liquid accumulation section S2 of the collector D4.
  • the outlet of the lower part of the separator S I is located below the level of the liquid in the separator so that a liquid seal prevents gases from entering this way into the gas section of the manifold D4.
  • the gaseous mixture separated in the separator S I rises in the column G l and passes through a column section in bundle XI to finally flow through the line o towards a gas accumulation section of the manifold D4.
  • the downward heat transfer fluid cools the upward gas mixture causing some of the desorbed compounds to condense and the condensate flows with the heat transfer fluid to the bottom G l of the column and finally leaves the column by the drop p to accumulate in another liquid receiving section S 3 of the collector D4.
  • the drop p is immersed in the liquid of the receiver S 3 to form a liquid seal which prevents the gases from flowing directly through the pipe p to the gas section of the manifold D4.
  • the recovered products separate from the heat transfer fluid by density difference.
  • the condensate is lighter than the heat transfer fluid so that it accumulates above and is evacuated by the overflow Wl, collected in the section S4 of the collector D4 and extracted from the system via line 9 to a storage tank.
  • the uncondensed gas mixture is evacuated via line r under the control of the pressure control valve PCV 1 for be recycled.
  • the heat transfer fluid collected in section S2 is removed by the pump PI in the line HS the open valve V7.1 and the line 1 to the top of the exchanger E2 of the absorbent in the regeneration phase.
  • the heat transfer fluid collected in section S3 flows through line s to the displacer C l.
  • the sections S2 and S3 of the collector D4 communicate by a small passage to be at the same level of liquid if the flow rates of the two pumps PI and C l are not exactly the same.
  • the device is completed by an absorption column D5, placed on the gas section of the manifold D4.
  • the absorbents enter the absorber D5 via line v at the top of the absorber, flow through the column absorbing part of the components of the ascending gas mixture and finally into the product receiving section S4 of the collector D4.
  • the uncondensed gas mixture leaves the absorber via line r and is recycled.
  • the device is completed by a second condenser D6 placed on the gas collection section of the manifold D4.
  • the gas mixture coming from this section rises in the condenser D6 against the flow of a cooling fluid which circulates in the tubes E3.
  • Part of the components of the gas mixture condenses and flows into section S4 while the non-condensed gases escape through line r and are recycled.
  • FIGS. 6 to 9 show for the example, diagrams of devices with three ABC adsorbers, or four adsorbers (ABCD) coupled to a displacer C l or two displacers (C i, C 2 ).
  • ABCD adsorbers
  • C i, C 2 displacers
  • the heat exchangers and the condensers have not been shown.
  • the raw gas and recycled gas intakes to be treated as well as the purified gas outlets are designated respectively by the arrows 1.2.3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

L'invention concerne l'extraction d'un composé hydrocarboné volatil d'un mélange gazeux en vue de réduire la concentration de ce composé. On utilise l'énergie de condensation du composé hydrocarboné et/ou l'énergie produite par un déplacement (2) de ce composé depuis un adsorbant (6) jusqu'à un condenseur (3) pour fournir la chaleur nécessaire à la désorption du composé hydrocarboné. La figure est un schéma de principe de mise en ÷uvre de l'invention. L'invention s'applique notamment à la purification d'un gaz contenant des vapeurs d'hydrocarbures.

Description

PROCEDE ET DISPOSITIF POUR EXTRAIRE PAR
ADSORPTION SELECTIVE UN COMPOSE HYDROCARBONE
VOLATIL D'UN MELANGE GAZEUX. ET APPLICATIONS.
L'invention concerne l'extraction d'un composé hydrocarboné volatil par adsorption sélective d'un mélange gazeux, en vue de réduire la concentration de ce composé dans le mélange gazeux, et elle s'applique en particulier à la purification d'un gaz ou mélange de gaz vecteur (par exemple de l'air ou de l'azote) contenant des vapeurs d'hydrocarbures (par exemple des alcanes ou des hydrocarbures cycliques).
Un tel mélange se forme notamment au-dessus de la charge liquide durant le chargement, le stockage et le transport des hydrocarbures liquides et il constitue une source éventuelle de pollution. Il est donc nécessaire de le traiter pour en éliminer les composés nocifs ou au moins réduire suffisamment leur concentration avant d'envoyer à l'atmosphère le gaz purifié.
Il est connu depuis de nombreuses années d'utiliser un charbon actif pour adsorber sélectivement le composé indésirable, ce composé étant ensuite extrait de l'adsorbant par une diminution de la pression ou un apport de chaleur.
Le défaut du charbon actif est sa mauvaise conductivité de la chaleur. Cela joue un rôle significatif lors de la désorption, à base de purge ou par le vide, d'un volume de charbon actif relativement important. La chaleur requise pour la désorption des hydrocarbures
(chaleur "de vaporisation") ne peut être fournie que par les hydrocarbures adsorbés et le charbon actif, ce qui provoque une baisse progressive de la température dans l'adsorbeur en fonction de la masse de produit désorbé.
Le procédé se déroule de façon adiabatique.
La chute de la température présente de nombreux inconvénients :
- la pression partielle des composants adsorbés diminue lorsque la température baisse et nécessite un vide plus poussé pour la désorption ;
- le volume spécifique à évacuer par unité de masse de produit désorbé augmente avec la chute de pression ;
- la vitesse de diffusion des composants à désorber diminue en causant le ralentissement du processus ; - les forces d'adsorption entre les composants hydrocarbonés et le charbon actif augmentent, requérant un vide encore plus poussé.
La combinaison des effets ci-dessus a pour effet d'arrêter le processus de désorption complètement au bout d'un certain temps à cause d'une capacité d'adsorption utilisable relativement faible.
L'invention concerne essentiellement un procédé mettant en oeuvre un apport de chaleur pendant la désorption.
Ce procédé isotherme, thermodynamiquement le plus efficace, réduit ou renverse les effets négatifs rappelés cl- dessus. Un but de l'invention est de réduire sensiblement les dépenses énergétiques requises par l'apport de chaleur a l'adsorbant pendant la phase de désorption, réalisant par exemple une économie des 2/3 des dépenses usuelles et réduisant les dimensions de l'installation d'un même facteur. Un autre but de l'invention est d'éviter les effets secondaires des procédés de désorption thermique connus dans lesquels de la vapeur est injectée sur l'adsorbant (polymérisations indésirables, craquage, formation de dioxydes, pertes d'eau, réduction de la durée de vie des adsorbants). Encore un but de l'invention est de faciliter la désorption des composés lourds par rapport à leur désorption par le vide.
L'invention vise aussi à faciliter l'adsorption des composés qui sont instables au contact avec le charbon actif, tels que les cétones par exemple. L' invention utilise l'énergie de condensation du composé hydrocarboné et / ou l'énergie produite par un déplacement de ce composé depuis l'adsorbant jusqu'à un condenseur, pour fournir la chaleur nécessaire à la désorption du composé hydrocarboné (balance thermique). Plus précisément, selon l'invention, on envoie le mélange à traiter, par charges successives, sur un adsorbant choisi pour adsorber sélectivement ledit composé, ledit adsorbant étant soumis alternativement à une phase d'admission pendant laquelle on admet une charge de mélange au contact de l'adsorbant, on évacue la chaleur d'adsorption et on évacue la fraction du mélange non adsorbée, éventuellement pour la recycler, et une phase de régénération pendant laquelle on interrompt cette admission, on introduit de la chaleur dans l'adsorbant pour en libérer la fraction du mélange gazeux qui a été adsorbée pendant la phase d'admission précédente, on déplace par pompage cette fraction gazeuse libérée, on la soumet à une condensation à une pression plus élevée que pendant la désorption pour liquéfier une partie du composé hydrocarboné présent dans cette fraction, et on sépare ledit composé à l'état liquide, Ce procédé est caractérisé par le fait que l'on utilise tout ou partie de l'énergie produite par le pompage et le déplacement et / ou tout ou partie de l'énergie libérée par la condensation pour produire la chaleur introduite dans l'adsorbant pendant la régénération.
Dans des modes de réalisation particulièrement avantageux, le procédé de l'invention présente encore une ou plusieurs des caractéristiques suivantes :
- on fait circuler un fluide dans un échangeur de chaleur placé au contact de l'adsorbant pour introduire de la chaleur dans l'adsorbant; - on utilise un gaz de purge pour balayer l'adsorbant pendant la phase de régénération et entraîner la fraction gazeuse libérée et après condensation du mélange constitué par le gaz de purge et la fraction gazeuse libérée, on récupère la fraction non condensée de ce mélange;
- on envoie la fraction non condensée dans un absorbeur à contre courant d'un absorbant pour qu'elle soit refroidie et au moins partiellement liquéfiée ;
- on soumet la fraction non condensée à une deuxième condensation;
- on utilise la fraction non condensée comme mélange gazeux à traiter par l'adsorbant ;
- on apporte la chaleur à l'adsorbant par échange de chaleur indirect avec un fluide de transfert de chaleur et on utilise le refroidissement dudit fluide pour provoquer ladite condensation ;
- on fait circuler le fluide de transfert de chaleur en réalisant au cours de cette circulation un échange de chaleur avec ladite fraction gazeuse libérée et déplacée pour réaliser ladite condensation.
- on fait passer ledit fluide de transfert de chaleur, après son réchauffement par l'énergie libérée par ladite condensation, dans le dispositif utilisé pour pomper et déplacer ladite fraction libérée, de façon à élever encore la température dudit fluide de transfert de chaleur, avant de l'utiliser pour introduire de la chaleur dans l'adsorbant ;
- on utilise un liquide de transfert de chaleur dans lequel ledit composé hydrocarboné est peu soluble à l'état liquide, on fait passer ledit liquide au contact direct de ladite fraction gazeuse pour réaliser ladite condensation, on sépare par différence de densités ledit liquide de transfert de chaleur et le condensât et on utilise ensuite ledit liquide de transfert de chaleur pour introduire de la chaleur dans l'adsorbant ; - on évacue la chaleur d'adsorption par échange de chaleur interne ;
- on envoie la nouvelle charge de mélange à traiter sur un autre volume d'adsorbant et on régénère ensuite cet autre volume d'adsorbant pendant une phase d'admission suivante sur un volume d'adsorbant différent dudit autre volume d'adsorbant ; - on introduit un excès de chaleur dans l'adsorbeur à partir d'une source externe, pendant la régénération et / ou juste avant ladite régénération pendant une période de repos ;
- on évacue le surplus de chaleur de l'adsorbeur régénéré pendant l'adsorption ou pendant une période de repos avant l'adsorption. L'invention concerne également un dispositif pour la mise en oeuvre de ce procédé qui comprend au moins un adsorbeur contenant un adsorbant apte à adsorber préférentiellement le composé hydrocarboné, des moyens pour régler l'admission du mélange dans l'adsorbeur, des moyens pour évacuer la chaleur d'adsorption, des moyens pour extraire de l'adsorbeur la fraction du mélange non adsorbée, des moyens pour libérer la fraction du mélange qui a été adsorbée, un déplaceur pour déplacer la fraction gazeuse libérée vers un condenseur, des moyens pour séparer le condensât des gaz résiduels non condensés, et des moyens pour recueillir le composé hydrocarboné condensé, est caractérisé en ce qu' un échangeur de chaleur est disposé dans l'adsorbeur au contact de l'adsorbant, et en ce que le dispositif comporte des moyens pour transférer à un fluide circulant dans l'échangeur pendant la désorption une partie au moins de la chaleur produite par le pompage et le déplacement et / ou une partie au moins de la chaleur engendrée dans le condenseur par les condensations qui s'y produisent.
Dans des modes de réalisation particulièrement avantageux, le dispositif de l'invention présente encore une ou plusieurs des caractéristiques suivantes : - l'adsorbant est disposé en colonne et l'échangeur est situé dans la partie inférieure de la colonne, des moyens sont prévus pour régler l'envoi d'un fluide de refroidissement dans l'échangeur de chaleur, en sorte que la chaleur d'adsorption soit évacuée pendant la phase d'admission. - des moyens sont prévus pour admettre dans le condenseur ledit fluide de l'échangeur de chaleur au contact de la fraction gazeuse libérée et déplacée.
- des moyens sont prévus pour réaliser dans le déplaceur un échange de chaleur avec ledit fluide d'échange de chaleur pour élever la température de ce fluide,
- des moyens sont prévus pour envoyer un gaz de purge dans l'adsorbeur et des moyens pour récupérer la partie non condensée dans le condenseur du mélange de gaz de purge et ladite fraction gazeuse libérée, - le dispositif comprend un absorbeur et des moyens pour faire circuler ladite partie non condensée à contre-courant d'un agent absorbant dans ledit absorbeur pour la refroidir et la liquéfier au moins partiellement.
- le dispositif comprend un second condensateur et des moyens pour envoyer ladite partie non condensée dans ce second condenseur pour la refroidir et la liquéfier au moins partiellement,
- le dispositif comprend plusieurs adsorbeurs, des moyens pour répartir les charges de mélange dans les adsorbeurs et des moyens pour régler la circulation des fluides qui alimentent les échangeurs de chaleur placés au contact des adsorbants, en sorte que chaque adsorbant soit alternativement alimenté avec une charge et régénéré,
- le dispositif comprend plusieurs déplaceurs combinés avec les adsorbeurs,
On décrira ci-après des exemples de réalisation du procédé et du dispositif de l'invention en référence aux figures du dessin joint, la description et les figures faisant encore apparaître d'autres particularités de ces réalisations.
Sur les figures :
- la fig. 1 est un schéma de principe de mise en oeuvre de l'invention; - la fig. 2 est un schéma énergétique de mise en oeuvre de l'invention;
- la fig. 3 est un schéma d'un dispositif élémentaire utilisant deux adsorbeurs ;
- la fig. 4 est un schéma d'une variante de dispositif de la fig. 3 comportant de plus un absorbeur ;
- la fig. 5 est un schéma d'une autre variante du dispositif de la fig. 3 comportant un condensateur à deux étages, et
- les figs. 6 à 9 sont des schémas partiels de variantes de réalisation comportant trois ou quatre adsorbeurs. Le dispositif représenté sur la fig. 1 comprend essentiellement un adsorbeur ( 1 ) , un déplaceur (2) et un condenseur (3). reliés par un ensemble de canalisations, de vannes et de pompes de circulation. La charge gazeuse à traiter, représentée par la flèche (4) est envoyée par une entrée basse (5) de l'adsorbeur ( 1 ) sur un adsorbant solide (6). Dans l'adsorbeur est placé un échangeur de chaleur (7) dans lequel on peut faire circuler, par un système de canalisations (8,9.12.13) et de pompes ( 10) soit un liquide froid provenant d'une source extérieure ( 1 1 ), soit un liquide chaud provenant du condenseur (3). Pendant la phase d'adsorption. la charge à traiter est admise dans l'adsorbeur tandis qu'un liquide froid, par exemple de l'eau à 10°C, est admis à circuler dans l'échangeur de chaleur (7) et le gaz purifié est évacué de l'adsorbeur par une sortie haute ( 14) pour être envoyé dans l'atmosphère ou dans une installation ou être recyclé pour une nouvelle purification. L'adsorbant est choisi de façon en soi connue en fonction des composés à l'adsorber et des conditions d'utilisation. Le charbon actif convient généralement.
L'échangeur de chaleur est disposé préférentiellement dans la fraction inférieure de la colonne d'adsorbant où se produit la majeure partie de l'adsorption. La fraction supérieure de la colonne d'adsorbant constituant plutôt une section de nettoyage.
Pendant la phase suivante de régénération, l'alimentation de la charge est interrompue et un gaz de balayage est admis dans l'adsorbeur par une entrée haute ( 15) tandis qu'un fluide chaud est admis à circuler dans l'échangeur de chaleur (7). L'hydrocarbure extrait de l'adsorbant est évacué avec le gaz de purge par la sortie (5) et les canalisations ( 16, 17) vers le condenseur (3) sous l'action du déplaceur (2). Le déplaceur est constitué de façon en soi connue par une pompe ou un ensemble de pompes (par exemple une pompe à vide à anneau liquide, un ventilateur ou un compresseur).
Dans le condenseur, le mélange gazeux est refroidi par un liquide qui se réchauffe au contact du mélange pendant qu'une partie de l'hydrocarbure gazeux se liquéfie ; l'hydrocarbure liquifié est séparé et évacué par une sortie appropriée ( 18) tandis que le liquide réchauffé est envoyé dans l'échangeur (7) par le système (8- 10, 12, 13) pour introduire dans l'adsorbant la chaleur requise pour la régénération. Le gaz de purge contenant l'hydrocarbure gazeux résiduel est évacué du condenseur par une canalisation ( 19) pour être recyclé à l'entrée de l'adsorbeur.
Le fluide d'échange de chaleur est tout fluide qui peut convenir à cet effet, tel que de l'eau, du glycol, un produit du pétrole, etc.
Ce fluide, liquide ou gazeux, peut lui-même être chauffé par une succession d'échanges de chaleur ou peut être un fluide unique qui circule, en circuit fermé entre le condenseur, le déplaceur et les échangeurs de chaleur, grâce à des canalisations, des vannes et des pompes adéquates.
Le but de l'invention est toujours de récupérer la chaleur développée dans le condenseur D3 et le déplaceur C l pour chauffer. directement ou indirectement, le fluide qui circule dans l'échangeur de chaleur durant la désorption.
La fig. 1 et la description donnée ci-dessus ont été réduites à l'essentiel pour expliquer l'invention sur un exemplaire volontairement très simplifié.
La fig. 2 est un schéma illustrant les échanges d'énergie impliqués dans la mise en oeuvre de l'invention.
Sur la fig. 2, les flèches 1 à 6 ont les significations suivantes : Flèche 1 : Energie électrique introduite. Fl'.che 2 : Energie mécanique et thermodynamique. Flèche 3 : Energie récupérée. Flèche 4 : Chaleur latente des composés désorbés, Flèche 5 : Pertes de chaleur.
On voit sur ce schéma que la chaleur introduite dans l'adsorbeur durant la désorption provient de la condensation (chaleur latente des composés désorbés) et du déplacement (énergie mécanique et thermodynamique).
Les figures 3 à 5 sont des schémas plus détaillés d'une installation à deux adsorbeurs D l . D2 travaillant alternativement. l'un des adsorbants étant en phase d'adsorption tandis que l'autre adsorbant est en phase de régénération. La circulation des fluides est réglée par un ensemble de vannes VI - 1 à VI -4. V 2- 1 à V 2-4. V 7- 1 à V 7-8. PCV 1 et de canalisations a à I .
Les gaz purifiés sont évacués par la canalisation de sortie h et le composé condensé est évacué par la canalisation q.
Plus précisément, le fonctionnement d'un dispositif tel que représenté sur la fig. 3 est le suivant :
VI .1 ouvert. V 1.2 et V 2.1 fermées. V 7-8 et V 7-6 ouverts, les autres V7 fermés : le mélange à traiter est introduit dans l'adsorbeur D 1. La température de l'adsorbant tend à augmenter pendant l'adsorption en raison de la perte d'énergie cinétique des molécules du composant hydrocarboné qui sont adsorbées, mais l'adsorbant est refroidi par la circulation dans l'échangeur El du liquide froid provenant de la source 1 1 par le circuit t, V 7-8, c. d, V 7-6 et u. La capacité d'adsorption de l'adsorbant est fonction de la pression de vapeur des composants à éliminer à la température établie par la surface d'échange de chaleur El . La quantité totale de chaleur à éliminer est fonction de la différence entre cette capacité d'adsorption et la charge qui est restée sur la surface de l'adsorbant après la régénération précédente. Le réfrigérant entre dans l'échangeur par la ligne c et le quitte par la ligne supérieure d. Au dessus du front saturé de l'adsorbant, le degré de saturation chute rapidement, en direction de la sortie de la colonne d'adsorbant. La couche supérieure d'adsorbant à faible degré de saturation constitue la section de nettoyage de la colonne et doit être suffisamment épaisse pour maintenir le niveau d'émission pendant toute l'adsorption. La couche d'adsorbant entre le front saturé et l'épaisseur minimale requise de la couche de nettoyage est la zone tampon de la colonne d'adsorbant. Le gaz purifié quitte le système par la conduite e, la vanne V 1.3 ouverte et la canalisation de sortie h. la vanne V 3.3 étant fermée.
La durée de la phase d'adsorption est choisie de façon en soi connue selon la concentration du composant à éliminer, le degré d'élimination souhaitée, la quantité d'adsorbant et sa capacité. Pendant l'adsorption dans l'adsorbeur D l . l'adsorbant de l'adsorbeur D2 est régénéré. A cette fin. un fluide de chauffage est conduit au sommet de la surface d'échange de chaleur E2 par la conduite 1. Le processus de désorption commence dès que la pression de vapeur des composants adsorbés est suffisante pour équilibrer la pression qui règne dans l'adsorbeur D2, laquelle dépend du taux de désorption, de la nature des composants désorbés et de la capacité volumétrique du déplaceur Cl .
Un gaz de purge est introduit par la conduite i. la vanne V 2-4 étant ouverte. Ce gaz introduit par le haut est distribué sur l'adsorbant et migre vers le bas à travers l'adsorbant.
Le gaz de purge et les composants désorbés quittent l'adsorbeur D2 par la canalisation f. la vanne V 2-2 étant ouverte et la vanne V 2. 1 étant fermée, et par la conduite m. dans l'entrée d'aspiration du déplaceur C l . tandis que le fluide de chauffage quitte l'échangeur par la conduite k. La phase de désorption est arrêtée après une durée prédéterminée, ou en fonction de la chute de pression dans l'adsorbeur ou en fonction du taux de récupération de produit.
Le mélange gazeux constitué par les composés désorbés, le gaz porteur résiduel et le gaz de purge est transféré par le déplaceur C 1 , et la conduite n. à la section S I de séparation gaz/liquide du condenseur D3. La pression de condensation dans le condenseur D3 est définie par la vanne de contrôle de pression PCV1 et reste à la valeur de consigne aussi longtemps que des composants non condensables se trouvent dans le mélange désorbé. Les liquides s'égouttent dans une section d'accumulation de liquide S2 du collecteur D4. La sortie de la partie inférieure du séparateur S I est située sous le niveau du liquide dans le séparateur en sorte qu'un joint liquide empêche les gaz d'entrer par cette voie dans la section de gaz du collecteur D4. Le mélange gazeux séparé dans le séparateur S I s'élève dans la colonne G l et traverse une section de colonne en paquet XI pour s'écouler finalement par la conduite o vers une section d'accumulation de gaz du collecteur D4.
Le fluide de transfert de chaleur descendant refroidit le mélange gazeux ascendant en provoquant la condensation d'une partie des composés désorbés et le condensât s'écoule avec le fluide de transfert de chaleur vers le fond G l de la colonne et quitte finalement la colonne par la chute p pour s'accumuler dans une autre section de réception de liquide S 3 du collecteur D4. La chute p est immergée dans le liquide du récepteur S 3 pour constituer un joint liquide qui empêche les gaz de s'écouler directement par la conduite p vers la section gaz du collecteur D4.
Les produits récupérés se séparent du fluide de transfert de chaleur par différence de densité. Dans le cas représenté, on a supposé que le condensât est plus léger que le fluide de transfert de chaleur en sorte qu'il s'accumule au dessus et est évacué par le trop plein Wl , collecté dans la section S4 du collecteur D4 et extrait du système par la conduite 9 vers un réservoir de stockage.
Le mélange gazeux non condensé est évacué par la conduite r sous la commande de la vanne de contrôle de pression PCV 1 pour être recyclé.
Le fluide de transfert de chaleur collecté dans la section S2 est évacué par la pompe PI dans la conduite HS la vanne ouverte V7.1 et la conduite 1 jusqu'au sommet de l'échangeur E2 de l'absorbant en phase de régénération. Le fluide de transfert de chaleur collecté dans la section S3 s'écoule par la conduite s vers le déplaceur C l . Les sections S2 et S3 du collecteur D4 communiquent par un petit passage pour être au même niveau de liquide si les débits des deux pompes PI et C l ne sont pas exactement les mêmes. Dans la variante de réalisation schématisée sur la fig. 4 collecte, le dispositif est complété par une colonne d'absorption D5, placée sur la section de gaz du collecteur D4. Les absorbants entrent dans l'absorbeur D5 par la conduite v au sommet de l'absorbeur, s'écoulent dans la colonne en absorbant une partie des composants du mélange gazeux ascendant et finalement dans la section S4 de réception de produit du collecteur D4. Le mélange gazeux non condensé quitte l'absorbeur par la conduite r et il est recyclé.
Dans la variante de réalisation schématisée sur la fig. 5. le dispositif est complété par un deuxième condenseur D6 placé sur la section de collecte de gaz du collecteur D4. Le mélange gazeux provenant de cette section s'élève dans le condenseur D6 à contre- courant d'un fluide de refroidissement qui circule dans les tubes E3. Une partie des composants du mélange gazeux se condense et s'écoule jusque dans la section S4 tandis que les gaz non condensés s'échappent par la conduite r et sont recyclés.
Les figs. 3 à 5 sont relatives à des dispositifs comportant deux adsorbeurs mais il va de soi que l'invention n'est pas limitée à de tels cas et les figs. 6 à 9 montrent pour l'exemple, des schémas de dispositifs a trois adsorbeurs A.B.C, ou quatre adsorbeurs (A.B.C.D.) couplés à un déplaceur C l ou deux déplaceurs (C i , C2). Sur ces figures on n'a pas représenté les échangeurs de chaleur ni les condenseurs. Les entraes de gaz brut et de gaz recyclé à traiter ainsi que les sorties de gaz purifié sont désignées respectivement par les flèches 1.2.3.

Claims

R E V E N D I C A T I O N S
.li Procédé de traitement d'un mélange gazeux pour en extraire un composé hydrocarboné, dans lequel on envoie ledit mélange, par charges successives, sur un adsorbant choisi pour adsorber sélectivement ledit composé, ledit adsorbant étant soumis alternativement à une phase d'admission pendant laquelle on admet une charge de mélange au contact de l'adsorbant, on évacue la chaleur d'adsorption et on évacue la fraction du mélange non adsorbée, éventuellement pour la recycler, et une phase de régénération pendant laquelle on interrompt cette admission, on introduit de la chaleur dans l'adsorbant pour en libérer la fraction du mélange gazeux qui a été adsorbée pendant la phase d"admission précédente, on déplace par pompage cette fraction gazeuse libérée, on la soumet à une condensation à une pression plus élevée que pendant la désorption pour liquéfier une partie du composé hydrocarboné présent dans cette fraction, et on sépare ledit composé à l'état liquide, caractérisé en ce qu'on utilise tout ou partie de l'énergie produite par le pompage et le déplacement et/ou tout ou partie de l'énergie libérée par la condensation pour produire la chaleur introduite dans l'adsorbant pendant la régénération.
2 Procédé selon la revendication 1. caractérisé en ce qu'on fait circuler un fluide dans un échangeur de chaleur placé au contact de l'adsorbant pour introduire de la chaleur dans l'adsorbant. 3_i Procédé selon l'une des revendications 1 et 2, caractérisé en ce qu'on utilise un gaz de purge pour balayer l'adsorbant pendant la phase de régénération et entraîner la fraction gazeuse libérée et en ce qu'après condensation du mélange constitué par le gaz de purge et la fraction gazeuse libérée, on récupère la fraction non condensée de ce mélange. 4^ Procédé selon la revendication 3, caractérisé en ce qu'on envoie la fraction non condensée dans un absorbeur à contre courant d'un absorbant pour qu'elle soit refroidie et au moins partiellement liquéfiée. 5 Procédé selon la revendication 3, caractérisé en ce qu'on soumet la fraction non condensée à une deuxième condensation. (Bi Procédé selon la revendication 3, caractérisé en ce qu'on utilise la fraction non condensée comme mélange gazeux à traiter par l'adsorbant.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'on apporte de la chaleur à l'adsorbant par échange de chaleur indirect avec un fluide de transfert de chaleur et en ce qu'on utilise le refroidissement dudit fluide pour provoquer ladite condensation. 8± Procédé selon la revendication 7, caractérisé en ce qu'on fait circuler le fluide de transfert de chaleur en réalisant au cours de cette circulation un échange de chaleur avec ladite fraction gazeuse libérée et déplacée pour réaliser ladite condensation. 9± Procédé selon la revendication 7 ou 8. caractérisé en ce qu'on fait passer ledit fluide de transfert de chaleur, après son réchauffement par l'énergie libérée par ladite condensation, dans le dispositif utilisé pour pomper et déplacer ladite fraction libérée, de façon à élever encore la température du dit fluide de transfert de chaleur, avant de l'utiliser pour introduire de la chaleur dans l'adsorbant.
10. Procédé selon l'une des revendication 7 à 9. caractérisé en ce qu'on utilise un liquide de transfert de chaleur dans lequel ledit composé hydrocarboné est peu soluble à l'état liquide, on fait passer ledit liquide au contact direct de ladite fraction gazeuse pour réaliser ladite condensation, on sépare par différence de densités ledit liquide de transfert de chaleur et le condensât et on utilise ensuite ledit liquide de transfert de chaleur pour introduire de la chaleur dans l'adsorbant.
11. Procédé selon l'une des revendications 1 à 10. caractérisé en ce qu'on évacue la chaleur d'adsorption par échange de chaleur interne.
12. Procédé selon l'une des revendications 1 à 1 1. caractérisé en ce que pendant ladite phase de régénération d'un volume d'adsorbant. on envoie la nouvelle charge de mélange à traiter sur un autre volume d'absorbant et en ce que l'on régénère ensuite cet autre volume d'adsorbant pendant une phase d'admission suivante sur un volume d'adsorbant différent dudit autre volume d'adsorbant. 13. Procédé selon l'une des revendications 1 à 12, caractérisé en ce qu'on introduit un excès de chaleur dans l'adsorbeur à partir d'une source externe, pendant la régénération et/ ou juste avant ladite régénération pendant une période de repos. 14. Procédé selon la revendication 13. caractérisé en ce qu'on évacue le surplus de chaleur de l'adsorbeur régénéré pendant l'adsorption ou pendant une période de repos avant l'adsorption.
15. Dispositif pour traiter un mélange gazeux afin d'en extraire un composé hydrocarboné par la mise en oeuvre d'un procédé selon une ou plusieurs des revendications 1 à 14. qui comprend au moins un adsorbeur contenant un adsorbant apte à adsorber préférentiellement le composé hydrocarboné, des moyens pour régler l'admission du mélange dans l'adsorbeur, des moyens pour évacuer la chaleur d'adsorption, des moyens pour extraire de l'adsorbeur la fraction du mélange non adsorbée, des moyens pour libérer la fraction du mélange qui a été adsorbée, un déplaceur pour déplacer par pompage la fraction gazeuse libérée vers un condenseur, des moyens pour séparer le condensât des gaz résiduels non condensés, des moyens pour recueillir le composé hydrocarboné condensé, caractérisé en ce que le dispositif comprend un échangeur de chaleur disposé au contact de l'adsorbant et dans lequel circule un fluide, et en ce que le dispositif comporte des moyens pour transférer à ce fluide une partie au moins de la chaleur produite par le pompage et le déplacement et/ou une partie au moins de la chaleur engendrée dans le condenseur par les condensations qui s'y produisent.
16. Dispositif selon la revendication 15, caractérisé en ce que l'adsorbant est disposé en colonne et en ce que l'échangeur est situé dans la partie inférieure de la colonne.
17. Dispositif selon la revendication 15 ou 16. caractérisé en ce qu'il comporte des moyens pour régler l'envoi d'un fluide de refroidissement dans l'échangeur de chaleur, en sorte que la chaleur d'adsorption soit évacuée pendant la phase d'admission.
18. Dispositif selon l'une des revendications 15 à 17, caractérisé en ce que le dispositif comprend des moyens pour admettre dans le condenseur ledit fluide de l'échangeur de chaleur au contact de la fraction gazeuse libérée et déplacée.
19. Dispositif selon l'une des revendication 15 à 18. caractérisé en ce qu'il comprend des moyens pour réaliser dans le déplaceur un échange de chaleur avec ledit fluide d'échange de chaleur pour élever la température de ce fluide.
20. Dispositif selon l'une des revendications 15 à 19, caractérisé en ce qu'il comprend des moyens pour envoyer un gaz de purge dans l'adsorbeur et des moyens pour récupérer la partie non condensée dans le condenseur du mélange de gaz de purge et de ladite fraction gazeuse libérée.
21. Dispositif selon la revendication 20. caractérisé en ce qu'il comprend un absorbeur et des moyens pour faire circuler ladite partie non condensée à contre-courant d'un agent absorbant dans ledit absorbeur pour la refroidir et la liquéfier au moins partiellement.
22. Dispositif selon la revendication 20, caractérisé en ce qu'il comprend un second condenseur et des moyens pour envoyer ladite partie non condensée dans ce second condenseur pour la refroidir et la liquéfier au moins partiellement. 23. Dispositif selon la revendication 20. caractérisé en ce qu'il comprend des moyens pour recycler ladite partie non condensée comme mélange à traiter par l'adsorbant.
24. Dispositif selon l'une des revendications 15 à 23, caractérisé en ce qu'il comprend plusieurs adsorbeurs. des moyens pour répartir les charges de mélange dans les adsorbeurs et des moyens pour régler la circulation des fluides qui alimentent les échangeurs de chaleur placés au contact des adsorbants, en sorte que chaque adsorbant soit alternativement alimenté avec une charge et régénéré.
25. Dispositif selon la revendication 24, caractérisé en ce qu'il comprend plusieurs déplaceurs combinés avec les adsorbeurs.
26. Application d'un procédé selon l'une des revendications 1 à 14 et/ou d'un dispositif selon l'une des revendications 15 à 25 à la purification d'un gaz ou mélange de gaz vecteur contenant des vapeurs d' hydrocarbures. 27. Application selon la revendication 26 à la purification du mélange de gaz et de vapeurs d'hydrocarbures qui se forme au dessus de la charge liquide durant le chargement, le stockage ou le transport d'hydrocarbures liquides.
PCT/FR1995/000590 1994-05-06 1995-05-05 Procede et dispositif pour extraire par adsorption selective un compose hydrocarbone volatil d'un melange gazeux, et applications WO1995030469A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9405600A FR2719500B1 (fr) 1994-05-06 1994-05-06 Procédé et dispositif pour extraire par adsorption sélective un composé hydrocarboné volatil d'un mélange gazeux, et applications.
FR94/05600 1994-05-06

Publications (1)

Publication Number Publication Date
WO1995030469A1 true WO1995030469A1 (fr) 1995-11-16

Family

ID=9462966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/000590 WO1995030469A1 (fr) 1994-05-06 1995-05-05 Procede et dispositif pour extraire par adsorption selective un compose hydrocarbone volatil d'un melange gazeux, et applications

Country Status (2)

Country Link
FR (1) FR2719500B1 (fr)
WO (1) WO1995030469A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795479B1 (en) 2009-12-15 2010-09-14 Uop Llc Temperature controlled adsorption multi-step regeneration cycle
US8067646B2 (en) 2008-12-17 2011-11-29 Uop Llc Combined temperature controlled adsorption and heat pump process for fuel ethanol dehydration
US8227648B2 (en) 2008-12-17 2012-07-24 Uop Llc Combined temperature controlled water adsorption and two stage heat pump process for fuel ethanol dehydration
US8226746B2 (en) 2008-12-17 2012-07-24 Uop Llc Indirectly heated temperature controlled adsorber for sorbate recovery
WO2014123444A1 (fr) * 2013-02-07 2014-08-14 Siemens Aktiengesellschaft Procédé pour extraire de manière consécutive des vapeurs d'au moins deux différents produits à base d'hydrocarbures de leur mélange respectif avec de l'air et unité de récupération de produit à base d'hydrocarbures
US8936727B2 (en) 2009-03-06 2015-01-20 Uop Llc Multiple bed temperature controlled adsorption
CN104307305A (zh) * 2014-11-14 2015-01-28 清本环保工程(杭州)有限公司 一种气体处理装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944217B1 (fr) * 2009-04-08 2011-04-01 Inst Francais Du Petrole Procede de captage du dioxyde de carbone avec integration thermique de la regeneration avec la chaine de compression

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4165972A (en) * 1977-10-03 1979-08-28 The United States Of America As Represented By The Secretary Of The Navy Gas separating system
EP0018478A1 (fr) * 1979-04-20 1980-11-12 Siemens Aktiengesellschaft Installation pour la récupération de solvants et procédé pour son fonctionnement
US4276058A (en) * 1980-08-26 1981-06-30 John Zink Company Process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures
EP0350677A1 (fr) * 1988-06-25 1990-01-17 Johann Baptist Rombach GmbH & Co KG Dispositif pour la séparation continue et la récupération d'un solvant d'un gaz d'échappement, qui contient ce solvant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4165972A (en) * 1977-10-03 1979-08-28 The United States Of America As Represented By The Secretary Of The Navy Gas separating system
EP0018478A1 (fr) * 1979-04-20 1980-11-12 Siemens Aktiengesellschaft Installation pour la récupération de solvants et procédé pour son fonctionnement
US4276058A (en) * 1980-08-26 1981-06-30 John Zink Company Process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures
EP0350677A1 (fr) * 1988-06-25 1990-01-17 Johann Baptist Rombach GmbH & Co KG Dispositif pour la séparation continue et la récupération d'un solvant d'un gaz d'échappement, qui contient ce solvant

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8067646B2 (en) 2008-12-17 2011-11-29 Uop Llc Combined temperature controlled adsorption and heat pump process for fuel ethanol dehydration
US8227648B2 (en) 2008-12-17 2012-07-24 Uop Llc Combined temperature controlled water adsorption and two stage heat pump process for fuel ethanol dehydration
US8226746B2 (en) 2008-12-17 2012-07-24 Uop Llc Indirectly heated temperature controlled adsorber for sorbate recovery
US8936727B2 (en) 2009-03-06 2015-01-20 Uop Llc Multiple bed temperature controlled adsorption
US7795479B1 (en) 2009-12-15 2010-09-14 Uop Llc Temperature controlled adsorption multi-step regeneration cycle
WO2014123444A1 (fr) * 2013-02-07 2014-08-14 Siemens Aktiengesellschaft Procédé pour extraire de manière consécutive des vapeurs d'au moins deux différents produits à base d'hydrocarbures de leur mélange respectif avec de l'air et unité de récupération de produit à base d'hydrocarbures
RU2652709C2 (ru) * 2013-02-07 2018-04-28 ООО "Сименс" Способ извлечения паров по меньшей мере двух различных углеводородных продуктов из их смеси с воздухом и устройство извлечения углеводородных продуктов
CN104307305A (zh) * 2014-11-14 2015-01-28 清本环保工程(杭州)有限公司 一种气体处理装置

Also Published As

Publication number Publication date
FR2719500A1 (fr) 1995-11-10
FR2719500B1 (fr) 1996-07-26

Similar Documents

Publication Publication Date Title
EP0848982B1 (fr) Procédé et dispositif de traitement d'un gaz par refrigeration et mise en contact avec un solvant
EP0219521B1 (fr) Procede et installation d'epuration par adsorption sur charbon actif, et pot adsorbeur correspondant
US4331456A (en) Process for recovering hydrocarbons with air-hydrocarbon vapor mixtures
US4261716A (en) Apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures
EP0691155B1 (fr) Procédé de désacidification d'un gaz pour production de gaz acides concentrés
EP0770667A1 (fr) Procédé de séchage de gaz au glycol incluant la purification des rejets gazeux
FR2465698A1 (fr) Procede de recuperation d'hydrocarbures d'un melange d'hydrocarbures et de gaz porteur et, en particulier, de recuperation du methane dans les mines de charbon, avec eventuellement decontamination de l'air ambiant
FR2464744A1 (fr) Procede et installation pour la regeneration thermique de produits adsorbants charges
FR2479021A1 (fr) Procede pour regenerer une solution absorbante chargee d'un ou plusieurs composes gazeux susceptibles d'etre liberes par chauffage et/ou entraines par stripage, et installation pour sa mise en oeuvre
CA2039515A1 (fr) Procede et installation de traitement thermique d'objets avec trempe en milieu gazeux
FR2760653A1 (fr) Procede de desacidification avec production de gaz acides en phase liquide
FR2969008A1 (fr) Procede pour une epuration finale de biogaz
WO1995030469A1 (fr) Procede et dispositif pour extraire par adsorption selective un compose hydrocarbone volatil d'un melange gazeux, et applications
US6486375B1 (en) Process for recovering hydrocarbons from inert gas-hydrocarbon vapor mixtures
EP1530697B1 (fr) Procédé et dispositif de séparation ou de purification d'un fluide
EP1275429B1 (fr) Procede et dispositif pour capter les vapeurs contenues dans un effluent gazeux.
EP0091355B1 (fr) Procédé et dispositif pour réaliser notamment des économies d'énergie dans la régénération des charbons actifs contenant des solvants adsorbés
FR2719039A1 (fr) Nouveau procédé de déshydratation d'alcool par adsorption/regénération sur tamis moléculaire, et installation pour sa mise en Óoeuvre.
FR2577148A1 (fr) Procede et dispositif pour la desorption de charbon actif
CN217459352U (zh) 一种天然气脱蜡脱水装置
FR2743069A1 (fr) Procede de regeneration d'un compose liquide de la famille des glycols, utilise dans la deshydratation d'un gaz
FR2754736A1 (fr) Procede de regeneration d'un compose liquide de la famille des glycols, utilise dans la deshydratation d'un gaz
FR2819426A1 (fr) Procede de sechage d'un gaz et installation pour la mise en oeuvre dudit procede
WO2023110329A1 (fr) Installation de refroidissement d'un flux gazeux contenant du co2 et procédé mettant en oeuvre une telle installation
BE467731A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CZ PL SK US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase