EP0250857B1 - Mikrowellenfilter - Google Patents

Mikrowellenfilter Download PDF

Info

Publication number
EP0250857B1
EP0250857B1 EP87107533A EP87107533A EP0250857B1 EP 0250857 B1 EP0250857 B1 EP 0250857B1 EP 87107533 A EP87107533 A EP 87107533A EP 87107533 A EP87107533 A EP 87107533A EP 0250857 B1 EP0250857 B1 EP 0250857B1
Authority
EP
European Patent Office
Prior art keywords
mode
cavity
coupling
cavity resonator
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87107533A
Other languages
English (en)
French (fr)
Other versions
EP0250857A3 (en
EP0250857A2 (de
Inventor
Uwe Dipl.-Ing. Rosenberg
Dieter Dipl.-Ing. Wolk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Telecom GmbH
Original Assignee
ANT Nachrichtentechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANT Nachrichtentechnik GmbH filed Critical ANT Nachrichtentechnik GmbH
Publication of EP0250857A2 publication Critical patent/EP0250857A2/de
Publication of EP0250857A3 publication Critical patent/EP0250857A3/de
Application granted granted Critical
Publication of EP0250857B1 publication Critical patent/EP0250857B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2082Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with multimode resonators

Definitions

  • the present invention relates to a microwave filter, consisting of at least two cavity resonators, in each of which at least one TE or TM wave mode exists, with a coupling between the wave modes of both cavity resonators taking place via a coupling aperture present between two adjacent cavity resonators.
  • Such a microwave filter is known, for example, from DE-PS 21 22 337 or the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MIT-32, No. 11, Nov. 1984, pp. 1449-1454.
  • the resonance circuits of the microwave filters on which this is based are realized by TE and / or TM wave modes which resonate in the individual cavity resonators.
  • the characteristic of such a microwave filter depends on which orthogonally polarized wave modes exist in the individual cavity resonators and which of these wave modes are coupled to one another. Couplings between the wave modes existing in each individual cavity resonator and couplings between wave modes in different cavity resonators come into question. Cross-cavity resonance wave mode couplings take place via coupling apertures with coupling openings therein.
  • the invention is based on the object of specifying a microwave filter of the type mentioned at the outset which, compared to the prior art, offers further possibilities for realizing filter characteristics.
  • the microwave filter shown in FIG. 1 consists of two cylindrical cavity resonators HR1 and HR2, of which the first cavity resonator HR1 has an input E for coupling in a microwave signal and the second cavity resonator HR2 has an output A for coupling out a signal.
  • the various known possibilities of coupling and decoupling microwave signals will not be discussed in more detail here.
  • the direction of the E field lines of the TE11n wave mode shown in FIG. 2b corresponds to its direction of polarization.
  • Fig. 2a shows the TMO1p wave mode. Its E field lines run in the direction of wave propagation, the direction of polarization (see arrow R5) of this TMO1p wave mode.
  • each individual cavity resonator can be formed by discontinuity coupling elements, e.g. Tuning screws, which are embedded in the cavity wall in a known manner, are coupled.
  • Couplings of the wave modes of one cavity resonator HR1 with wave modes of the other cavity resonator HR2 take place via a coupling diaphragm KB arranged between the two adjacent cavity resonators.
  • a slot-shaped coupling opening K1 is arranged off-center in the coupling aperture KB. This coupling opening is located at a point where the magnetic field lines or components of the TE11n wave mode of the resonance circuit R1 in the first cavity HR1 and the magnetic field lines of the TMO1p wave mode of the resonance circuit R5 in the second cavity HR2 run parallel to one another. Thus, these two wave modes are coupled via the coupling opening K1.
  • the TE11n wave mode of the resonance circuit R1 of the first cavity resonator HR1 is also polarized with the same TE11n wave mode of the resonant circuit R4 coupled in the second cavity HR2.
  • a coupling between the TE11n wave mode of the resonance circuit R2 in the first cavity resonator HR1 and the TMO1p wave mode of the resonance circuit R5 and also the TE11n -Wave mode of the resonant circuit R3 in the second cavity HR2 can be effected.
  • a very simple coupling opening structure can be used to achieve a large number of couplings between differently designed or differently polarized wave modes of adjacent cavity resonators.
  • the choice of the dimensioning and the position of the coupling opening determine the frequency at which a wave mode coupling takes place and the degree of coupling.
  • the microwave filter consisted of only two cavity resonators.
  • filters can also be constructed from more than just two cavity resonators, with one (single-mode) two (dual-mode) or three wave modes (triple-mode) existing in each individual cavity resonator, which can be coupled to one another depending on the desired filter characteristic.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Mikrowellenfilter, bestehend aus mindestens zwei Hohlraumresonatoren, in denen jeweils mindestens ein TE- oder TM-Wellenmode existiert, wobei über eine zwischen zwei benachbarten Hohlraumresonatoren vorhandene Koppelblende eine Kopplung zwischen den Wellenmoden beider Hohlraumresonatoren erfolgt.
  • Ein derartiges Mikrowellenfilter ist z.B. aus der DE-PS 21 22 337 oder der IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MIT-32, No. 11, Nov. 1984, S. 1449-1454 bekannt. Die Resonanzkreise der hier zugrunde liegenden Mikrowellenfilter sind durch TE- und/oder TM-Wellenmoden realisiert, die in den einzelnen Hohlraumresonatoren in Resonanz schwingen. Die Charakteristik eines solchen Mikrowellenfilters hängt davon ab, welche orthogonal zueinander polarisierten Wellenmoden in den einzelnen Hohlraumresonatoren existieren und welche dieser Wellenmoden miteinander gekoppelt sind. Dabei kommen Kopplungen zwischen den in jedem einzelnen Hohlraumresonatoren existierenden Wellenmoden und Kopplungen zwischen Wellenmoden in verschiedenen Hohlraumresonatoren in Frage. Hohlraumresonator übergreifende Wellenmode-Kopplungen erfolgen über Koppelblenden mit darin vorhandenen Koppelöffnungen.
  • Die Erfindung geht von der Aufgabe aus, ein Mikrowellenfilter der eingangs genannten Art anzugeben, das gegenüber dem Stand der Technik weitere Möglichkeiten bietet zur Realisierung von Filtercharakteristika.
  • Erfindungsgemäß wird diese Aufgabe durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale gelöst.
  • Zweckmäßige Ausführungen der Erfindung gehen aus den Unteransprüchen hervor.
  • Bei den aus der DE-PS 21 22 337 bzw. aus der IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES hervorgehenden Mikrowellenfiltern finden Hohlraumresonator übergreifende Kopplungen nur zwischen gleichpolarisierten TE-Wellenmoden bzw. zwischen gleichpolarisierten TM-Wellenmoden statt. Eine Vielzahl weiterer Filtercharakteristika läßt sich realisieren, wenn wie beim Anmeldungsgegenstand auch TM-Wellenmoden in einem Hohlraumresonator mit TE-Wellenmoden eines anderen Hohlraumresonators gekoppelt werden.
  • An Hand eines in der Zeichnung dargestellten Ausführungsbeispiels soll nun die Erfindung näher erläutert werden.
  • Fig 1
    zeigt ein Mikrowellenfilter mit zwei Hohlraumresonatoren und
    Fig. 2a, 2b
    zeigen einen TMO1p- und einen TE11n-Wellenmode.
  • Das in Fig. 1 dargestellte Mikrowellenfilter besteht aus zwei zylindrischen Hohlraumresonatoren HR1 und HR2, von denen der erste Hohlraumresonator HR1 einen Eingang E zum Einkoppeln eines Mikrowellensignals und der zweite Hohlraumresonator HR2 einen Ausgang A zum Auskoppeln eines Signals besitzt. Auf die verschiedensten bekannten Möglichkeiten, Mikrowellensignale ein- und auszukoppeln, soll hier nicht näher eingegangen werden.
  • Das dargestellte Mikrowellenfilter besitzt insgesamt fünf Resonanzkreise R1 ... R5, von denen die Resonanzkreise R1 und R2 im ersten Hohlraumresonator HR1 und die Resonanzkreise R3 und R4 im zweiten Hohlraumresonator HR2 durch TE11n-Wellenmoden (n=1, 2, 3 ...) realisiert sind, welche die durch die Pfeile in Fig. 1 angedeutete Polarisationsrichtungen haben. Der Verlaufsrichtung der E-Feldlinien des in Fig. 2b dargestellten TE11n-Wellenmodes entspricht seiner Polarisationsrichtung. Der fünfte Resonanzkreis R5 des filters ist durch einen TMO1p-Wellenmodus (p = 0, 1, 2 ...) realisiert, der orthogonal zu den TE11n-Wellenmoden polarisiert ist. Den TMO1p-Wellenmode zeigt die Fig. 2a. Seine E-Feldlinien verlaufen in Wellenausbreitungsrichtung, der Polarisationsrichtung (s. Pfeil R5) dieses TMO1p-Wellenmodes.
  • Die in jedem einzelnen Hohlraumresonator vorhandenen orthogonal zueinander polarisierten Wellenmoden können durch Diskontinuitätskoppelglieder, z.B. Abstimmschrauben, welche in bekannter Weise indie Hohlraumwand eingelassen sind, gekoppelt werden.
  • Kopplungen der Wellenmoden des einen Hohlraumresonators HR1 mit Wellenmoden des anderen Hohlraumresonators HR2 finden über eine zwischen den beiden benachbarten Hohlraumresonatoren angeordnete Koppelblende KB statt. In der Koppelblende KB ist außermittig eine schlitzförmige Koppelöffnung K1 angeordnet. Und zwar liegt diese Koppelöffnung an einer Stelle, wo die magnetischen Feldlinien bzw. Komponenten des TE11n-Wellenmodes des Resonanzkreises R1 im ersten Hohlraumresonator HR1 und die magnetischen Feldlinien des TMO1p-Wellenmodes des Resonanzkreises R5 im zweiten Hohlraumresonator HR2 parallel zueinander verlaufen. Somit erfolgt über die Koppelöffnung K1 eine Kopplung dieser beiden Wellenmoden. Durch die so angeordnete Koppelöffnung K1 wird außerdem der TE11n-Wellenmode des Resonanzkreises R1 des ersten Hohlraumresonators HR1 noch mit dem gleichpolarisierten TE11n-Wellenmode des Resonanzkreises R4 im zweiten Hohlraumresonator HR2 gekoppelt.
  • Desgleichen kann über eine weitere außermittig der Koppelblende KB angeordnete Koppelöffnung K2, die gegenüber der Koppelblende K1 um 90° verschoben ist, eine Kopplung zwischen dem TE11n-Wellenmode des Resonanzkreises R2 im ersten Hohlraumresonator HR1 und dem TMO1p-Wellenmode des Resonanzkreises R5 und auch dem TE11n-Wellenmode des Resonanzkreises R3 im zweiten Hohlraumresonator HR2 bewirkt werden. Wie die vorangehenden Ausführungen zeigen, erreicht man also mit einer sehr einfachen Koppelöffnungsstruktur eine große Vielzahl von Kopplungen zwischen verschieden gearteten bzw. unterschiedlich polarisierten Wellenmoden benachbarter Hohlraumresonatoren.
  • Von der Wahl der Dimensionierung und der Lage der Koppelöffnung hängt es ab, bei welcher Frequenz eine Wellenmoden-Kopplung stattfindet und wie groß der Kopplungsgrad ist.
  • Beim vorangehend beschriebenen Ausführungsbeipiel bestand das Mikrowellenfilter aus nur zwei Hohlraumresonatoren. Natürlich können auch Filter aus mehr als nur zwei Hohlraumresonatoren aufgebaut werden, wobei in jedem einzelnen Hohlraumresonator ein (single-mode) zwei (dual-mode) oder drei Wellenmoden (triple-mode) existieren, die je nach gewünschter Filtercharakteristik miteinander zu koppeln sind.

Claims (4)

  1. Mikrowellenfilter, bestehend aus mindestens zwei Hohlraumresonatoren, in denen jeweils mindestens ein TE- oder TM-Wellenmode existiert, wobei über eine zwischen zwei benachbarten Hohlraumresonatoren vorhandene Koppelblende eine Kopplung zwischen den Wellenmoden beider Hohlraumresonatoren erfolgt, dadurch gekennzeichnet, daß eine Kopplung zwischen einem TE-Wellenmode in dem einen der beiden benachbarten Hohlraumresonatoren (HR1, HR2) und einem TM-Wellenmode in dem anderen Hohlraumresonator stattfindet.
  2. Mikrowellenfilter nach Anspruch 1, dadurch gekennzeichnet, daß in der Koppelblende (KB) mindestens eine Koppelöffnung (K1, K2) dort angeordnet ist, wo die magnetischen Feldlinien des TE- und des TM-Wellenmodes in der Blendenebene in etwa parallel zueinander verlaufen.
  3. Mikrowellenfilter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß über die Koppelöffnung (K1, K2) in der Koppelblende (KB) ebenfalls eine Kopplung zwischen dem TE-Wellenmode in dem einen Hohlraumresonator (HR1) und einem diesem gleichpolarisierten in dem anderen Hohlraumresonator (HR2) neben dem TM-Wellenmode existierenden TE-Wellenmode stattfindet.
  4. Mikrowellenfilter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in dem einen der beiden Hohlraumresonatoren (HR1, HR2) zwei orthogonal zueinander polarisierte TE-Wellenmoden (R1, R2) und in dem anderen Hohlraumresonator ebenfalls zwei orthogonal zueinander polarisierte TE-Wellenmoden (R3, R4) und ein zu diesen beiden orthogonal polarisierter TM-Wellentyp (R5) existieren, daß über eine erste Koppelöffnung (K1) in der Koppelblende (KB) der erste TE-Wellenmode (R1) des einen Hohlraumresonators (HR1) mit dem ihm gleichpolarisierten TE-Wellenmode (R4) und dem TM-Wellenmode (R5) des anderen Hohlraumresonators (HR2) gekoppelt ist und daß über eine zweite Koppelöffnung (K2) der zweite TE-Wellenmode (R2) des einen Hohlraumresonators (HR1) mit dem diesem gleichpolarisierten TE-Wellenmode (R3) und dem TM-Wellenmode (R5) des anderen Hohlraumresonators (HR2) gekoppelt ist.
EP87107533A 1986-06-25 1987-05-23 Mikrowellenfilter Expired - Lifetime EP0250857B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863621299 DE3621299A1 (de) 1986-06-25 1986-06-25 Mikrowellenfilter
DE3621299 1986-06-25

Publications (3)

Publication Number Publication Date
EP0250857A2 EP0250857A2 (de) 1988-01-07
EP0250857A3 EP0250857A3 (en) 1988-12-07
EP0250857B1 true EP0250857B1 (de) 1992-07-15

Family

ID=6303682

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87107533A Expired - Lifetime EP0250857B1 (de) 1986-06-25 1987-05-23 Mikrowellenfilter

Country Status (4)

Country Link
US (1) US4734665A (de)
EP (1) EP0250857B1 (de)
CA (1) CA1271532A (de)
DE (2) DE3621299A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012211A (en) * 1987-09-02 1991-04-30 Hughes Aircraft Company Low-loss wide-band microwave filter
FR2675952B1 (fr) * 1991-04-29 1993-10-22 Alcatel Telspace Filtre hyperfrequence a une ou plusieurs cavites resonnantes.
US5254963A (en) * 1991-09-25 1993-10-19 Comsat Microwave filter with a wide spurious-free band-stop response
DE19523220A1 (de) * 1995-06-27 1997-01-02 Bosch Gmbh Robert Mikrowellenfilter
IT1284353B1 (it) * 1996-01-30 1998-05-18 Cselt Centro Studi Lab Telecom Cavita' multimodale per filtri in guida d'onda.
IT1284354B1 (it) * 1996-01-30 1998-05-18 Cselt Centro Studi Lab Telecom Cavita' multimodale per filtri n guida d'onda.
US5774030A (en) * 1997-03-31 1998-06-30 Hughes Electronics Corporation Parallel axis cylindrical microwave filter
US7982561B2 (en) * 2008-09-05 2011-07-19 Harris Corporation Resonator system for an RF power amplifier output circuit
US8665039B2 (en) * 2010-09-20 2014-03-04 Com Dev International Ltd. Dual mode cavity filter assembly operating in a TE22N mode
CN112436260A (zh) * 2020-11-25 2021-03-02 苏州灿勤通讯技术有限公司 新型te模介质谐振器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3697898A (en) * 1970-05-08 1972-10-10 Communications Satellite Corp Plural cavity bandpass waveguide filter
US3646481A (en) * 1971-03-12 1972-02-29 Bell Telephone Labor Inc Waveguide mode transducer
US4129840A (en) * 1977-06-28 1978-12-12 Rca Corporation Array of directional filters

Also Published As

Publication number Publication date
DE3621299A1 (de) 1988-01-07
CA1271532A (en) 1990-07-10
EP0250857A3 (en) 1988-12-07
US4734665A (en) 1988-03-29
DE3780367D1 (de) 1992-08-20
EP0250857A2 (de) 1988-01-07

Similar Documents

Publication Publication Date Title
DE2122337C2 (de) Hohlraumresonator-Filter
DE69816324T2 (de) Verbundfilter
DE2510854A1 (de) Bandpassfilter fuer mikrowellen
DE60209671T2 (de) Mikrowellen-Bandpassfilter mit kanonischer allgemeiner Filterkurve
DE60006724T2 (de) Quasi-zweimodenresonatoren
DE2754927A1 (de) Hohlleiterfilter mit mehreren hohlraeumen
EP0250857B1 (de) Mikrowellenfilter
EP0751579B1 (de) Mikrowellenfilter
DE2643094A1 (de) Verallgemeinertes wellenleiter- bandpassfilter
DE2654283A1 (de) Filter fuer sehr kurze elektromagnetische wellen
DE2841754A1 (de) Mikrowellenfilter
DE2653856C2 (de) Filter für sehr kurze elektromagnetische Wellen
DE2657649C2 (de) Filter für sehr kurze elektromagnetische Wellen
EP1266423B1 (de) Hohlraumresonator mit abstimmbarer resonanzfrequenz
DE2828047C2 (de) Frequenzabhängiges Koppelsystem
DE2325401C3 (de) Koppelanordnung zwischen Hochfrequenzkreisen
DE2640210C3 (de) Filter für sehr kurze elektromagnetische Wellen
DE4116755C2 (de) Mikrowellenfilter
DE1942909A1 (de) Filter fuer sehr kurze elektromagnetische Wellen
DE3708964C2 (de)
DE4319346C2 (de) Leitungsresonator
DE1942867A1 (de) Filter fuer sehr kurze elektromagnetische Wellen
DE4014541C2 (de)
DE19623144A1 (de) Mikrowellenfilter, bestehend aus mehreren Koaxial-Resonatoren
DE2738613B2 (de) Aus konzentrierten Schaltelementen bestehende Filterschaltung für den Bereich der Meter- und Dezimeterwellen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19890118

17Q First examination report despatched

Effective date: 19910930

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3780367

Country of ref document: DE

Date of ref document: 19920820

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980513

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980527

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980724

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990523

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050523