EP0245124B1 - Procédé combiné d'hydroréformage et d'hydroisomérisation - Google Patents

Procédé combiné d'hydroréformage et d'hydroisomérisation Download PDF

Info

Publication number
EP0245124B1
EP0245124B1 EP87400645A EP87400645A EP0245124B1 EP 0245124 B1 EP0245124 B1 EP 0245124B1 EP 87400645 A EP87400645 A EP 87400645A EP 87400645 A EP87400645 A EP 87400645A EP 0245124 B1 EP0245124 B1 EP 0245124B1
Authority
EP
European Patent Office
Prior art keywords
zone
hydroisomerization
effluent
reformate
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87400645A
Other languages
German (de)
English (en)
Other versions
EP0245124A1 (fr
Inventor
Jean-Pierre Franck
Adrien Orieux
André Vidal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Priority to AT87400645T priority Critical patent/ATE49417T1/de
Publication of EP0245124A1 publication Critical patent/EP0245124A1/fr
Application granted granted Critical
Publication of EP0245124B1 publication Critical patent/EP0245124B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/14Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural parallel stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G59/00Treatment of naphtha by two or more reforming processes only or by at least one reforming process and at least one process which does not substantially change the boiling range of the naphtha
    • C10G59/06Treatment of naphtha by two or more reforming processes only or by at least one reforming process and at least one process which does not substantially change the boiling range of the naphtha plural parallel stages only

Definitions

  • the charge is generally a naphtha distilling for example between about 60 and 200 ° C; let us cite in particular the direct distillation naphthas.
  • Light naphthas are most often eliminated by distillation because their interest in reforming is not very interesting since they cannot be transformed into aromatics and they are not very isomerized. These light naphthas are then either recovered as such for the petrol pool, or recovered by an isomerization process in a unit separate from the reforming unit.
  • the naphthas which are generally known as heavy naphthas are then alone sent to the reforming unit (reforming).
  • catalysts of the Friedel and Crafts type such as aluminum chloride. It is possible to use (USP 3,903,192), in addition to conventional catalysts of the platinum type on silica-alumina, halogenated alumina or other acid supports, alumina supports with introduction into alumina, halogen and at least one compound of metal of group VI or VIII of the periodic table of the elements in the presence of a mixture of chlorine and or hydrochloric acid. All these catalysts can be used for the isomerization in a hydrogen atmosphere of paraffins having 4 to 7 carbon atoms and preferably 5 and / or 6 carbon atoms, at a temperature between 50 and 250 ° C.
  • the operation is preferably carried out under a pressure of 5 to 100 kg / cm 2 (5 to 100 bars) (0.5 to 10 MPa) with a space velocity of 0.2 to 10 liters of charge per liter of catalyst per hour .
  • a halogenated promoter such as for example hydrochloric acid, carbon tetrachloride, an alkyl halide such as, for example, ethyl chloride, isopropyl chloride, may be introduced continuously or periodically into the feed.
  • a first charge consisting mainly of a heavy naphtha is sent through at least one heating zone to at least two catalytic reforming zones arranged in series; the effluent from each reforming zone, except the effluent from the last reforming zone crossed by said first charge, also circulating through at least one heating zone, (the same heating zone already used to heat the heavy naphtha before entering the first reforming zone) the effluent from the last reforming zone being subjected to at least one fractionation in order to obtain on the one hand a reformate and on the other hand a gas containing in particular l hydrogen, part of this hydrogen being recycled to the hydroreforming zones, another part of this hydrogen being mixed with a second charge consisting mainly of light naphtha, the mixture thus obtained is preheated and then introduced into a zone catalytic hydroisomerization, the reformate and the effluent from the hydroisomerization zone being collected together and subjected to fractionation in the same stabilization column tion in order to obtain an
  • the said mixture can be preheated either by circulating the mixture thus obtained directly through the fumes from at least one of said heating zones defined above, either by indirect contact with steam, or by indirect contact with the effluent from the last reforming zone crossed by the heavy naphtha.
  • a variant consists of a combined process for hydroreforming a heavy naphtha and hydroisomerization of a light naphtha, characterized in that a first charge consisting mainly of a heavy naphtha is sent to through at least one heating zone to at least two catalytic hydroreforming zones arranged in series, the effluent from each hydroreforming zone, except the effluent from the last reforming zone crossed by said first charge, circu also through at least one heating zone, the effluent from the last reforming zone being subjected to at least one fractionation with a view to obtaining, on the one hand, a reformate and, on the other hand, a gas containing in particular hydrogen, part of this hydrogen being recycled to the hydroreforming zones, another part of this hydrogen being mixed with a second charge consisting mainly of a light naphtha, the mixture thus obtained is preheated and then introduced into a zone d catalytic hydroisomerization, said process being further characterized in that the hydro
  • the isomerization catalyst may optionally contain at least one group VIII metal, and for example platinum, palladium or nickel.
  • group VIII metal for example platinum, palladium or nickel.
  • the content (by weight) is between 0.05 and 1% and preferably between 0.1 and 0.6%.
  • nickel the weight content is between 0.10 and 10% and preferably between 0.2 and 5%.
  • the catalysts which can be used, according to the present invention, for isomerization contain a zeolite which advantageously will be a mordenite, in acid form, with or without hydrogenation promoter (s). Preferably so-called large pore mordenites are used.
  • a mordenite which is particularly suitable for use in the present invention is a mordenite prepared from a small pore mordenite under conditions such that the mordenite used will have retained the morphology of the small pore mordenite while having the capacity to adsorb the benzene molecule (kinetic diameter of 6.6 x 10- 1 0 m) which is not the case of a small pore mordenite which have not undergone the special processing.
  • These synthetic small pore mordenites can be obtained by synthesis in particular under the following conditions: temperature between 200 and 300 ° C. approximately and crystallization time from 5 to 50 hours.
  • the zeolite preferably used in the catalyst of the present invention is produced from a small pore mordenite whose sodium content is generally between 4 and 6.5 percent (by weight) relative to the weight of dry mordenite, the SUAI atomic ratio is generally between 4.5 and 6.5 and the mesh volume generally between 2.80 and 2.77 nm 3 .
  • This mordenite adsorbs only molecules of kinetic diameter less than about 4.4 x 10- 1 0 m.
  • mordenite is characterized by different specifications: an Si / AI atomic ratio between 5 and 50 and preferably between 5.5 and 30, a sodium content of less than 0.2% by weight and preferably less than 0 , 1% relative to the weight of dry zeolite, a mesh volume, V, of the elementary mesh between 2.78 and 2.73 nm3 and preferably between 2.77 and 2.74 nm3, a capacity of benzene adsorption greater than 5% and preferably 8% relative to the weight of dry solid (zeolite), a particular morphology, namely that it is mainly in the form of needles preferably of average length 5 microns (5 x 10- 6 m) whose hexagonal faces have a length of approximately 1 micron, (1 x 10-6 m) and a "height" of approximately 0.3 microns (0.3 x 10-6 m ).
  • the mordenite thus prepared and intended to be used in hydroisomerization reactions is then mixed with a generally amorphous matrix, the hydroisomerization catalyst also preferably containing at least one group VIII metal, in particular platinum, palladium and nickel with possibly a group IV metal: tin, germanium or lead.
  • the matrix can be alumina, silica-alumina, a natural clay (kaolin or bentonite for example), alumina-boron oxide.
  • the content of mordenite in the catalyst is advantageously greater than 40% (preferably 60%) by weight.
  • This catalyst constitutes an excellent catalyst for hydroisomerization of sections rich in normal paraffins with 4 or 7 carbon atoms and preferably with 5 or 6 carbon atoms per molecule, having an enhanced selectivity and activity compared to conventional hydroisomerization catalysts. .
  • the heavy naphtha is subjected to catalytic reforming in the presence of hydrogen in at least two reaction zones.
  • the general conditions for hydroreforming or catalytic hydroreforming reactions are as follows: in each reaction zone, the average temperature is between, approximately 480 and 600 ° C., the pressure is between, approximately 5 and 20 kg / cm 2 ( 5 and 20 bars), (0.5 to 2 MPa) the hourly speed is between 0.5 and 10 volumes of liquid naphtha per volume of catalyst and the recycling rate is between 1 and 10 moles of hydrogen per mole dump.
  • the catalyst may contain for example at least one metal of the platinum family, that is to say a noble metal such as platinum, palladium, iridium, rhodium, ruthenium, osmium, deposited on an alumina or an equivalent compound (examples: platinum-alumina-halogen or platinum-iridium halogen).
  • a noble metal such as platinum, palladium, iridium, rhodium, ruthenium, osmium, deposited on an alumina or an equivalent compound
  • platinum-alumina-halogen or platinum-iridium halogen examples: platinum-alumina-halogen or platinum-iridium halogen.
  • the total content of noble metals is from 0.1% to 2% by weight relative to the catalyst and the halogen content, preferably chlorine or fluorine, from 0.1 to 10%.
  • the alumina-halogen combination can be replaced by other supports, for example silica-alumina.
  • the catalyst may contain at least one other metallic promoter chosen
  • a heavy naphtha is introduced into the unit via line 1, through through line 2, the heat exchanger 3 and through line 4 passes through an oven 5.
  • naphtha heavy, traveling through line 4 is introduced into a first reforming reactor 6 containing here a fixed bed of catalyst.
  • the effluent from the reactor 6 is withdrawn through line 7 and passes through the furnace 5 before being directed into a second reactor (8) also enclosing in the figure a fixed bed of catalyst.
  • the effluent from this second reactor, via line 9 is also sent through the furnace 5 and is then introduced into a third reactor 10, containing a fixed bed of catalyst.
  • a gas essentially based on hydrogen is drawn off via line 21. At least part of this gas can be returned (recycling hydrogen) via line 22, compressor 23 and line 24, to the reforming unit, after having been mixed in line 2 with the charge of heavy naphtha. At least another part of the hydrogen from line 21 is mixed after passage through line 25, at least one compression stage 26 and line 27, with the charge of light naphtha introduced into the unit through line 28 ( a variant here would be to take the hydro gene of the pipe 25 and not at the outlet of the balloon 17 that is to say in the pipe 21 but at the outlet of the compressor 23, therefore in the pipe 24 so as to gain, in the pipe 25, the pressure differential of compressor 23).
  • the mixture of light naphtha and hydrogen coming from the reforming zone crosses, via line 29, the exchanger 30, travels through line 31 and is heated in FIG. 1 at 32, in the upper part of the oven. 5, therefore by the fumes from the reforming furnace.
  • Another method for heating the mixture of line 31 would consist of contacting this mixture indirectly with water vapor produced in the flue gases in order to carry out a heat exchange.
  • Another method (see FIG. 1A) would consist in separating the effluent from the last hydroreforming reactor into two parts; a part of this effluent circulates as in FIG. 1 through the exchanger 3 then towards the line 12.
  • each of these effluents can thus be sent to a stabilization column, the different fractions coming from the reformate of 'on the one hand and from the isomerisate on the other hand being collected for their usual uses in refining.
  • the device used makes it possible to eliminate the stabilization column from the isomerization unit and to treat the isomerisate and the reformate in a single column.
  • the reformate withdrawn from the separating flask 17 by the pipe 18 is sent, by means of the pump 19, through the pipe 20 and is then mixed in line 46 at least part of the hydrogen-rich gas withdrawn by the pipe 41 of the separator tank 39, this gas having previously passed through the compressor 42, the pipes 43 and 45 and the cooler 44.
  • This reformat-gas mixture is sent to the separator tank 47 from which a head is recovered.
  • gas with a high hydrogen content line 48
  • at the bottom of the flask a reformate (line 49) which is mixed with the isomerisate of line 40, the mixture obtained being sent through line 50 to the stabilization column 52.
  • a mixture of isomerisate and reformate of excellent quality is recovered.
  • FIG. 2 illustrates a variant of the invention.
  • the reformate is also mixed with the isomerization effluent but this effluent does not pass through the separator flask 39 of FIG. 1.
  • this flask is deleted.
  • a heavy naphtha is introduced into the unit through line 1, passes through line 2, the heat exchanger 3 and through line 4 passes through an oven 5.
  • heavy naphtha, traveling through the line 4 is introduced into a first reforming reactor 6 here enclosing a fixed bed of catalyst.
  • the effluent from the reactor 6 is withdrawn through the pipe 7 and passes through the furnace 5 before being directed into a second reactor 8 also containing in the figure a fixed bed of catalyst.
  • the effluent from this second reactor, via line 9 is also sent through the furnace 5 and is then introduced into a third reactor 10, containing a fixed bed of catalyst.
  • the effluent from the reactor 10, drawn off through the pipe 11, passes through the exchanger 3 and through the pipe 12, the coolings 13 and 15, the lines 14 and 16, reaches a separator flask 17 from which one recovers, a background, a reformate, through line 18.
  • a gas essentially based on hydrogen is drawn off via line 21. At least part of this gas can optionally (recycling hydrogen) be returned via line 22, compressor 23 and line 24, to the reforming unit, after having been mixed in line 2 with the charge of heavy naphtha . At least another part of the hydrogen from line 21 is mixed after passage through line 25, at least one compressor 26 and line 27 (line on which a chlorine guard pot is optionally placed), with the charge of light naphtha introduced into the unit via line 28. Note that, as explained with reference to FIG. 1, the content of line 25 can come from line 24, therefore being passed through the compressor 23.
  • this mixture traveling in line 33 reaches the hydroisomerization reactor 34, which here contains a fixed bed of catalyst (it could be a moving bed).
  • Via line 41, at the head of this separator flask 40 a gas rich in hydrogen is recovered.
  • a mixture of isomerisate and reformate is recovered via line 42.
  • the mixture obtained is sent to the stabilization column 43.
  • a mixture of isomerisate and reformate of excellent quality is recovered.
  • light gases, cooled at 46, and treated in the separating flask 48, are recovered via line 45.
  • a few light hydrocarbons in the vapor phase are thus collected in line 49 and light distillates in liquid phase in the lines. 50 and 52; some of these distillates are recycled via line 51 at the head of the stabilization column 43.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Detergent Compositions (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

  • Dans les procédés de reformage catalytique, la charge est généralement un naphta distillant par exemple entre environ 60 et 200°C; citons en particulier les naphtas de distillation directe. Les naphtas légers (light naphthas) sont le plus souvent éliminés par distillation car leur intérêt en reforming est peu intéressant puisqu'ils ne peuvent se transformer en aromatiques et qu'ils sont peu isomérisés. Ces naphtas légers sont alors soit récupérés tels quels pour le pool essence, soit valorisés par un procédé d'isomérisation dans une unité distincte de l'unité de reforming.
  • L'isomérisation des paraffines normales de faible poids moléculaire est d'une importance considérable dans l'industrie pétrolière, vu l'indice d'octane particulièrement élevé des isoparaffines.
  • Il est intéressant de pouvoir transformer les n-paraffines C4-C7 et surtout C5-C6 en isoparaffines afin d'obtenir un carburant à haut indice d'octane. Ce procédé est intéressant pour améliorer les fractions d'essence légère et en particulier, les fractions de tête de distillation directe.
  • Les naphtas que l'on convient généralement d'appeler naphtas lourds (heavy naphthas) sont alors seuls envoyés dans l'unité de reforming (reformage).
  • Dans le procédé de la présente invention, on utilise conjointement une unité de reformage et une unité d'isomérisation pour satisfaire aux nouvelles règlementations dans le cadre de la fabrication d'essence sans plomb, notamment en Europe et aux USA. Il devient indispensable de valoriser la coupe naphta léger d'où l'idée d'intégration de l'unité d'isomérisation à celle du reformage pour minimiser les investissements et les utilités. Jusqu'à une époque relativement récente, les réactions d'isomérisation étaient conduites avec injection de chlore. On pouvait utiliser comme catalyseur un support dans lequel était incorporé un métal noble de groupe VIII, le support étant imprégné par exemple par un halogénure d'hydrocarbylaluminium de formule:
    • AI Xy R(3-y)
    • où y est égal à 1 ou 2,
    • X est un halogène
    • et R est un radical monovalent d'hydrocarbure
    • (Brevet anglais No 1 432 639).
  • On peut utiliser également les catalyseurs de type Friedel et Crafts, tel que le chlorure d'aluminium. On peut utiliser (USP 3 903 192), outre des catalyseurs classiques du type platine sur silice-alumine, alumine halogénée ou autres supports acides, des supports d'alumine avec introduction dans l'alumine, d'halogène et d'au moins un composé de métal du groupe VI ou VIII de la classification périodique des éléments en présence d'un mélange de chlore et ou d'acide chlorhydrique. Tous ces catalyseurs peuvent être utilisés pour l'isomérisation en atmosphère d'hydrogène des paraffines comportant 4 à 7 atomes de carbone et de préférence 5 et/ou 6 atomes de carbone, à une température comprise entre 50 et 250°C. On opère de préférence, sous une pression de 5 à 100 kg/cm2 (5 à 100 bars) (0,5 à 10 MPa) avec une vitesse spatiale de 0,2 à 10 litres de charge par litre de catalyseur et par heure. On peut introduire en continu ou par période dans la charge un promoteur halogéné tel que par exemple l'acide chlorhydrique, le tétrachlorure de carbone, un halogénure d'alkyl comme par exemple le chlorure d'éthyle, le chlorure d'iso- propyle, le chlorure de tertiobutyle ou le bromure de tertiobutyle.
  • Dans la présente invention, une première charge constituée en majeure partie d'un naphta lourd est envoyée à travers au moins une zone de chauffage vers au moins deux zones de reformage catalytique disposées en série; l'effluent de chaque zone de reformage, sauf l'effluent de la dernière zone de reformage traversée par ladite première charge, circulant également à travers au moins une zone de chauffage, (on peut utiliser la même zone de chauffage déjà utilisée pour chauffer le naphta lourd avant son entrée dans la première zone de reformage) l'effluent de la dernière zone de reformage étant soumis à au moins un fractionnement en vue d'obtenir d'une part un reformat et d'autre part un gaz renfermant notamment de l'hydrogène, une partie de cet hydrogène étant recyclée vers les zones d'hydroreformage, une autre partie de cet hydrogène étant mélangée avec une deuxième charge constituée en majeure partie d'un naphta léger, le mélange ainsi obtenu étant préchauffé puis introduit dans une zone d'hydroisomérisation catalytique, le reformat et l'effluent de la zone d'hydroisomérisation étant recueillis ensemble et soumis à un fractionnement dans une même colonne de stabilisation en vue d'obtenir un mélange amélioré d'un isomérisat et d'un reformat, ledit procédé étant en outre caractérisé en ce que le catalyseur utilisé dans la zone d'hydroisomérisation renferme au moins une zéolite, l'hydroisomérisation étant effectuée en l'absence d'injection d'un halogène ou d'un composé halogéné dans la zone d'hydroisomérisation. On peut effectuer le préchauffage dudit mélange soit en faisant circuler le mélange ainsi obtenu directement à travers les fumées d'au moins une desdites zones de chauffage définies précédemment, soit par contact indirect avec de la vapeur d'eau, soit par contact indirect avec l'effluent de la dernière zone de reformage traversée par le naphta lourd.
  • Dans la présente invention, une variante consiste en un procédé combiné d'hydroreformage d'un naphta lourd et d'hydroisomérisation d'un naphta léger, caractérisé en ce qu'une première charge constituée en majeure partie d'un naphta lourd est envoyée à travers au moins une zone de chauffage vers au moins deux zones d'hydroreformage catalytique disposées en série, l'effluent de chaque zone d'hydroreformage, sauf l'effluent de la dernière zone de reformage traversée par ladite première charge, circulant également à travers au moins une zone de chauffage, l'effluent de la dernière zone de reformage étant soumis à au moins un fractionnement en vue d'obtenir d'une part un reformat et d'autre part un gaz renfermant notamment de l'hydrogène, une partie de cet hydrogène étant recyclée vers les zones d'hydroreformage, une autre partie de cet hydrogène étant mélangée avec une deuxième charge constituée en majeure partie d'un naphta léger, le mélange ainsi obtenu étant préchauffé puis introduit dans une zone d'hydroisomérisation catalytique, ledit procédé étant en outre caractérisé en ce que l'effluent d'hydroisomérisation est soumis à au moins un fractionnement en vue d'obtenir d'une part un second courant d'un gaz renfermant notamment de l'hydrogène et d'autre part un isomérisat, et en ce que le second courant d'un gaz renfermant de l'hydrogène est d'abord traité avec une partie au moins dudit reformat, puis le reformat est mélangé avec une partie au moins de l'isomérisat, l'ensemble reformat-isomérisat ainsi obtenu étant soumis à un fractionnement dans une même colonne de stabilisation en vue d'obtenir un mélange amélioré d'un isomérisat et d'un reformat, ledit procédé étant enfin caractérisé en ce que le catalyseur utilisé dans le zone d'hydroisomérisation renferme au moins une zéolite, l'hydroisomérisation étant effectuée en l'absence d'injection d'un halogène ou d'un composé halogène dans la zone d'hydroisomérisation.
  • L'hydrogène produit dans la réaction du reforming couvre les besoins en hydrogène de l'unité d'isomérisation du naphta léger (rapport H2/hydrocarbures correct). Ainsi en opérant conformément à l'invention, l'intégration des deux réactions, reformage et isomérisation, permet de traiter la coupe légère en utilisant les équipements existant dans l'unité du reforming:
    • - le niveau thermique opératoire du réacteur d'isomérisation est obtenu avec effet optimum, soit par récupération de chaleur sur les fumées des fours du reforming soit par voie indirecte.
    • - l'apport d'H2 et le recyclage d'hydrogène sont assurés par le compresseur d'export d'hydrogène (recontactage) du reforming,
    • - l'unité d'isomérisation est opérée sans recyclage d'hydrogène ce qui minimise d'autant plus la consommation d'utilisés par rapport à une unité d'isomérisation qui fonctionnerait indépendamment de l'unité de reforming (la pureté du gaz est meilleure).
    • - le récupération des hydrocarbures légers en sortie de la zone réactionnelle de l'unité d'isomérisation est améliorée par recontactage avec le reformat.
  • Le brevet US-A 2 946 736 a déjà proposé une association de reformage et d'isomérisation avec utilisation de l'hydrogène produit dans le reformage pour effectuer l'isomérisation.
  • Mais selon l'invention, pour que la zone d'isomérisation fonctionne correctement, il n'est pas possible d'utiliser les catalyseurs classiques d'isomérisation décrits plus haut parce que l'emploi de tels catalyseurs nécessitent d'injecter un halogène ou un composé halogéné, et notamment du chlore. Le procédé selon l'invention ne peut se concevoir qu'avec une nouvelle génération de catalyseurs particulièrement adaptés, pouvant précisément fonctionner en l'absence d'injection d'halogène ou d'un composé halogéné. Selon l'invention, il s'agit de catalyseurs à base d'une zéolite. On a déjà proposé l'utilisation d'une zéolite en isomérisation (US-A 3 785 955). Dans la présente invention on utilise une zéolite généralement diluée dans une matrice généralement amorphe. Le catalyseur d'isomérisation (hydroisomérisation) peut éventuellement renfermer de préférence au moins un métal du groupe VIII, et par exemple du platine, du palladium ou du nickel. Dans le cas du platine et du palladium, la teneur (en poids) est comprise entre 0,05 et 1% et de manière préférée entre 0,1 et 0,6%. Dans le cas du nickel la teneur pondérale est comprise entre 0,10 et 10% et de manière préférée entre 0,2 et 5%.
  • Les catalyseurs utilisables, selon la présente invention, pour l'isomérisation renferment une zéolite qui avantageusement sera une mordénite, sous forme acide, avec ou sans promoteur(s) d'hydrogénation. On utilise de préférence des mordénites dites à larges pores.
  • Il existe, en effet, deux types de mordénite, qui se distinguent par leurs propriétés d'adsorption: la forme à larges pores, toujours synthétique, qui adsorbe les molécules telles que le benzène (diamètre cinétique = 6,6 x 10-10 m) et la forme à petits pores, naturelles ou synthétique, qui n'adsorbe que des molécules de diamètre cinétique inférieur à 4,4 x 10-10 m environ. Ces mordénites se distinguent également par des différences morphologiques - aiguilles pour la mordénite petits pores, sphérulites pour la modérnite larges pores - et structurales: présence ou non de défauts. Dans toute la littérature, c'est la mordénite larges pores qui est utilisée. Citons USP 3 190 939, USP 3 480 539, USP 3 551 353.
  • Or, une mordénite particulièrement adéquate pour être utilisée dans la présente invention est une mordénite préparée à partir d'une mordénite petits pores dans des conditions telles que la mordénite utilisée aura conservé la morphologie de la mordénite à petits pores tout en possédant la capacité d'adsorber la molécule de benzène (diamètre cinétique: 6,6 x 10-10 m) ce qui n'est pas le cas d'une mordénite petits pores n'ayant pas subi le traitement spécial. L'utilisation de cette mordénite de morphologie particulière (aiguilles), spécialement traitée, entraîne un gain d'activité et de sélectivité important pour la réaction d'isomérisation.
  • Il est possible de «déboucher» les canaux de cette zéolite particulière par traitement dans un acide minéral fort et/ou par calcination en présence de vapeur d'eau et d'accéder à une capacité d'adsorption voisine de celle de la mordénite larges pores.
  • Ces mordénites synthétiques à petits pores peuvent être obtenues par synthèse notamment dans les conditions suivantes: température comprise entre 200 et 300°C environ et temps de cristallisation de 5 à 50 heures.
  • La zéolite utilisée préférentiellement dans le catalyseur de la présente invention est fabriquée à partir d'une mordénite petits pores dont la teneur en sodium est comprise généralement entre 4 et 6,5 pour cent (poids) par rapport au poids de mordénite sèche, dont le rapport atomique SUAI est compris généralement entre 4,5 et 6,5 et le volume de maille généralement entre 2,80 et 2,77 nm3. Cette mordénite n'adsorbe que des molécules de diamètre cinétique inférieur à environ 4,4 x 10-10 m. Après traitements, la mordénite est caractérisée par différentes specifications: un rapport atomique Si/AI compris entre 5 et 50 et de préférence entre 5,5 et 30, une teneur en sodium inférieure à 0,2% poids et de manière préférée inférieure à 0,1% par rapport au poids de zéolite sèche, un volume de maille, V, de la maille élémentaire compris entre 2,78 et 2,73 nm3 et de manière préférée entre 2,77 et 2,74 nm3, une capacité d'adsorption de benzène supérieure à 5% et de préférence à 8% par rapport au poids de solide (zéolite) sec, une morphologie particulière, à savoir qu'elle se présente en majeure partie sous forme d'aiguilles de préférence de longueur moyenne 5 microns (5 x 10-6 m) dont les faces hexagonales ont une longueur d'environ 1 micron, (1 x 10-6 m) et une «hauteur» d'environ 0,3 microns (0,3 x 10-6 m).
  • La mordénite ainsi préparée et destinée à être utilisée dans les réactions d'hydroisomérisation, est ensuite mélangée à une matrice généralement amorphe, le catalyseur d'hydroisomérisation renfermant également de préférence au moins un métal du groupe VIII, en particulier le platine, le palladium et le nickel avec éventuellement un métal du groupe IV: étain, germanium ou plomb. La matrice peut être de l'alumine, de la silice-alumine, une argile naturelle (le kaolin ou la bentonite par exemple), l'alumine-oxyde de bore. La teneur en mordénite, dans le catalyseur est avantageusement supérieure à 40% (de préférence 60%) en poids.
  • Ce catalyseur constitue un excellent catalyseur d'hydroisomérisation de coupes riches en paraffines normales à 4 ou 7 atomes de carbone et de préférence à 5 ou 6 atomes de carbone par molécule, présentant une sélectivité et une activité exaltées par rapport aux catalyseurs d'hydroisomérisation classiques.
  • Comme indiqué, plus haut, le naphta lourd est soumis à un reformage catalytique en présence d'hydrogène dans au moins deux zones de réaction.
  • Les conditions générales des réactions d'hydroreforming ou hydroreformage catalytique sont les suivantes: dans chaque zone de réaction, la température moyenne est comprise entre, environ 480 et 600°C, la pression est comprise entre, environ 5 et 20 kg/cm2 (5 et 20 bars), (0,5 à 2 MPa) la vitesse horaire est comprise entre 0,5 et 10 volumes de naphta liquide par volume de catalyseur et le taux de recyclage est compris entre 1 et 10 moles d'hydrogène par mole de charge.
  • Le catalyseur peut renfermer par exemple au moins un métal de la famille du platine, c'est-à-dire un métal noble tel que platine, palladium, iridium, rhodium, ruthénium, osmium, déposé sur un support d'alumine ou d'un composé équivalent (exemples: platine-alumine-halogène ou platine-iridium halogène). La teneur totale en métaux nobles est de 0,1% à 2% en poids par rapport au catalyseur et la teneur en halogène, de préférence chlore ou fluor, de 0,1 à 10%. On peut remplacer l'association alumine-halogène par d'autres supports, par exemple la silice-alumine. Le catalyseur peut renfermer au moins un autre promoteur métallique choisi dans les groupes les plus divers de la classification périodique des éléments.
  • On peut opérer de multiples façons:
    • D'abord, on peut opérer en lit fixe en utilisant plusieurs réacteurs. La charge passe successivement à travers chacun des réacteurs; le catalyseur reste en service pendant de longues périodes avant d'être régénéré.
  • Selon un autre procédé, dit «régénératif», le catalyseur est régénéré soit fréquemment, soit continuellement:
    • a) la régénération fréquente est utilisée lorsque l'on utilise plusieurs réacteurs qui renferment le catalyseur en lit fixe. L'un de ces réacteurs est en régénération (ou en attente), pendant que les autres réacteurs sont en service;
    • b) la catalyseur s'écoule de haut en bas de chaque réacteur (lit mobile) et la régénération se fait, par exemple, en continu, dans un réacteur principal de manière à ne pas interrompre la réaction. Le catalyseur peut s'écouler progressivement et successivement à travers chaque zone de réaction.
  • Les schémas donnés à titre d'exemples illustrent l'invention.
  • Dans la figure 1, un naphta lourd est introduit dans l'unité par la conduite 1,-traverse par la conduite 2, l'échangeur de chaleur 3 et par la conduite 4 traverse un four 5. A la sortie du four, le naphta lourd, cheminant par la conduite 4 est introduit dans un premier réacteur 6 de reformage renfermant ici un lit fixe de catalyseur. L'effluent du réacteur 6 est soutiré par la conduite 7 et traverse le four 5 avant d'être dirigé dans un deuxième réacteur (8) renfermant également sur la figure un lit fixe de catalyseur. L'effluent de ce deuxième réacteur, par la conduite 9 est envoyé aussi à travers le four 5 puis est introduit dans un troisième réacteur 10, renfermant un lit fixe de catalyseur. L'effluent du réacteur 10, soutiré par la conduite 11, passe à travers l'échangeur 3 et à travers la conduite 12, les refroidissements 13 et 15, les lignes 14 et 16, atteint un ballon séparateur 17 d'où l'on récupère, en fond, un reformat, par la conduite 18.
  • En tête du ballon séparateur 17, on soutire, par la conduite 21, un gaz essentiellement à base d'hydrogène. Une partie au moins de ce gaz peut être renvoyé (hydrogène de recyclage) par la conduite 22, le compresseur 23 et la conduite 24, vers l'unité de reforming, après avoir été mélangé dans la conduite 2 avec la charge de naphta lourd. Une autre partie au moins de l'hydrogène de la conduite 21 est mélangée après passage par la conduite 25, au moins un étage de compression 26 et la conduite 27, avec la charge de naphta léger introduite dans l'unité par la conduite 28 (une variante consisterait ici à prendre l'hydrogène de la conduite 25 et non pas à la sortie du ballon 17 c'est à dire dans la conduite 21 mais à la sortie du compresseur 23, donc dans la conduite 24 de façon à gagner, dans la conduite 25, le différentiel de pression du compresseur 23). Le mélange de naphta léger et d'hydrogène en provenance de la zone de reforming, traverse, par la ligne 29, l'échangeur 30, chemine par la conduite 31 et est chauffé sur la figure 1 en 32, dans la partie supérieure du four 5, donc par les fumées du four de reforming. Une autre méthode pour chauffer le mélange de la conduite 31 consisterait à contacter ce mélange indirectement avec de la vapeur d'eau produite dans les fumées en vue de procéder à un échange de chaleur. Une autre méthode (voir figure 1A) consisterait à séparer en deux parties l'effluent du dernier réacteur 10 d'hydroreformage; une partie de cet effluent circule comme dans la figure 1 à travers l'échangeur 3 puis vers la ligne 12. Une autre partie apportant (par la conduite 11.a) des calories à un échangeur 32.a dans lequel pénètre le dit mélange de la ligne 31, le dit mélange circulant ensuite par la ligne 33 vers la zone d'hydroisomérisation 34. Ensuite, ce mélange cheminant dans la conduite 33, atteint le réacteur d'hydroisomérisation 34, qui ici renferme un lit fixe de catalyseur (ce pourrait être un lit mobile). L'effluent de la zone d'isomérisation, évacué par la conduite 35, traverse l'échangeur 30, circule par la conduite 36 à travers le refroidissement 37, et par la conduite 38, est introduit dans un ballon séparateur 39. Par la ligne 41, en tête de ce ballon séparateur, on récupère un gaz riche en hydrogène. En fond du ballon séparateur 39, on récupère par la conduite 40, un isomérisat. Il est possible, dans la présente invention, de traiter conventionnellement et séparemment le reformat de la conduite 18 et l'isomérisat de la conduite 40: chacun de ces effluents peut ainsi être envoyé dans une colonne de stabilisation, les différentes fractions issues du reformat d'une part et issues de l'isomérisat d'autre part étant recueillies pour leurs usages habituels en raffinage. Toutefois, dans le cadre de la présente invention, le dispositif mis en oeuvre permet de supprimer la colonne de stabilisation de l'unité d'isomérisation et de traiter l'isomérisat et le reformat dans une seule colonne. Dans ce cas, le reformat soutiré du ballon séparateur 17 par la conduite 18 est envoyé, au moyen de la pompe 19, à travers la conduite 20 puis est mélangé dans la ligne 46 au moins une partie du gaz riche en hydrogène soutiré par la conduite 41 du ballon séparateur 39, ce gaz ayant, au préalable, traversé le compresseur 42, les conduites 43 et 45 et le refroidisseur 44. Ce mélange reformat-gaz est envoyé dans le ballon séparateur 47 d'où l'on récupère en tête un gaz à teneur elevée en hydrogène (conduite 48) et en fond de ballon un reformat (conduite 49) qui est mélangé avec l'isomérisat de la conduite 40, le mélange obtenu étant envoyé par la conduite 50 dans la colonne de stabilisation 52. En fond de colonne, par la conduite 52, on récupère un mélange d'isomérisat et de reformat d'excellente qualité. En tête de colonne, on récupère par la conduite 53 des gaz légers, refroidis en 54, soutirés par la conduite 55 et traités dans le ballon séparateur 56. On recueille ainsi quelques vapeur légères dans la conduite 57 et des distillats légers dans les conduites 58 et 60, une partie de ces distillats sont recyclés par la conduite 59 en tête de la colonne de stabilisation 51. Il peut être avantageux de disposer sur la conduite 27 un pot de garde de chlore, non représenté sur la figure 1.
  • La figure 2 illustre une variante de l'invention. Ici, le reformat est également mélangé avec l'effluent d'isomérisation mais cet effluent ne traverse pas le ballon séparateur 39 de la figure 1. Ici ce ballon est supprimé. Un naphta lourd est introduit dans l'unité par la conduite 1, traverse par la conduite 2, l'échangeur de chaleur 3 et par la conduite 4 traverse un four 5. A la sortie du four, le naphta lourd, cheminant par la conduite 4 est introduit dans un premier réacteur 6 de reformage renfermant ici un lit fixe de catalyseur. L'effluent du réacteur 6 est soutiré par la conduite 7 et traverse le four 5 avant d'être dirigé dans un deuxième réacteur 8 renfermant également sur la figure un lit fixe de catalyseur. L'effluent de ce deuxième réacteur, par la conduite 9 est envoyé aussi à travers le four 5 puis est introduit dans un troisième réacteur 10, renfermant un lit fixe de catalyseur. L'effluent du réacteur 10, soutiré par la conduite 11, passe à travers l'échangeur 3 et à travers la conduite 12, les refroidissements 13 et 15, les lignes 14 et 16, atteint un ballon séparateur 17 d'où l'on récupère, un fond, un reformat, par la conduite 18.
  • En tête du ballon séparateur 17, on soutire, par la conduite 21, un gaz essentiellement à base d'hydrogène. Une partie au moins de ce gaz peut éventuellement (hydrogène de recyclage) être renvoyé par la conduite 22, le compresseur 23 et la conduite 24, vers l'unité de reforming, après avoir été mélangé dans la conduite 2 avec la charge de naphta lourd. Une autre partie au moins de l'hydrogène de la conduite 21 est mélangée après passage par la conduite 25, au moins un compresseur 26 et la conduite 27 (conduite sur laquelle est éventuellement disposé un pot de garde de chlore), avec la charge de naphta léger introduite dans l'unité par la conduite 28. A noter que comme expliqué à propos de la figure 1, le contenu de la conduite 25 peut provenir de la conduite 24 donc être passé par le compresseur 23. Le mélange de naphta léger et d'hydrogène en provenance de la zone de reforming, traverse, par la ligne 29, l'échangeur 30, chemine par la conduite 31 et est chauffé en 32, dans la partie supérieure du four 5, donc par les fumées du four de refotming. Mais, comme pour la figure 1, on peut procéder à un chauffage indirect par production de vapeur d'eau et échange ou encore (comme indiqué sur la figure 1A) procéder à un chauffage par une partie au moins de l'effluent du dernier réacteur de reformage.
  • Ensuite, ce mélange cheminant dans la conduite 33, atteint le réacteur d'hydroisomérisation 34, qui ici renferme un lit fixe de catalyseur (ce pourrait être un lit mobile). L'effluent de la zone d'isomérisation, évacué par la conduite 35, traverse l'échangeur 30, circule par la conduite 36 à travers le refroidissement 37, et par la conduite 38, est introduit dans un ballon séparateur 40, puis est mélangé, (après avoir circulé dans la conduite 36, la zone de refroidissement 37 et la ligne 38) dans la conduite 39 avec le reformat soutiré du ballon séparateur 17 par la conduite 18 et envoyé au moyen de la pompe 19 dans la conduite 20. Par la ligne 41, en tête de ce ballon séparateur 40, on récupère un gaz riche en hydrogène. En fond du ballon séparateur 40, on récupère par la conduite 42, un mélange d'isomérisat et de reformat. Le mélange obtenu est envoyé dans la colonne de stabilisation 43. En fond de colonne, par la conduite 44, on récupère un mélange d'isomérisat et de reformat d'excellente qualité. En tête de colonne, on récupère par la conduite 45 des gaz légers, refroidis en 46, et traités dans le ballon séparateur 48. On recueille ainsi quelques hydrocarbures légers en phase vapeur dans la conduite 49 et des distillats légers en phase liquide dans les conduites 50 et 52; une partie de ces distillats sont recyclés par la conduite 51 en tête de la colonne de stabilisation 43.
  • Exemple:
    • A titre d'exemple, on a utilisé dans la conduite 1, une charge de naphtha lourd de 21 500 BPSD (environ 140 m3/heure) dont la composition est la suivante:
      Figure imgb0001
      Dans la conduite 28 on a utilisé une charge de naphtha léger de 6800 BPSD (environ 45 m3/heure) dont la composition est la suivante: (% en poids):
      Figure imgb0002
      Dans le cas de la Figure 1, on récupère dans la conduite 48 un gaz riche en hydrogène de composition suivante:
      Figure imgb0003
      Dans le cas de la Figure 2, on récupère dans la conduite 41 un gaz riche en hydrogène de composition suivante:
      Figure imgb0004
      Le produit, mélange d'isomérisat et de reformat de 25 175 BPSD (environ 166 m3/heure) est récupéré dans la conduite 52 dans le cas de la Figure 1, (44 dans le cas de la Figure 2).
    • Il a les caractéristiques suivantes:
      Figure imgb0005
      Les conditions opératoires étaient les suivantes.
      Figure imgb0006

Claims (8)

1. Procédé combiné d'hydroreformage d'un naphta lourd et d'hydroisomérisation d'un naphta léger, caractérisé en ce qu'une première charge constituée en majeure partie d'un naphta lourd est envoyée à travers au moins une zone de chauffage vers au moins deux zones d'hydroreformage catalytique disposées en série, l'effluent de chaque zone d'hydroreformage, sauf l'effluent de la dernière zone de reformage traversée par ladite première charge, circulant également à travers au moins une zone de chauffage, l'effluent de la dernière zone de reformage étant soumis à au moins un fractionnement en vue d'obtenir d'une part un reformat et d'autre part un gaz renfermant notamment de l'hydrogène, une partie de cet hydrogène étant recyclée vers les zones d'hydroreformage, une autre partie de cet hydrogène étant mélangée avec une deuxième charge constituée en majeure partie d'un naphta léger, le mélange ainsi obtenu étant préchauffé puis introduit dans une zone d'hydroisomérisation catalytique, le reformat et l'effluent de la zone d'hydroisomérisation étant recueillis ensemble et soumis à un fractionnement dans une même colonne de stabilisation en vue d'obtenir un mélange amélioré d'un isomérisat et d'un reformat, ledit procédé étant en outre caractérisé en ce que le catalyseur utilisé dans la zone d'hydroisomérisation renferme au moins une zéolite, l'hydroisomérisation étant effectuée en l'absence d'injection d'un halogène ou d'un composé halogéné dans la zone d'hydroisomérisation.
2. Procédé combiné d'hydroreformage d'un naphta lourd et d'hydroisomérisation d'un naphta léger, caractérisé en ce qu'une première charge constituée en majeure partie d'un naphta lourd est envoyée à travers au moins une zone de chauffage vers au moins deux zones d'hydroreformage catalytique disposées en série, l'effluent de chaque zone d'hydroreformage, sauf l'effluent de la dernière zone de reformage traversée par ladite première charge, circulant également à travers au moins une zone de chauffage, l'effluent de la dernière zone de reformage étant soumis à au moins un fractionnement en vue d'obtenir d'une part un reformat et d'autre part un gaz renfermant notamment de l'hydrogène, une partie de cet hydrogène étant recyclée vers les zones d'hydroreformage, une autre partie de cet hydrogène étant mélangée avec une deuxième charge constituée en majeure partie d'un naphta léger, le mélange ainsi obtenu étant préchauffé puis introduit dans une zone d'hydroisomérisation catalytique, ledit procédé étant en outre caractérisé en ce que l'effluent d'hydroisomérisation est soumis à au moins un fractionnement en vue d'obtenir d'une part un second courant d'un gaz renfermant notamment de l'hydrogène et d'autre part un isomérisat, et en ce que le second courant d'un gaz renfermant de l'hydrogène, est d'abord traité avec une partie au moins dudit reformat, puis le reformat est mélangé avec une partie au moins de l'isomérisat, l'ensemble reformat-isomérisat ainsi obtenu étant soumis à un fractionnement dans une même colonne de stabilisation en vue d'obtenir un mélange amélioré d'un isomérisat et d'un reformat, ledit procédé étant enfin caractérisé en ce que le catalyseur utilisé dans le zone d'hydroisomérisation renferme au moins une zéolite, l'hydroisomérisation étant effectuée en l'absence d'injection d'un halogène ou d'un composé halogène dans la zone d'hydroisomérisation.
3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que le catalyseur utilisé dans la zone d'hydroisomérisation renferme au moins un mélange d'une mordénite et d'une matrice.
4. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le catalyseur renferme en outre au moins un métal du groupe VIII de la classification périodique des éléments.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que, dans la zone d'hydroisomérisation, on utilise un catalyseur à base d'une mordénite à larges pores, adsorbant des molécules de diamètre cinétique supérieur à 6,6 x 10-10 m, ayant un rapport atomique Si/AI compris entre 5 et 50, une teneur en sodium inférieure à 0,2% en poids, par rapport à la totalité de la zéolite sèche, un volume de maille V, de la maille élémentaire, compris entre 2,78 et 2,73 nm3, une capacité d'adsorption de benzène supérieure à 5% poids par rapport au poids de zéolite sèche, la zéolite se présentant, en majeure partie, sous forme d'aiguilles.
6. Procédé selon la revendication 5, caractérisé en ce que l'on utilise un catalyseur à base d'une mordénite à larges pores, adsorbant des molécules de diamètre cinétique supérieur à 6,6 x 10-10 m, un rapport atomique Si/Ai compris entre 5,5 et 30, une teneur en sodium inférieure à 0,1% en poids par rapport à la totalité de zéolite sèche, un volume de la maille élémentaire compris entre 2,77 et 2,74 nm3, une capacité d'adsorption de benzène supérieure à 8% par rapport au poids de zéolite sèche, la zéolite se présentant en majeure partie sous forme d'aiguilles de longueur moyenne 5 x 10-6 m dont les faces, en majeure partie hexagonales, ont une longueur d'environ 1. x 10-6 m et une hauteur d'environ 0,3 x 10-6 m.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le naphta léger et les effluents de chaque zone de reformage, sauf l'effluent de la dernière zone de reformage, sont chauffés dans une même zone de chauffage.
8. Procédé selon la revendication 7, caractérisé en ce que le mélange du naphta léger et de ladite partie de l'hydrogène obtenu après fractionnement du reformat, est préchauffé directement à travers les fumées de la zone de chauffage.
EP87400645A 1986-04-16 1987-03-24 Procédé combiné d'hydroréformage et d'hydroisomérisation Expired - Lifetime EP0245124B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87400645T ATE49417T1 (de) 1986-04-16 1987-03-24 Kombiniertes verfahren fuer hydroreformierung und hydroisomerisierung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8605568A FR2602784B1 (fr) 1986-04-16 1986-04-16 Procede combine d'hydroreformage et d'hydroisomerisation
FR8605568 1986-04-16

Publications (2)

Publication Number Publication Date
EP0245124A1 EP0245124A1 (fr) 1987-11-11
EP0245124B1 true EP0245124B1 (fr) 1990-01-10

Family

ID=9334359

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87400645A Expired - Lifetime EP0245124B1 (fr) 1986-04-16 1987-03-24 Procédé combiné d'hydroréformage et d'hydroisomérisation

Country Status (10)

Country Link
US (1) US4911822A (fr)
EP (1) EP0245124B1 (fr)
JP (1) JP2544922B2 (fr)
AT (1) ATE49417T1 (fr)
CA (1) CA1325990C (fr)
DE (1) DE3761381D1 (fr)
DK (1) DK194487A (fr)
ES (1) ES2013764B3 (fr)
FR (1) FR2602784B1 (fr)
GR (1) GR3000274T3 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057635A (en) * 1990-02-08 1991-10-15 Uop Process for isomerizing olefins in gasoline streams
US5135639A (en) * 1990-05-24 1992-08-04 Uop Production of reformulated gasoline
US5294328A (en) * 1990-05-24 1994-03-15 Uop Production of reformulated gasoline
IT1275611B1 (it) * 1996-07-23 1997-09-05 Roberto Amadei Procedimento della produzione di benzine
US6284128B1 (en) * 1999-09-02 2001-09-04 Uop Llc Reforming with selective reformate olefin saturation
US20030141220A1 (en) * 2002-01-31 2003-07-31 O'rear Dennis J. Upgrading fischer-tropsch and petroleum-derived naphthas and distillates
US20030141221A1 (en) * 2002-01-31 2003-07-31 O'rear Dennis J. Upgrading Fischer-Tropsch and petroleum-derived naphthas and distillates
WO2003064022A1 (fr) * 2002-01-31 2003-08-07 Chevron U.S.A. Inc. Valorisation de naphtas et de distillats derives du petrole et de fischer-tropsch
US7033552B2 (en) * 2002-01-31 2006-04-25 Chevron U.S.A. Inc. Upgrading Fischer-Tropsch and petroleum-derived naphthas and distillates
US6863802B2 (en) * 2002-01-31 2005-03-08 Chevron U.S.A. Upgrading fischer-Tropsch and petroleum-derived naphthas and distillates
US20060235254A1 (en) * 2005-04-15 2006-10-19 Gartside Robert J Double bond hydroisomerization process
US7888541B2 (en) * 2005-04-15 2011-02-15 Catalytic Distillation Technologies Double bond hydroisomerization of butenes
US20060235255A1 (en) * 2005-04-15 2006-10-19 Gartside Robert J Double bond hydroisomerization process
US7576251B2 (en) * 2005-04-15 2009-08-18 Abb Lummus Global Inc. Process for the double bond hydroisomerization of butenes
JP4812439B2 (ja) * 2006-01-19 2011-11-09 石油コンビナート高度統合運営技術研究組合 石化ラフィネートからのベンゼン及びガソリン基材の製造方法
US20080110801A1 (en) * 2006-11-09 2008-05-15 Leon Yuan Process For Heating A Hydrocarbon Stream Entering A Reaction Zone With A Heater Convection Section
US7740751B2 (en) 2006-11-09 2010-06-22 Uop Llc Process for heating a stream for a hydrocarbon conversion process
US20100004493A1 (en) * 2008-07-02 2010-01-07 Porter John R Integrated Process
US8282814B2 (en) * 2009-03-31 2012-10-09 Uop Llc Fired heater for a hydrocarbon conversion process
RU2451058C1 (ru) * 2011-03-30 2012-05-20 Общество с ограниченной ответственностью "Научно-производственная фирма "ОЛКАТ" Способ получения высокооктанового компонента моторного топлива
US9321972B2 (en) * 2011-05-02 2016-04-26 Saudi Arabian Oil Company Energy-efficient and environmentally advanced configurations for naptha hydrotreating process
US8808534B2 (en) 2011-07-27 2014-08-19 Saudi Arabian Oil Company Process development by parallel operation of paraffin isomerization unit with reformer
KR101835928B1 (ko) * 2012-02-01 2018-03-07 사우디 아라비안 오일 컴퍼니 감소된 벤젠 가솔린을 생산하기 위한 촉매 개질 공정 및 시스템
RU2487161C1 (ru) * 2012-05-05 2013-07-10 Общество с ограниченной ответственностью "Научно-производственная фирма "ОЛКАТ" Способ получения высокооктанового бензина

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2946736A (en) * 1957-03-29 1960-07-26 Standard Oil Co Combination process for high-octane naphtha production
US3018244A (en) * 1958-12-18 1962-01-23 Kellogg M W Co Combined isomerization and reforming process
NL7016985A (fr) * 1970-11-19 1972-05-24
US3785955A (en) * 1971-12-01 1974-01-15 Universal Oil Prod Co Gasoline production process
NL171331C (nl) * 1972-04-25 1983-03-16 Shell Int Research Werkwijze voor het activeren van katalysatoren die geschikt zijn voor het isomeriseren van alifatische verzadigde koolwaterstoffen.
US3761392A (en) * 1972-05-08 1973-09-25 Sun Oil Co Pennsylvania Upgrading wide range gasoline stocks
FR2248314A1 (en) * 1973-10-18 1975-05-16 Inst Francais Du Petrole Selective hydrocracking of paraffins with mordenite catalyst - deactivated to reduce aromatics degradation
US3925503A (en) * 1975-02-06 1975-12-09 Grace W R & Co Isomerization of normal paraffins with hydrogen mordenite containing platinum and palladium
US4174270A (en) * 1977-11-03 1979-11-13 Cosden Technology, Inc. High severity process for the production of aromatic hydrocarbons
US4162212A (en) * 1978-08-30 1979-07-24 Chevron Research Company Combination process for octane upgrading the low-octane C5 -C6 component of a gasoline pool
US4181599A (en) * 1978-10-23 1980-01-01 Chevron Research Company Naphtha processing including reforming, isomerization and cracking over a ZSM-5-type catalyst
US4457832A (en) * 1983-01-19 1984-07-03 Chevron Research Company Combination catalytic reforming-isomerization process for upgrading naphtha
US4665273A (en) * 1986-02-14 1987-05-12 Uop Inc. Isomerization of high sulfur content naphthas
US4665272A (en) * 1985-09-03 1987-05-12 Uop Inc. Catalytic composition for the isomerization of paraffinic hydrocarbons

Also Published As

Publication number Publication date
FR2602784A1 (fr) 1988-02-19
FR2602784B1 (fr) 1988-11-04
DK194487A (da) 1987-10-16
GR3000274T3 (en) 1991-03-15
ES2013764B3 (es) 1990-06-01
ATE49417T1 (de) 1990-01-15
US4911822A (en) 1990-03-27
JPS62256889A (ja) 1987-11-09
DE3761381D1 (de) 1990-02-15
JP2544922B2 (ja) 1996-10-16
DK194487D0 (da) 1987-04-14
EP0245124A1 (fr) 1987-11-11
CA1325990C (fr) 1994-01-11

Similar Documents

Publication Publication Date Title
EP0245124B1 (fr) Procédé combiné d'hydroréformage et d'hydroisomérisation
FR2743079A1 (fr) Procede et dispositif d'hydrogenation selective par distillation catalytique comportant une zone reactionnelle a co-courant ascendant liquide-gaz
FR2776297A1 (fr) Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydrotraitement en lit fixe, une etape de conversion en lit bouillonnant et une etape de craquage catalytique
CN87105794A (zh) 烃类临氢转化催化剂的再生方法
EP0781831B1 (fr) Procédé de réduction sélective de la teneur en benzène et en composés insaturés légers d'une coupe d'hydrocarbures
EP0753562B1 (fr) Procédé de conversion du gaz de synthèse en phase liquide
EP1242568B1 (fr) Procede et installation pour la production d'aromatiques en lit mobile incluant une reduction du catalyseur
FR2741064A1 (fr) Procede de conversion de gaz de synthese en hydrocarbures
FR2852323A1 (fr) Nouveau procede de reformage regeneratif
FR2789691A1 (fr) Procede de synthese de distillat atmospherique comprenant l'utilisation de la technologie fischer-tropsch
JPH06271871A (ja) 高オクタン価ガソリンの製造方法
EP0794239B1 (fr) Conversion du gaz de synthèse en hydrocarbures en présence d'une phase liquide
EP0949316B1 (fr) Procédé de conversion d'hydrocarbures par traitement dans une zone de distillation associée à une zone réactionnelle et son utilisation en hydrogénation du benzène
EP0949315B1 (fr) Procédé de conversion d'hydrocarbures par traitement dans une zone de distillation associée à une zone réactionnelle, et son utilisation en hydrogenation du benzène
EP0980909B1 (fr) Procédé de conversion d'hydrocarbures et son utilisation en hydrogénation du benzène
EP1252259B1 (fr) Procede et dispositif pour la production d'aromatiques incluant une reduction du catalyseur
FR2787117A1 (fr) Procede de conversion d'hydrocarbures par traitement dans une zone de distillation associee a une zone reactionnelle comprenant le recontactage du distillat vapeur avec la charge, et son utilisation en hydrogenation du benzene
EP0787786A1 (fr) Procédé d'isomérisation de paraffines par distillation réactive
FR2802919A1 (fr) Procede et dispositif pour l'alkylation de l'isobutane par des olefines legeres
EP0787785A1 (fr) Procédé d'isomérisation de paraffines
FR2780300A1 (fr) Procede de traitement de gaz ou de liquides issus de reformage catalytique
EP0552072A1 (fr) Réduction de la teneur en benzène dans les essences
FR2835201A1 (fr) Integration de la reduction du catalyseur d'un procede de conversion catalytique et de la regeneration des masses adsorbantes intervenant dans la purification de l'hydrogene necessaire a la reduction
FR2926819A1 (fr) Distribution catalytique dans le procede de reformage regeneratif
FR2845372A1 (fr) Procede de recuperation d'hydrogene dans un effluent hydrocarbone gazeux par reaction chimique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19871127

17Q First examination report despatched

Effective date: 19880729

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 49417

Country of ref document: AT

Date of ref document: 19900115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3761381

Country of ref document: DE

Date of ref document: 19900215

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3000274

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930112

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930312

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930331

Year of fee payment: 7

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940324

Ref country code: AT

Effective date: 19940324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EAL Se: european patent in force in sweden

Ref document number: 87400645.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20011228

Year of fee payment: 16

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020107

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020227

Year of fee payment: 16

Ref country code: CH

Payment date: 20020227

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020327

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020402

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020404

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030325

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

BERE Be: lapsed

Owner name: *INSTITUT FRANCAIS DU PETROLE

Effective date: 20030331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031002

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030324

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050324