EP0781831B1 - Procédé de réduction sélective de la teneur en benzène et en composés insaturés légers d'une coupe d'hydrocarbures - Google Patents

Procédé de réduction sélective de la teneur en benzène et en composés insaturés légers d'une coupe d'hydrocarbures Download PDF

Info

Publication number
EP0781831B1
EP0781831B1 EP96402910A EP96402910A EP0781831B1 EP 0781831 B1 EP0781831 B1 EP 0781831B1 EP 96402910 A EP96402910 A EP 96402910A EP 96402910 A EP96402910 A EP 96402910A EP 0781831 B1 EP0781831 B1 EP 0781831B1
Authority
EP
European Patent Office
Prior art keywords
zone
hydrogenation
process according
hydrogen
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96402910A
Other languages
German (de)
English (en)
Other versions
EP0781831A1 (fr
Inventor
Christine Travers
Jean Cosyns
Charles Cameron
Jean-Luc Nocca
Francoise Montecot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0781831A1 publication Critical patent/EP0781831A1/fr
Application granted granted Critical
Publication of EP0781831B1 publication Critical patent/EP0781831B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/08Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a hydrogenation of the aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the invention relates to a process for the selective reduction of the content of light unsaturated compounds (that is to say containing at most six carbon atoms per molecule) including benzene, of a hydrocarbon fraction essentially comprising at least 5 carbon atoms per molecule, without appreciable loss of the octane number, said process comprising passing said cut through a distillation zone associated with a hydrogenation reaction zone, followed by the passage of part of the effluent of the distillation zone mainly comprising C 5 -C 6 hydrocarbons, that is to say containing 5 and / or 6 carbon atoms per molecule, in a zone for isomerization of paraffins.
  • Benzene has carcinogenic properties and is therefore required to limit to the maximum any possibility of polluting the ambient air, in particular by excluding it practically automotive fuels.
  • fuels reformulated must not contain more than 1% benzene; in Europe, even if the specifications are not yet as strict, it is recommended to tighten gradually towards this value.
  • Olefins have been recognized as among the most common hydrocarbons reagents in the photochemical reaction cycle with nitrogen oxides, which produced in the atmosphere and which leads to the formation of ozone. An elevation of the concentration of ozone in the air can cause respiratory problems.
  • the benzene content of a gasoline is very largely dependent on that of the reformate component of this species.
  • the reformate results from a treatment naphtha catalyst intended to produce aromatic hydrocarbons, mainly comprising from 6 to 9 carbon atoms in their molecule and whose very high octane number gives gasoline its knock properties.
  • a first way consists in limiting, in the naphtha constituting the charge of a catalytic reforming unit, the content of benzene precursors, such as cyclohexane and methylcyclopentane. This solution effectively allows significantly reduce the benzene content of the effluent from the reforming unit but cannot be sufficient on its own when it comes to descending to levels as well low than 1%.
  • a second way consists in eliminating, by distillation, a fraction slight reformate containing benzene. This solution leads to a loss of around 15 to 20% of hydrocarbons which could be used in gasoline.
  • a third way is to extract the benzene present in the effluent from the unit reforming.
  • Benzene from a reformate can also be hydrogenated to cyclohexane. Since it is impossible to selectively hydrogenate benzene from a mixture hydrocarbons also containing toluene and xylenes, so it's necessary to fractionate this mixture beforehand so as to isolate a cut containing only benzene, which can then be hydrogenated. It also been described a process in which the benzene hydrogenation catalyst is included in the rectification zone of the distillation column which separates the benzene from other aromatics (Benzene Reduction - Kerry Rock and Gary Gildert CDTECH - 1994 Conference on Clean Air Act Implementation and Reformulated Gasoline - Oct. 94), which saves money of equipment.
  • the hydrogenation of benzene from a reformate leads to a loss of octane number.
  • This loss of octane can be compensated by the addition of compounds of index high octane, for example ethers such as MTBE or ETBE, or branched paraffinic hydrocarbons.
  • ethers such as MTBE or ETBE
  • branched paraffinic hydrocarbons can be generated from the reformate itself, by isomerization of linear paraffins.
  • the isomerization catalysts for linear paraffins and branched paraffins are not inactive vis-à-vis hydrocarbons from other chemical families.
  • the method according to the invention avoids the disadvantages mentioned, that is to say it allows to produce at a lower cost, from a raw reformate, a reformate depleted in benzene or, if necessary, almost completely stripped of benzene and others unsaturated hydrocarbons containing not more than six carbon atoms per molecule such as light olefins, without significant loss of yield, and with very little loss or gain in octane rating.
  • the process is characterized by the integration of the three distillation operations, of hydrogenation and isomerization arranged and operated so as to avoid less in part, preferably in most part, training, by azeotropy with benzene, cyclohexane and isoparaffins with 7 carbon atoms by molecule, in the distillate which is directed to isomerization. So the process according to the invention at least partially performs the selective hydrogenation of benzene and of any unsaturated compound comprising not more than six carbon atoms per molecule and different from benzene, possibly present in the feed.
  • the charge which feeds the distillation zone is introduced into said zone generally at least at a level of said area, preferably mainly at one level of said area.
  • the distillation zone generally comprises at least one column provided with at least minus one internal distillation chosen from the group formed by the trays, the bulk packings and structured packings, as known to man of the trade, such that the total overall efficiency is generally at least equal to five theoretical stages.
  • the reaction zone is at least partially internal to the distillation
  • the rectification zone or the exhaustion zone, and preferably the exhaustion zone can usually be in at least one column different from the column comprising the internal part of the reaction zone.
  • the hydrogenation reaction zone generally comprises at least one bed hydrogenation catalytic, preferably from 1 to 4 catalytic bed (s); in the case where at least two catalytic beds are incorporated in the zone distillation, these two beds are optionally separated by at least one internal distillation.
  • the hydrogenation reaction zone performs at least partially the hydrogenation of the benzene present in the feed, generally in such a way that the benzene content of the overhead effluent is at the maximum equal to a certain content, and said reaction zone achieves at least in part, preferably for the most part, the hydrogenation of any unsaturated compound comprising at most six carbon atoms per molecule and different from benzene, possibly present in the load.
  • the method according to the invention is such that the hydrogenation reaction zone is at least in part, of preferably entirely, internal to the distillation zone. So, for the part of the reaction zone internal to the distillation zone, the liquid sample is naturally made by flow in the part of the internal reaction zone to the distillation zone, and the reintroduction of the effluent into the distillation zone is done also naturally by flow of the liquid from the reaction zone internal to the distillation zone so as to ensure the continuity of the distillation.
  • the method according to the invention is preferably such that the flow of the liquid to be hydrogenated is co-current to the flow of the gas stream comprising hydrogen, for any catalytic bed in the internal part of the zone hydrogenation, and even more preferably such as the flow of liquid to hydrogenate is co-current to the flow of the gas stream comprising hydrogen and such that the distillation vapor is separated from said liquid, for any bed catalytic of the internal part of the hydrogenation zone.
  • the method according to the invention is such that the area hydrogenation reaction is at least in part, preferably in whole, external to the distillation zone. Then the effluent from at least one catalytic bed of the external part of the hydrogenation zone is generally reintroduced substantially close to a level of sampling, preferably the level of sample which fed said catalytic bed.
  • the process according to the invention comprises from 1 to 4 level (s) of sampling which feed (s) the part external of the hydrogenation zone. So two cases can arise.
  • the external part of the hydrogenation zone is supplied by a single level of withdrawal, and then, if said part comprises at least two beds catalytic distributed in at least two reactors, said reactors are arranged in series or in parallel.
  • the external part of the hydrogenation zone is supplied by at least two levy levels.
  • the method according to the invention is such that the hydrogenation zone is both partially incorporated into the hydrogenation zone distillation, i.e. internal to the distillation zone, and partially external to the distillation zone.
  • the hydrogenation zone comprises at least two catalytic beds, at least one catalytic bed being internal at the distillation zone, and at least one other catalytic bed being external to the zone distillation.
  • each catalytic bed is supplied by a single level of sampling, preferably associated with a single level where the effluent said catalytic bed of the external part of the hydrogenation zone is reintroduced, said level of withdrawal being distinct from the level of withdrawal which supplies the other (s) catalytic bed (s).
  • the liquid to be hydrogenated either partially, or totally, first circulates in the external part of the area hydrogenation then the internal part of said zone.
  • the part of the area reaction internal to the distillation zone has the characteristics described in the first embodiment.
  • the part of the reaction zone external to the zone distillation has the characteristics described in the second embodiment.
  • the method according to the invention is such that the flow of the liquid to be hydrogenated is co-current or counter-current, from preferably co-current, to the flow of the gas stream comprising hydrogen, for any catalytic bed in the hydrogenation zone.
  • the theoretical molar ratio of hydrogen necessary for the desired conversion of benzene is 3.
  • the quantity of hydrogen distributed, in the gas flow, before or in the zone of hydrogenation is optionally in excess with respect to this stoichiometry, and all the more so since it is necessary to hydrogenate, in addition to the benzene present in the feed, at least partially any unsaturated compound comprising at most six carbon atoms per molecule and present in said charge.
  • the excess hydrogen if it exists, can be advantageously recovered, for example according to one of the techniques described below. According to a first technique, the excess hydrogen which leaves the top of the distillation zone is recovered, then compressed and reused in the hydrogenation zone.
  • the excess hydrogen which leaves the top of the distillation zone is recovered, then compressed and reused in the isomerization zone.
  • the hydrogen used according to the invention for the hydrogenation of unsaturated compounds containing at most six carbon atoms per molecule, and included in the flux gaseous can come from all sources producing hydrogen at least 50 % purity volume, preferably at least 80% purity volume and so even more preferred at least 90% purity volume.
  • hydrogen from catalytic reforming processes, methanation, P.S.A. (alternating pressure adsorption), electrochemical generation, steam cracking or steam reforming.
  • the hydrogen injected into the hydrogenation process passes first by the isomerization step. In such a case, hydrogen is injected into the unit isomerization to delay deactivation of the isomerization catalyst by carbon deposition. Unconsumed hydrogen from the isomerization zone can then be purified and used in the hydrogenation unit.
  • One of the preferred embodiments of the method according to the invention is such that the bottom effluent from the distillation is mixed at least in part with the isomerization effluent.
  • the mixture thus obtained can, after possible stabilization, be used as fuel either directly, or by incorporation into the fuel fractions.
  • the operating conditions are judiciously chosen, in relation to the nature of the load and other parameters known to the specialist in reactive distillation, such as the distillate / charge ratio, in such a way that the overhead effluent from the distillation zone is practically free of cyclohexane and isoparaffins comprising 7 carbon atoms per molecule.
  • the method according to the invention is generally and preferably such that the overhead effluent from the distillation zone is practically free of cyclohexane and isoparaffins comprising 7 carbon atoms per molecule.
  • the hydrogenation catalyst can be placed in said part incorporated according to the different technologies proposed to drive catalytic distillations. They are essentially of two types.
  • reaction and distillation proceed simultaneously in the same physical space, as taught for example patent application WO-A-90 / 02.603, patents US-A-4,471,154, US-A-4.475.005, US-A-4.215.011, US-A-4.307.254, US-A-4.336.407, US-A-4.439.350, US-A-5.189.001, US-A-5.266.546, US-A-5.073.236, US-A-5.215.011, US-A-5.275.790, US-A-5.338.517, US-A-5.308.592, US-A-5,236,663, US-A-5,338,518, as well as patents EP-B1-0,008,860, EP-B1-0,448,884, EP-B1-0,396,650 and EP-B1-0,494,550 and the patent application EP-A1-0.559.511.
  • the catalyst is then generally in contact with a descending liquid phase, generated by the reflux introduced at the top of the zone distillation, and with an ascending vapor phase, generated by the vapor of rewetting introduced at the bottom of the zone.
  • the flow gaseous comprising hydrogen necessary for the reaction zone, for the carrying out the process according to the invention, could be joined to the vapor phase, substantially at the inlet of at least one catalytic bed of the reaction zone.
  • the catalyst is arranged in such a way that reaction and distillation generally proceed independently and consecutive, as taught for example by patents US-A-4,847,430, US-A-5,130,102 and US-A-5,368,691, the steam from the distillation zone does not practically not passing through any catalytic bed in the reaction zone.
  • the process according to the invention is generally such that the flow of the liquid to hydrogenate is co-current to the flow of the gas stream comprising hydrogen and such that the distillation vapor is practically not in contact with the catalyst (which generally translates in practice into the fact that said vapor is separated from said liquid to be hydrogenated), for any catalytic bed of the part internal of the hydrogenation zone.
  • any catalytic bed of the part of the reaction zone which is in the distillation zone is generally such that the gas stream comprising the hydrogen and the flow of the liquid which will react circulate cocurrently, generally ascending, through said bed, even if overall, in the distillation zone catalytic, the gas stream comprising hydrogen and the liquid stream which will react flow against the tide.
  • Such systems generally include less a liquid distribution device which can be for example a liquid distributor, in any catalytic bed in the reaction zone.
  • these technologies were designed for reactions catalytic agents intervening between liquid reagents, they cannot be suitable without modification for a catalytic hydrogenation reaction, for which one of the reactants, hydrogen, is in the gaseous state.
  • the part internal of the hydrogenation zone includes at least one distribution device liquid and at least one gas flow distribution device comprising hydrogen, for any catalytic bed in the internal part of the zone hydrogenation.
  • the flow distribution device gas containing hydrogen is disposed before the dispensing device liquid, and therefore before the catalytic bed.
  • the gas flow distribution device comprising hydrogen is disposed at the level of the liquid distribution device, so that the gas flow comprising hydrogen is introduced into the liquid before the catalytic bed.
  • the gas flow distribution device comprising hydrogen is disposed after the distribution device for liquid, and therefore within the catalytic bed, preferably not far from said device distribution of the liquid in said catalytic bed.
  • the terms "before” and “after” used above are understood with respect to the direction of circulation of the liquid which will cross the catalytic bed, that is to say generally in the ascending direction.
  • One of the preferred embodiments of the method according to the invention is such that the catalyst of the internal part of the hydrogenation zone is arranged in the zone reaction according to the basic device described in patent US-A-5,368,691, arranged so that any internal catalytic bed in the distillation zone is supplied by a gas stream comprising hydrogen, regularly distributed at its base, for example according to one of the three techniques described above.
  • the distillation zone consists of a single column and if the hydrogenation zone is entirely internal to said column, the catalyst included in any catalytic bed, internal to the distillation zone, is then in contact with an ascending liquid phase, generated by the reflux introduced at the top of the distillation column, and with the gas stream comprising hydrogen which flows in the same direction as the liquid; contact with the vapor phase of the distillation is avoided by passing it through at least one chimney specially furnished.
  • the operating conditions of the part of the hydrogenation zone internal to the distillation zone are linked to the operating conditions of the distillation.
  • the zone head temperature is generally between 40 and 180 ° C. and the zone bottom temperature is generally between 120 and 280 ° C.
  • the hydrogenation reaction is carried out under conditions which are most generally intermediate between those established at the head and at the bottom of the distillation zone, at a temperature between 100 and 200 ° C., and preferably between 120 and 180 ° C. , and at a pressure between 2 and 20 bar, preferably between 4 and 10 bar.
  • the liquid subjected to hydrogenation is supplied by a gas stream comprising hydrogen, the flow rate of which depends on the concentration of benzene in said liquid and, more generally, unsaturated compounds containing at most six carbon atoms per molecule of the charge. from the distillation zone.
  • the catalyst placed in said external part is according to any known technology skilled in the art under operating conditions (temperature, pressure, etc.) independent or not, preferably independent, of the operating conditions from the distillation zone.
  • the pressure required for this hydrogenation stage is generally between 1 and 60 bar absolute, preferably between 2 and 50 bar and even more preferably between 5 and 35 bar.
  • the operating temperature of the external part of the hydrogenation zone is generally between 100 and 400 ° C, preferably between 120 and 350 ° C and preferably between 140 and 320 ° C.
  • the space velocity within the external part of said hydrogenation zone, calculated with respect to the catalyst, is generally between 1 and 50 and more particularly between 1 and 30 h -1 (volume of charge per volume of catalyst and per hour ).
  • the hydrogen flow rate corresponding to the stoichiometry of the hydrogenation reactions involved is between 0.5 and 10 times said stoichiometry, preferably between 1 and 6 times said stoichiometry and even more preferably between 1 and 3 times said stoichiometry .
  • the temperature and pressure conditions can also, within the scope of the process of the present invention, be between those which are established at the top and at the bottom of the distillation zone.
  • the catalyst used in the hydrogenation zone generally comprises at least one metal chosen from the group formed by nickel and platinum, used as it is or preferably deposited on a support.
  • the metal should generally be under reduced form at least for 50% by weight of its whole. But any other hydrogenation catalyst known to those skilled in the art can also be selected.
  • the catalyst can advantageously contain at least one halogen in a proportion by weight relative to the catalyst of between 0.2 and 2%.
  • chlorine or fluorine or a combination of the two is used in a proportion relative to the total weight of catalyst of between 0.2 and 1.5%.
  • a catalyst is generally used such that the average size of the platinum crystallites is less than 60.10 -10 m, preferably less than 20.10 -10 m, even more so preferred less than 10.10 -10 m.
  • the total proportion of platinum relative to the total weight of catalyst is generally between 0.1 and 1% and preferably between 0.1 and 0.6%.
  • the proportion of nickel relative to the total weight of catalyst is between 5 and 70%, more particularly between 10 and 70% and preferably between 15 and 65%.
  • a catalyst such that the average size of the nickel crystallites is less than 100.10 -10 m, preferably less than 80.10 -10 m, even more preferably less than 60.10 10 m.
  • the support is generally chosen from the group formed by alumina, silica-aluminas, silica, zeolites, activated carbon, clays, aluminous cements, rare earth oxides and alkaline earth oxides, alone or in mixture.
  • a support based on alumina or silica is preferably used, with a specific surface area of between 30 and 300 m 2 / g, preferably between 90 and 260 m 2 / g.
  • the isomerization catalyst used in the isomerization zone according to the present invention is generally of two types. But any other catalyst isomerization known to those skilled in the art can also be chosen.
  • the first type of catalyst is based on alumina.
  • it includes minus one metal from group VIII of the periodic table and one support comprising alumina.
  • it further comprises at least one halogen, preferably chlorine.
  • a preferred catalyst according to the present invention comprises at least one group VIII metal deposited on a support consisting of eta alumina and / or gamma alumina, that is to say that for example said support consists of alumina eta and gamma alumina, the alumina eta content being between 85 and 95% by weight relative to the support, preferably between 88 and 92% by weight, and even more preferably between 89 and 91% by weight, the complement to 100% by weight of the support consisting of gamma alumina.
  • the catalyst support can also for example consist essentially gamma alumina.
  • the group VIII metal is preferably chosen from the group formed by platinum, palladium and nickel.
  • the alumina was optionally used in the present invention has a specific surface generally between 400 and 600 m 2 / g and preferably between 420 and 550 m 2 / g, and a total pore volume generally between 0.3 and 0 , 5 cm 3 / g and preferably between 0.35 and 0.45 cm 3 / g.
  • the gamma alumina optionally used in the present invention generally has a specific surface of between 150 and 300 m 2 / g and preferably between 180 and 250 m 2 / g, a total pore volume generally between 0.4 and 0.8 cm 3 / g and preferably between 0.45 and 0.7 cm 3 / g.
  • alumina when used as a mixture, are mixed and shaped, in proportions defined by any known technique of a person skilled in the art, for example by extrusion through a die, by pastillage or coating.
  • a second type of catalyst used in the isomerization zone according to the process of the present invention is a zeolite-based catalyst, that is to say comprising at least one group VIII metal and a zeolite.
  • zeolite-based catalyst that is to say comprising at least one group VIII metal and a zeolite.
  • Different zeolites can be used for said catalyst; said zeolite is preferably chosen from the group formed by mordenite or omega ⁇ zeolite.
  • Use is preferably made of a mordenite having an Si / Al (atomic) ratio of between 5 and 50 and preferably between 5 and 30, a sodium content of less than 0.2% and preferably of less than 0.1% ( relative to the weight of dry zeolite), a volume of mesh V of the elementary mesh of between 2.78 and 2.73 nm 3 and preferably between 2.77 and 2.74 nm 3 , an absorption capacity of benzene greater than 5% and preferably greater than 8% (relative to the weight of dry solid).
  • the mordenite thus prepared is then mixed with a generally amorphous matrix (alumina, silica alumina, kaolin, ...) and shaped by any method known to those skilled in the art (extrusion, pelletizing, coating).
  • the mordenite content of the support thus obtained must be greater than 40% and preferably greater than 60% by weight.
  • a catalyst based on an omega ⁇ or mazzite zeolite has a SiO 2 / Al 2 O 3 molar ratio of between 6.5 and 80, preferably between 10 and 40, a sodium content by weight of less than 0.2%, preferably of less than 0.1%, per relative to the weight of dry zeolite.
  • Its porous distribution generally comprises between 5 and 50% of the pore volume contained in pores with radius (measured by the BJH method) located between 1.5 and 14 nm, preferably between 2.0 and 8.0 nm (mesopores).
  • its DX crystallinity level is greater than 60%.
  • the zeolitic support thus obtained has a specific surface generally between 300 and 550 m 2 / g and preferably between 350 and 500 m 2 / g and a pore volume generally between 0.3 and 0.6 cm 3 / g and of preferably between 0.35 and 0.5 cm 3 / g.
  • At least one hydrogenating metal from group VIII preferably chosen from the group formed by platinum, palladium and nickel, is then deposited on this support, by any technique known to a person skilled in the art, for example in the case of platinum by anion exchange in the form of hexachloroplatinic acid when the support is alumina and by cation exchange with platinum chloride tetramine when the support is a zeolite.
  • the content by weight is between 0.05 and 1% and preferably between 0.1 and 0.6%.
  • the content by weight is between 0.1 and 10% and preferably between 0.2 and 5%.
  • the isomerization catalyst thus prepared can be reduced under hydrogen.
  • said catalyst is subjected to a halogenation treatment, preferably chlorination, with any compound halogenated, preferably chlorinated, known to those skilled in the art such as for example carbon tetrachloride or perchlorethylene.
  • the halogen content, preferably in chlorine, the final catalyst is preferably between 5 and 15% by weight and preferably between 6 and 12% by weight.
  • This treatment halogenation, preferably chlorination, of the catalyst can be carried out either directly in the unit before injection of the charge ("in-situ") or off site. In in such a case, it is also possible to carry out the halogenation treatment, chlorination preference, prior to catalyst reduction treatment under hydrogen.
  • the operating conditions used in the isomerization zone are generally those described below, depending on the type of catalyst.
  • the temperature is generally between 80 and 300 ° C and preferably between 100 and 200 ° C.
  • the partial pressure of hydrogen is between 0.1 and 70 bar and preferably between 1 and 50 bar.
  • the space velocity is between 0.2 and 10, preferably between 0.5 and 5 liters of liquid hydrocarbons per liter of catalyst per hour.
  • the molar ratio of hydrogen to hydrocarbons at the entrance to the zone isomerization is such that the molar ratio of hydrogen to hydrocarbons in the isomerate is greater than 0.06 and preferably between 0.06 and 10.
  • the temperature is generally between 200 and 300 ° C and preferably between 230 and 280 ° C
  • the partial pressure of hydrogen is between 0.1 and 70 bar and preferably between 1 and 50 bar.
  • the space velocity is generally between 0.5 and 10, preferably between 1 and 5 liters of liquid hydrocarbons per liter of catalyst per hour.
  • the report molar hydrogen on hydrocarbons in the isomerate can vary between wide limits and is generally between 0.07 and 15 and preferably between 1 and 5.
  • FIGS. 1 to 3 are each an illustration of a possibility of carrying out the method according to the invention. Similar devices are shown by the same figures in all the figures.
  • FIG. 1 A first embodiment of the process is shown in FIG. 1.
  • the crude C 5 + reformate generally containing small quantities of C 4 - hydrocarbons, is sent to a column 2 by line 1.
  • Said column contains distillation internals, which are for example in the case shown in Figure 1 of the plates or the lining, represented in part by dotted lines in said figure. It also contains at least one internal catalytic 3 containing a hydrogenation catalyst, which can be alternated with the internal distillation.
  • the catalytic internals are supplied at their base, by lines 4c and 4d, by hydrogen coming from lines 4, then 4a and 4b.
  • the least volatile fraction of the reformate consisting mainly of hydrocarbons with 7 carbon atoms and more, is recovered by line 5, reboiled in exchanger 6 and evacuated by line 7. Steam reboiling is reintroduced into the column by line 8.
  • the vapor of light hydrocarbons that is to say comprising mainly 6 carbon atoms and less per molecule, is sent by line 9 into a condenser 10 then in a flask 11 where there is a separation between a liquid phase and a vapor phase mainly consisting of excess hydrogen possibly sent by lines 16 then 4a then 4b then 4c or 4d.
  • the vapor phase is evacuated from the balloon by lines 14 then 15. A fraction is possibly recycled to the column by line 16, after being put back in pressure by means of a device not shown in FIG. 1.
  • the liquid phase of the flask 11 is partly returned, by line 12, to the top of column to ensure reflux.
  • the other part is directed by lines 13 then 17 to the isomerization reactor 18.
  • a stream of hydrogen is there possibly added by lines 4 then 4a.
  • the isomerate is recovered by the line 19, cooled, and sent to a flask 20 where a vapor phase separates consisting essentially of hydrogen, which is evacuated by lines 22 then 23, and possibly recycled after purification to the hydrogen circuit by the line 24 then by lines 4a, 4b, and 4c or 4d.
  • the liquid phase is drawn off via line 21 and constitutes, after stabilization if necessary, a component for essences, almost free of compounds unsaturated comprising at most 6 carbon atoms per molecule, of octane number Student.
  • the crude C 5 + reformate is sent by line 1 to a distillation column 2, provided with distillation internals which are, for example in the case of FIG. 2, distillation plates, as well as a withdrawal (or sampling) plate of liquid phase.
  • the liquid phase withdrawn from the withdrawal plate by line 25 is brought into contact with hydrogen supplied by lines 4, 4a and 4b, and directed to a hydrogenation reactor 33.
  • the hydrogenation reactor can operate either by upward flow, ie downward flow as shown in FIG. 2.
  • the effluent from this reactor is recovered by line 26 and recycled to the distillation column by lines 27 then 32, generally in the upper part of the distillation zone located under the racking plate near said plate. It is generally considered that a maximum of four hydrogenation reactors can constitute the hydrogenation zone, in the case where it is external to the distillation zone, regardless of the number of sampling level (s).
  • all or part of the reactor effluent recovered by line 26 is cooled (exchanger not shown) and directed by line 28 to the balloon 29 where a vapor phase rich in hydrogen separates, evacuated by the line 30, and a liquid phase which is recycled to column 2 by lines 31 and 32.
  • the head and bottom column effluents are treated as described above. for the first realization of the process.
  • the area of hydrogenation is shared between an internal part of the distillation column, as described for the first version of the process, and a part external to this column, as described for the second version of the process.
  • a metal distillation column with a diameter of 50 mm is used, made adiabatic by heating envelopes whose temperatures are regulated so as to reproduce the temperature gradient which is established in the column.
  • the column includes, from head to toe: a zone of rectification composed of 11 perforated trays with weir and descent, one hydrogenating catalytic distillation zone and a compound exhaustion zone of 63 perforated trays.
  • the hydrogenating catalytic distillation zone is consisting of three catalytic distillation doublets, each doublet being formed by a catalytic cell surmounted by three plates perforated. The detail of construction of a catalytic cell as well as its arrangement in the column are shown schematically for information in Figure 4.
  • the catalytic cell 41 consists of a cylindrical container with a flat bottom, of a outer diameter 2 mm lower than the lower diameter of the column. She is provided at its lower part, above the bottom, with a grid 42 which serves both support for the catalyst and liquid distributor for hydrogen, and its upper part, of a catalyst retaining grid 43, the height of which can be varied.
  • the catalyst 44 fills the entire volume between these two grids.
  • the catalytic cell receives the liquid from the upper distillation stage 45, by the descent 46. After having traversed the cell in the ascending direction, the liquid is discharged by overflow through the descent 47 and flows onto the tray lower distillation 48.
  • the vapor from the lower plate 48 borrows the central chimney 49 integral with the cell, entering through orifices 50 (a only visible in the figure) and emerging under the upper plate 45 by orifices 51 (only one visible in the figure).
  • Hydrogen is introduced at the foot of the catalytic cell via the tubing 52, then through the orifices 53 (six in total) distributed on the periphery of the cell, in the immediate vicinity of the bottom. Seals sealing 54 prevent any hydrogen leakage before arriving on the bed catalytic.
  • Each of the three cells is packed with 36 g of nickel catalyst sold by the PROCATALYSE under the reference LD 746.
  • 250 g / h of a reformate are introduced essentially hydrocarbons having at least 5 carbon atoms in their molecule, the composition of which is presented in the second column of the table 1.
  • a flow rate of 4.5 Nl / h is also introduced at the base of each cell. hydrogen.
  • the column is brought into operation by establishing an equal reflux rate at 5 and regulating the bottom temperature at 195 ° C and the absolute pressure at 6 bar.
  • the distillate is sent together with hydrogen, with a molar ratio hydrogen / hydrocarbons set at 0.125, in an isomerization reactor containing 57 g of platinum-based catalyst on chlorinated alumina, sold by the company PROCATALYSE under the reference IS612A, operating at a temperature of 150 ° C and a pressure of 30 bar.
  • the isomerization reactor or isomerate effluent has the composition presented in the last column of Table 1.
  • the last three lines of table 1 show the octane numbers RON (Research), MON (Engine) and (RON + MON) / 2 (Medium octane) of the reformate, column effluents and isomerate .
  • the isomerate has an octane index of 3 points higher than the distillate, and can be valued as a fuel component, provided that it is stabilized, that is to say, the rid by distillation of the 3% of constituents very volatiles (C 3 - ) formed during isomerization, mainly by decomposition of isoparaffins with 7 carbon atoms per molecule.
  • compositions (% by weight) and octane numbers of the different streams for example 1 Reformate Residue Distillate Isomerate Hydrocarbons C6 - 26.4 0.20 94.9 97.9 of which: C3- - - - 3.0 olefins 0.19 - - - benzene 4.70 - 0.48 - cyclohexane 0.08 0.19 16.3 6.85 Hydrocarbons C7 + 73.6 99.8 5.1 2.1 of which: isoC7 9.47 11.1 5.1 2.1 toluene 19.7 27.2 - - xylene 20.1 27.7 - - Total 100 100 100 100 100 100 RON 95.5 100.1 77.6 80.5 MY 85.8 89.1 74.5 77.8 (RON + MON) / 2 90.6 94.6 76.1 79.1
  • Example 1 The process described in Example 1 is reproduced, with the same apparatus, the same hydrogenation and isomerization catalysts, and the same conditions operating, except for the distillation column, whose set point for regulating the bottom temperature is fixed at 188 ° C. So the head effluent of the distillation zone is practically free of cyclohexane and of isoparaffins with 7 carbon atoms per molecule.
  • a residue and a distillate are collected at the bottom and at the top of the distillation column, respectively with a flow rate of 195.7 and 54.2 g / h, the compositions and the octane numbers are presented in the third and fourth columns of the table 2.
  • the last column of the table shows the composition and octane numbers of the isomerate.
  • the distillate Compared to Example 1, the distillate has a much lower cyclohexane content and a very low content of isoparaffins with 7 carbon atoms per molecule. Its isomerization allows the average octane number to be raised by more than 10 points, practically without loss in the form of very volatile products (C 3 - ).
  • a reconstituted gasoline is obtained which is almost free of benzene and olefins, having an average octane number equal to 90.8, ie substantially higher than that of the starting reformate, and without significant loss of yield.
  • compositions (% by weight) and octane numbers of the different streams for example 2 Reformate Residue Distillate Isomerate Hydrocarbons C6 - 26.4 6.1 99.9 99.9 of which: C3- - - - 0.08 olefins 0.19 - - - benzene 4.70 0.01 0.54 - cyclohexane 0.08 5.83 0.43 1.27 Hydrocarbons C7 + 73.6 93.9 0.18 0.1 of which: isoC7 9.47 12.1 0.18 0.1 toluene 19.7 25.2 - - xylene 20.1 25.6 - - Total 100 100 100 100 100 100 RON 95.5 98.5 72.5 83.3 MY 85.8 87.6 71.6 82.3 (RON + MON) / 2 90.6 93.1 72.1 82.8

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

L'invention concerne un procédé de réduction sélective de la teneur en composés insaturés légers (c'est-à-dire contenant au plus six atomes de carbone par molécule) dont le benzène, d'une coupe d'hydrocarbures comportant essentiellement au moins 5 atomes de carbone par molécule, sans perte sensible de l'indice d'octane, ledit procédé comprenant le passage de ladite coupe dans une zone de distillation associée à une zone réactionnelle d'hydrogénation, suivi du passage d'une partie de l'effluent de la zone de distillation comprenant principalement des hydrocarbures C5-C6, c'est-à-dire contenant 5 et/ou 6 atomes de carbone par molécule, dans une zone d'isomérisation de paraffines.
Compte tenu de la nocivité reconnue du benzène et des oléfines, composés insaturés, la tendance générale est de réduire la teneur de ces constituants dans les essences.
Le benzène a des propriétés cancérigènes et il est par conséquent exigé de limiter au maximum toute possibilité de polluer l'air ambiant, notamment en l'excluant pratiquement des carburants automobiles. Aux Etats-Unis les carburants reformulés ne doivent pas contenir plus de 1% de benzène; en Europe, même si les spécifications ne sont pas encore aussi sévères, il est préconisé de tendre progressivement vers cette valeur.
Les oléfines ont été reconnues comme étant parmi les hydrocarbures les plus réactifs dans le cycle de réactions photochimiques avec les oxydes d'azote, qui se produit dans l'atmosphère et qui conduit à la formation d'ozone. Une élévation de la concentration d'ozone dans l'air peut être source de troubles respiratoires. La diminution de la teneur en oléfines des essences, et plus particulièrement des oléfines les plus légères qui ont le plus tendance à se volatiliser lors des manipulations du carburant, est par conséquent souhaitable.
La teneur en benzène d'une essence est très largement dépendante de celle de la composante réformat de cette essence. Le réformat résulte d'un traitement catalytique de naphta destiné à produire des hydrocarbures aromatiques, comprenant principalement de 6 à 9 atomes de carbone dans leur molécule et dont l'indice d'octane très élevé confère à l'essence ses propriétés antidétonantes.
Pour les raisons de nocivité décrites ci-dessus, il est donc nécessaire de réduire au maximum la teneur en benzène du réformat. Plusieurs voies sont envisageables.
Une première voie consiste à limiter, dans le naphta constituant la charge d'une unité de reformage catalytique, la teneur en précurseurs du benzène, tels que le cyclohexane et le méthylcyclopentane. Cette solution permet effectivement de réduire sensiblement la teneur en benzène de l'effluent de l'unité de réformage mais ne peut suffire à elle seule lorsqu'il s'agit de descendre à des teneurs aussi basses que 1 %. Une seconde voie consiste à éliminer, par distillation, une fraction légère du réformat contenant le benzène. Cette solution conduit à une perte de l'ordre de 15 à 20% d'hydrocarbures qui seraient valorisables dans les essences. Une troisième voie consiste à extraire le benzène présent dans l'effluent de l'unité de réformage. Plusieurs techniques connues sont en principe applicables : extraction par solvant, distillation extractive, adsorption. Aucune de ces techniques n'est appliquée industriellement, car aucune ne permet d'extraire sélectivement le benzène d'une manière économique. Une quatrième voie consiste à transformer chimiquement le benzène pour le convertir en un constituant non visé par les limitations légales. L'alkylation par l'éthylène par exemple transforme le benzène principalement en éthylbenzène. Cette opération est cependant onéreuse du fait de l'intervention de réactions secondaires qui nécessitent des séparations coûteuses en énergie.
Le benzène d'un réformat peut également être hydrogéné en cyclohexane. Comme il est impossible d'hydrogéner sélectivement le benzène d'un mélange d'hydrocarbures contenant également du toluène et des xylènes, il est donc nécessaire de fractionner préalablement ce mélange de manière à isoler une coupe ne contenant que le benzène, qui peut alors être hydrogéné. Il a également été décrit un procédé dans lequel le catalyseur d'hydrogénation du benzène est inclus dans la zone de rectification de la colonne de distillation qui sépare le benzène des autres aromatiques (Benzene Reduction - Kerry Rock and Gary Gildert CDTECH - 1994 Conference on Clean Air Act Implementation and Reformulated Gasoline - Oct. 94 ), ce qui permet de réaliser une économie d'appareillage.
L'hydrogénation du benzène d'un réformat conduit à une perte d'indice d'octane. Cette perte d'octane peut être compensée par l'adjonction de composés d'indice d'octane élevé, par exemple des éthers tels que le MTBE ou l'ETBE, ou des hydrocarbures paraffiniques ramifiés. Ces hydrocarbures paraffiniques ramifiés peuvent être générés à partir du réformat lui-même, par isomérisation des paraffines linéaires. Il est cependant connu que les catalyseurs d'isomérisation des paraffines linéaires en paraffines branchées ne sont pas inactifs vis-à-vis d'hydrocarbures d'autres familles chimiques. Parmi ceux qui distillent avec le benzène du fait du phénomène d'azéotropie, le cyclohexane par exemple est converti partiellement en méthylcyclopentane. Cette réaction de produits naphténiques est en concurrence sur le catalyseur avec la réaction d'isomérisation des paraffines et en réduit par conséquent l'avancement. D'autre part les isoparaffines à 7 atomes de carbone par molécule subissent un craquage qui conduit d'une part à un encrassement progressif du catalyseur d'isomérisation, donc à une activité moindre, et d'autre part, à une diminution du rendement du produit recherché, c'est-à-dire du réformat léger à inclure dans l'essence.
Le procédé selon l'invention évite les désavantages cités, c'est-à-dire qu'il permet de produire au moindre coût, à partir d'un réformat brut , un réformat appauvri en benzène ou, si nécessaire, quasi totalement épuré de benzène ainsi que d'autres hydrocarbures insaturés contenant au plus six atomes de carbone par molécule tels que les oléfines légères, sans perte significative de rendement, et avec très peu de perte ou avec un gain d'indice d'octane.
Le procédé est caractérisé par l'intégration des trois opérations de distillation, d'hydrogénation et d'isomérisation agencées et opérées de manière à éviter au moins en partie, de préférence en majeure partie, l'entraínement, par azéotropie avec le benzène, de cyclohexane et des isoparaffines à 7 atomes de carbone par molécule, dans le distillat qui est dirigé vers l'isomérisation. Ainsi le procédé selon l'invention réalise au moins partiellement l'hydrogénation sélective du benzène et de tout composé insaturé comprenant au plus six atomes de carbone par molécule et différent du benzène, éventuellement présent dans la charge.
Le procédé selon l'invention est un procédé de traitement d'une charge, constituée en majeure partie par des hydrocarbures comportant au moins 5, de préférence entre 5 et 9 atomes de carbone par molécule, et comprenant au moins un composé insaturé comportant au plus six atomes de carbone par molécule dont du benzène, tel que:
  • on traite ladite charge dans une zone de distillation, comportant une zone d'épuisement et une zone de rectification, associée à une zone réactionnelle d'hydrogénation, comportant au moins un lit catalytique, dans laquelle on réalise l'hydrogénation d'au moins une partie des composés insaturés comprenant au plus six atomes de carbone par molécule, c'est-à-dire comprenant jusqu'à six (inclus) atomes de carbone par molécule, et contenus dans la charge, en présence d'un catalyseur d'hydrogénation et d'un flux gazeux comprenant, de préférence en majeure partie, de l'hydrogène, la charge de la zone réactionnelle étant prélevée à la hauteur d'un niveau de prélèvement et représentant au moins une partie, de préférence la majeure partie, du liquide coulant dans la zone de distillation, de préférence coulant dans la zone de rectification et de façon encore plus préférée coulant à un niveau intermédiaire de la zone de rectification, l'effluent de la zone réactionnelle étant au moins en partie, de préférence en majeure partie, réintroduit dans la zone de distillation, de manière à assurer la continuité de la distillation, et de façon à sortir finalement en tête de la zone de distillation un effluent très appauvri en composés insaturés comprenant au plus six atomes de carbone par molécule, et en fond de zone de distillation un effluent également appauvri en composés insaturés comprenant au plus six atomes de carbone par molécule.
  • on traite dans une zone d'isomérisation au moins une partie, de préférence la majeure partie, de l'effluent soutiré en tête de zone de distillation, ladite partie renfermant des paraffines contenant 5 et/ou 6 atomes de carbone par molécule (c'est-à-dire choisies dans le groupe formé par les paraffines comportant 5 atomes de carbone par molécule et les paraffines comportant 6 atomes de carbone par molécule), éventuellement en présence d'une autre coupe comprenant des paraffines renfermant en majeure partie 5 et/ou 6 atomes de carbones par molécule, en présence d'un catalyseur d'isomérisation, de façon à obtenir un isomérat.
L'autre coupe comprenant des paraffines renfermant en majeure partie 5 et/ou 6 atomes de carbones par molécule, éventuellement présente dans la charge d'isomérisation avec la partie de l'effluent soutiré en tête de zone de distillation, provient de toute source connue de l'homme du métier. On peut citer à titre indicatif une coupe dite de naphta léger provenant d'une unité de fractionnement de naphta.
La charge qui alimente la zone de distillation est introduite dans ladite zone généralement au moins à un niveau de ladite zone, de préférence principalement à un seul niveau de ladite zone.
La zone de distillation comprend généralement au moins une colonne munie d'au moins un interne de distillation choisi dans le groupe formé par les plateaux, les garnissages en vrac et les garnissages structurés, ainsi qu'il est connu de l'homme du métier, tel que l'efficacité globale totale est généralement au moins égale à cinq étages théoriques. Dans les cas connus de l'homme du métier où la mise en oeuvre d'une seule colonne pose des problèmes, on préfère généralement scinder ladite zone de façon à utiliser finalement au moins deux colonnes qui, mises bout à bout, réalisent ladite zone, c'est-à-dire que les zones de rectification, éventuellement réactionnelle et d'épuisement se répartissent sur les colonnes. En pratique, lorsque la zone réactionnelle est au moins en partie interne à la zone de distillation, la zone de rectification ou la zone d'épuisement, et de préférence la zone d'épuisement, peut généralement se trouver dans au moins une colonne différente de la colonne comprenant la partie interne de la zone réactionnelle.
La zone réactionnelle d'hydrogénation comprend généralement au moins un lit catalytique d'hydrogénation, de préférence de 1 à 4 lit(s) catalytique(s) ; dans le cas où au moins deux lits catalytiques se trouvent incorporés dans la zone de distillation, ces deux lits sont éventuellement séparés par au moins un interne de distillation. La zone réactionnelle d'hydrogénation réalise au moins partiellement l'hydrogénation du benzène présent dans la charge, généralement de telle façon que la teneur en benzène de l'effluent de tête soit au maximum égale à une certaine teneur, et ladite zone réactionnelle réalise au moins en partie, de préférence en majeure partie, l'hydrogénation de tout composé insaturé comprenant au plus six atomes de carbone par molécule et différent du benzène, éventuellement présent dans la charge.
Selon un premier mode de réalisation de l'invention, le procédé selon l'invention est tel que la zone réactionnelle d'hydrogénation est au moins en partie, de préférence en totalité, interne à la zone de distillation. Alors, pour la partie de la zone réactionnelle interne à la zone de distillation, le prélèvement de liquide est fait naturellement par écoulement dans la partie de la zone réactionnelle interne à la zone de distillation, et la réintroduction de l'effluent en zone de distillation se fait aussi naturellement par écoulement du liquide à partir de la zone réactionnelle interne à la zone de distillation de manière à assurer la continuité de la distillation. De plus, le procédé selon l'invention est de préférence tel que l'écoulement du liquide à hydrogéner est co-courant à l'écoulement du flux gazeux comprenant de l'hydrogène, pour tout lit catalytique de la partie interne de la zone d'hydrogénation, et de façon encore plus préférée tel que l'écoulement du liquide à hydrogéner est co-courant à l'écoulement du flux gazeux comprenant de l'hydrogène et tel que la vapeur de distillation est séparée dudit liquide, pour tout lit catalytique de la partie interne de la zone d'hydrogénation.
Selon un deuxième mode de réalisation de l'invention, indépendamment du mode de réalisation précédent, le procédé selon l'invention est tel que la zone réactionnelle d'hydrogénation est au moins en partie, de préférence en totalité, externe à la zone de distillation. Alors l'effluent d'au moins un lit catalytique de la partie externe de la zone d'hydrogénation est réintroduit généralement sensiblement à proximité d'un niveau de prélèvement, de préférence du niveau de prélèvement qui a alimenté ledit lit catalytique. Généralement, le procédé selon l'invention comprend de 1 à 4 niveau(x) de prélèvement qui alimente(nt) la partie externe de la zone d'hydrogénation. Alors, deux cas peuvent se présenter. Dans le premier cas, la partie externe de la zone d'hydrogénation est alimentée par un seul niveau de prélèvement, et alors, si ladite partie comprend au moins deux lits catalytiques répartis dans au moins deux réacteurs, lesdits réacteurs sont disposés en série ou en parallèle. Dans le second cas, préféré selon la présente invention, la partie externe de la zone d'hydrogénation est alimentée par au moins deux niveaux de prélèvement.
Selon un troisième mode de réalisation de l'invention, qui combine les deux modes de réalisation décrits précedemment, le procédé selon l'invention est tel que la zone d'hydrogénation est à la fois partiellement incorporée dans la zone de distillation, c'est-à-dire interne à la zone de distillation, et partiellement externe à la zone de distillation. Selon un tel mode de réalisation, la zone d'hydrogénation comprend au moins deux lits catalytiques, au moins un lit catalytique étant interne à la zone de distillation, et au moins un autre lit catalytique étant externe à la zone de distillation. Dans le cas où la partie externe de la zone d'hydrogénation comporte au moins deux lits catalytiques, chaque lit catalytique est alimenté par un seul niveau de prélèvement, de préférence associé à un seul niveau où l'effluent dudit lit catalytique de la partie externe de la zone d'hydrogénation est réintroduit, ledit niveau de prélèvement étant distinct du niveau de prélèvement qui alimente l'(es) autre(s) lit(s) catalytique(s). Généralement, le liquide à hydrogéner, soit partiellement, soit totalement, circule d'abord dans la partie externe de la zone d'hydrogénation puis la partie interne de ladite zone. La partie de la zone réactionnelle interne à la zone de distillation a les caractéristiques décrites dans le premier mode de réalisation. La partie de la zone réactionnelle externe à la zone de distillation a les caractéristiques décrites dans le deuxième mode de réalisation.
Selon un autre mode de réalisation de l'invention, indépendamment ou non des modes de réalisation précédents, le procédé selon l'invention est tel que l'écoulement du liquide à hydrogéner est co-courant ou contre-courant, de préférence co-courant, à l'écoulement du flux gazeux comprenant de l'hydrogène, pour tout lit catalytique de la zone d'hydrogénation.
Pour la réalisation de l'hydrogénation selon le procédé de l'invention, le rapport molaire théorique d'hydrogène nécessaire pour la conversion désirée du benzène est de 3. La quantité d'hydrogène distribué, dans le flux gazeux, avant ou dans la zone d'hydrogénation est éventuellement en excès par rapport à cette stoechiométrie, et ce d'autant plus que l'on doit hydrogéner, en plus du benzène présent dans la charge, au moins partiellement tout composé insaturé comprenant au plus six atomes de carbone par molécule et présent dans ladite charge. L'hydrogène en excès, si il en existe, peut être avantageusement récupéré par exemple selon l'une des techniques décrites ci-après. Selon une première technique, l'hydrogène en excès qui sort en tête de zone de distillation est récupéré, puis comprimé et réutilisé dans la zone d'hydrogénation. Selon une deuxième technique, l'hydrogène en excès qui sort en tête de zone de distillation est récupéré, puis comprimé et réutilisé dans la zone d'isomérisation. Selon une troisième technique, l'hydrogène en excès qui sort en tête de zone de distillation est récupéré, puis injecté en amont des étapes de compression associées à une unité de réformage catalytique, en mélange avec de l'hydrogène provenant de ladite unité, ladite unité opérant de préférence à basse pression, c'est-à-dire généralement une pression inférieure à 8 bar (1 bar = 105 Pa).
L'hydrogène utilisé selon l'invention pour l'hydrogénation des composés insaturés comprenant au plus six atomes de carbone par molécule, et compris dans le flux gazeux, peut provenir de toutes sources produisant de l'hydrogène à au moins 50 % volume de pureté, de préférence au moins 80 % volume de pureté et de façon encore plus préférée au moins 90 % volume de pureté. Par exemple, on peut citer l'hydrogène provenant des procédés de réformage catalytique, de méthanation, de P.S.A. (adsorption par alternance de pression), de génération électrochimique, de vapocraquage ou de réformage à la vapeur. On peut également envisager, par exemple, que l'hydrogène injecté dans le procédé d'hydrogénation passe d'abord par l'étape d'isomérisation. Dans un tel cas, de l'hydrogène est injecté dans l'unité d'isomérisation pour retarder la désactivation du catalyseur d'isomérisation par dépôt de carbone. L'hydrogène non consommé de la zone d'isomérisation peut être ensuite purifié puis utilisé dans l'unité d'hydrogénation.
Une des réalisations préférées du procédé selon l'invention, indépendante ou non des réalisations précédentes, est telle que l'effluent de fond de la zone de distillation est mélangé au moins en partie à l'effluent d'isomérisation. Le mélange ainsi obtenu peut, après stabilisation éventuelle, être utilisé comme carburant soit directement, soit par incorporation aux fractions carburants.
Généralement, de façon préférée, les conditions opératoires sont judicieusement choisies, en relation avec la nature de la charge et avec d'autres paramètres connus du spécialiste de la distillation réactive, tel que le rapport distillat/charge, de telle manière que l'effluent de tête de la zone de distillation est pratiquement exempt de cyclohexane et d'isoparaffines comprenant 7 atomes de carbone par molécule. Ainsi, le procédé selon l'invention est généralement et de façon préférée tel que l'effluent de tête de la zone de distillation est pratiquement exempt de cyclohexane et d'isoparaffines comprenant 7 atomes de carbone par molécule.
Lorsque la zone d'hydrogénation est au moins en partie incorporée à la zone de distillation, le catalyseur d'hydrogénation peut être disposé dans ladite partie incorporée suivant les différentes technologies proposées pour conduire des distillations catalytiques. Elles sont essentiellement de deux types.
Suivant le premier type de technologies, la réaction et la distillation procèdent simultanément dans le même espace physique, comme l'enseignent par exemple la demande de brevet WO-A-90/02.603, les brevets US-A-4.471.154, US-A-4.475.005, US-A-4.215.011, US-A-4.307.254, US-A-4.336.407, US-A-4.439.350, US-A-5.189.001, US-A-5.266.546, US-A-5.073.236, US-A-5.215.011, US-A-5.275.790, US-A-5.338.517, US-A-5.308.592, US-A-5.236.663, US-A-5.338.518, ainsi que les brevets EP-B1-0.008.860, EP-B1-0.448.884, EP-B1-0.396.650 et EP-B1-0.494.550 et la demande de brevet EP-A1-0.559.511. Le catalyseur est alors généralement en contact avec une phase liquide descendante, générée par le reflux introduit au sommet de la zone de distillation, et avec une phase vapeur ascendante, générée par la vapeur de rebouillage introduite en fond de zone. Selon ce type de technologies, le flux gazeux comprenant de l'hydrogène nécessaire à la zone réactionnelle, pour la réalisation du procédé selon l'invention, pourrait être joint à la phase vapeur, sensiblement à l'entrée d'au moins un lit catalytique de la zone réactionnelle.
Suivant le second type de technologies, le catalyseur est disposé de telle façon que la réaction et la distillation procèdent généralement de manière indépendante et consécutive, comme l'enseignent par exemple les brevets US-A-4.847.430, US-A-5.130.102 et US-A-5.368.691, la vapeur de la zone de distillation ne traversant pratiquement pas tout lit catalytique de la zone réactionnelle. Ainsi le procédé selon l'invention est généralement tel que l'écoulement du liquide à hydrogéner est co-courant à l'écoulement du flux gazeux comprenant de l'hydrogène et tel que la vapeur de distillation n'est pratiquement pas en contact avec le catalyseur (ce qui se traduit généralement en pratique par le fait que ladite vapeur est séparée dudit liquide à hydrogéner), pour tout lit catalytique de la partie interne de la zone d'hydrogénation. Dans tous les cas de ce second type de technologies, tout lit catalytique de la partie de la zone réactionnelle qui est dans la zone de distillation est généralement tel que le flux gazeux comprenant de l'hydrogène et le flux du liquide qui va réagir circulent à co-courant, généralement ascendant, à travers ledit lit, même si globalement, dans la zone de distillation catalytique, le flux gazeux comprenant de l'hydrogène et le flux du liquide qui va réagir circulent à contre-courant. De tels systèmes comportent généralement au moins un dispositif de distribution de liquide qui peut être par exemple un répartiteur de liquide, dans tout lit catalytique de la zone réactionnelle. Néanmoins, dans la mesure où ces technologies ont été conçues pour des réactions catalytiques intervenant entre des réactifs liquides, elles ne peuvent convenir sans modification pour une réaction catalytique d'hydrogénation, pour laquelle l'un des réactifs, l'hydrogène, est à l'état gazeux. Pour tout lit catalytique de la partie interne de la zone d'hydrogénation, il est donc généralement nécessaire d'adjoindre un dispositif de distribution de flux gazeux comprenant de l'hydrogène, par exemple selon l'une des trois techniques décrites ci-après. Ainsi, la partie interne de la zone d'hydrogénation comporte au moins un dispositif de distribution de liquide et au moins un dispositif de distribution de flux gazeux comprenant de l'hydrogène, pour tout lit catalytique de la partie interne de la zone d'hydrogénation. Selon une première technique, le dispositif de distribution du flux gazeux comprenant de l'hydrogène est disposé avant le dispositif de distribution de liquide, et donc avant le lit catalytique. Selon une deuxième technique, le dispositif de distribution du flux gazeux comprenant de l'hydrogène est disposé au niveau du dispositif de distribution de liquide, de telle façon que le flux gazeux comprenant de l'hydrogène soit introduit dans le liquide avant le lit catalytique. Selon une troisième technique, le dispositif de distribution de flux gazeux comprenant de l'hydrogène est disposé après le dispositif de distribution de liquide, et donc au sein du lit catalytique, de préférence non loin dudit dispositif de distribution du liquide dans ledit lit catalytique. Les termes "avant" et "après" utilisés ci-avant s'entendent par rapport au sens de circulation du liquide qui va traverser le lit catalytique, c'est-à-dire généralement dans le sens ascendant.
Une des réalisations préférées du procédé selon l'invention est telle que le catalyseur de la partie interne de la zone d'hydrogénation est disposé dans la zone réactionnelle suivant le dispositif de base décrit dans le brevet US-A-5.368.691, aménagé de manière que tout lit catalytique interne à la zone de distillation soit alimenté par un flux gazeux comprenant de de l'hydrogène, régulièrement distribué à sa base, par exemple selon l'une des trois techniques décrites ci-avant. Suivant cette technologie, si la zone de distillation comprend une seule colonne et si la zone d'hydrogénation est en totalité interne à ladite colonne, le catalyseur compris dans tout lit catalytique, interne à la zone de distillation, est alors en contact avec une phase liquide ascendante, générée par le reflux introduit au sommet de la colonne de distillation, et avec le flux gazeux comprenant de l'hydrogène qui circule dans le même sens que le liquide; le contact avec la phase vapeur de la distillation est évité en faisant transiter cette dernière par au moins une cheminée spécialement aménagée.
Lorsque la zone d'hydrogénation est au moins en partie interne à la zone de distillation, les conditions opératoires de la partie de la zone d'hydrogénation interne à la zone de distillation sont liées aux conditions opératoires de la distillation. La distillation est conduite de manière que son produit de fond contienne la majeure partie du cyclohexane et des isoparaffines à 7 atomes de carbone de la charge, ainsi que du cyclohexane formé par hydrogénation du benzène. Elle est réalisée sous une pression généralement comprise entre 2 et 20 bar, de préférence entre 4 et 10 bar (1 bar = 105 Pa), avec un taux de reflux compris entre 1 et 10, et de préférence compris entre 3 et 6. La température de tête de zone est comprise généralement entre 40 et 180°C et la température de fond de zone est comprise généralement entre 120 et 280°C. La réaction d'hydrogénation est conduite dans des conditions qui sont le plus généralement intermédiaires entre celles établies en tête et en fond de zone de distillation, à une température comprise entre 100 et 200°C, et de préférence comprise entre 120 et 180°C, et à une pression comprise entre 2 et 20 bar, de préférence entre 4 et 10 bar. Le liquide soumis à l'hydrogénation est alimenté par un flux gazeux comprenant de l'hydrogène dont le débit dépend de la concentration en benzène dans ledit liquide et, plus généralement, des composés insaturés comportant au plus six atomes de carbone par molécule de la charge de la zone de distillation. Il est généralement au moins égal au débit correspondant à la stoechiométrie des réactions d'hydrogénation en jeu (hydrogénation du benzène et des autres composés insaturés comportant au plus six atomes de carbone par molécule, compris dans la charge d'hydrogénation) et au plus égal au débit correspondant à 10 fois la stoechiométrie, de préférence compris entre 1 et 6 fois la stoechiométrie, de manière encore plus préférée compris entre 1 et à 3 fois la stoechiométrie.
Lorsque la zone d'hydrogénation est en partie externe à la zone de distillation, le catalyseur disposé dans ladite partie externe l'est suivant toute technologie connue de l'homme de métier dans des conditions opératoires (température, pression...) indépendantes ou non, de préférence indépendantes, des conditions opératoires de la zone de distillation.
Dans la partie de la zone d'hydrogénation externe à la zone de distillation, les conditions opératoires sont généralement les suivantes. La pression requise pour cette étape d'hydrogénation est généralement comprise entre 1 et 60 bar absolus, de préférence entre 2 et 50 bar et de façon encore plus préférée entre 5 et 35 bar.
La température opératoire de la partie externe de la zone d'hydrogénation est généralement comprise entre 100 et 400 °C, de préférence entre 120 et 350 °C et de façon préférée entre 140 et 320 °C. La vitesse spatiale au sein de la partie externe de ladite zone d'hydrogénation, calculée par rapport au catalyseur, est généralement comprise entre 1 et 50 et plus particulièrement entre 1 et 30 h-1 (volume de charge par volume de catalyseur et par heure). Le débit d'hydrogène correspondant à la stoechiométrie des réactions d'hydrogénation en jeu est compris entre 0,5 et 10 fois ladite stoechiométrie, de préférence entre 1 et 6 fois ladite stoechiométrie et de façon encore plus préférée entre 1 et 3 fois ladite stoechiométrie. Mais les conditions de température et de pression peuvent aussi, dans le cadre du procédé de la présente invention, être comprises entre celles qui sont établies en tête et en fond de zone de distillation.
De façon plus générale, quelle que soit la position de la zone d'hydrogénation par rapport à la zone de distillation, le catalyseur utilisé dans la zone d'hydrogénation selon le procédé de la présente invention comprend généralement au moins un métal choisi dans le groupe formé par le nickel et le platine, utilisé tel quel ou de préférence déposé sur un support. Le métal doit généralement se trouver sous forme réduite au moins pour 50 % en poids de sa totalité. Mais tout autre catalyseur d'hydrogénation connu de l'homme du métier peut également être choisi.
Lors de l'utilisation du platine, le catalyseur peut contenir avantageusement au moins un halogène dans une proportion en poids par rapport au catalyseur comprise entre 0,2 et 2 %. De manière préférée, on utilise le chlore ou le fluor ou la combinaison des deux dans une proportion par rapport au poids total de catalyseur comprise entre 0,2 et 1,5 %. Dans le cas de l'utilisation d'un catalyseur contenant du platine, on utilise généralement un catalyseur tel que la taille moyenne des cristallites de platine est inférieure à 60.10-10 m, de préférence inférieure à 20.10-10 m, de façon encore plus préférée inférieure à 10.10-10 m. De plus, la proportion totale de platine par rapport au poids total de catalyseur est généralement comprise entre 0,1 et 1 % et de façon préférée entre 0,1 et 0,6 %.
Dans le cas de l'utilisation du nickel, la proportion de nickel par rapport au poids total de catalyseur est comprise entre 5 et 70 %, plus particulièrement entre 10 et 70 % et de façon préférée entre 15 et 65 %. De plus, on utilise généralement un catalyseur tel que la taille moyenne des cristallites de nickel est inférieure à 100.10-10 m, de préférence inférieure à 80.10-10 m, de façon encore plus préférée inférieure à 60.1010 m.
Le support est généralement choisi dans le groupe formé par l'alumine, les silice-alumines, la silice, les zéolithes, le charbon actif, les argiles, les ciments alumineux, les oxydes de terres rares et les oxydes alcalino-terreux, seuls ou en mélange. On utilise de préférence un support à base d'alumine ou de silice, de surface spécifique comprise entre 30 et 300 m2/g, de préférence entre 90 et 260 m2/g.
Le catalyseur d'isomérisation utilisé dans la zone d'isomérisation selon la présente invention est généralement de deux types. Mais tout autre catalyseur d'isomérisation connu de l'homme du métier peut également être choisi.
Le premier type de catalyseur est à base d'alumine. De préférence, il comprend au moins un métal du groupe VIII de la classification périodique des éléments et un support comprenant de l'alumine. De préférence, il comprend en outre au moins un halogène, de préférence le chlore. Ainsi un catalyseur préféré selon la présente invention comprend au moins un métal du groupe VIII déposé sur un support constitué d'alumine éta et/ou d'alumine gamma, c'est-à-dire que par exemple ledit support est constitué d'alumine éta et d'alumine gamma, la teneur en alumine éta étant comprise entre 85 et 95 % poids par rapport au support, de préférence entre 88 et 92 % poids, et de manière encore plus préférée entre 89 et 91 % poids, le complément à 100 % poids du support étant constitué d'alumine gamma. Mais le support du catalyseur peut aussi par exemple être constitué essentiellement d'alumine gamma. Le métal du groupe VIII est de préférence choisi dans le groupe formé par le platine, le palladium et le nickel.
L'alumine éta éventuellement utilisée dans la présente invention a une surface spécifique généralement comprise entre 400 et 600 m2/g et de manière préférée entre 420 et 550 m2/g, et un volume poreux total généralement compris entre 0,3 et 0,5 cm3/g et de manière préférée entre 0,35 et 0,45 cm3/g.
L'alumine gamma éventuellement utilisée dans la présente invention possède généralement une surface spécifique comprise entre 150 et 300 m2/g et de préférence entre 180 et 250 m2/g, un volume poreux total généralement compris entre 0,4 et 0,8 cm3/g et de manière préférée entre 0,45 et 0,7 cm3/g.
Les deux types d'alumine, lorsqu'elles sont utilisées en mélange, sont mélangées et mises en forme, dans des proportions définies par toute technique connue de l'homme du métier, par exemple par extrusion au travers d'une filière, par pastillage ou dragéification.
Un second type de catalyseur utilisé dans la zone d'isomérisation selon le procédé de la présente invention est un catalyseur à base de zéolithe, c'est-à-dire comprenant au moins un métal du groupe VIII et une zéolithe. Différentes zéolithes peuvent être utilisées pour ledit catalyseur ; ladite zéolithe est de préférence choisie dans le groupe formé par la mordénite ou la zéolithe oméga Ω. On utilise de manière préférée une mordénite ayant un rapport Si/Al (atomique) compris entre 5 et 50 et de préférence entre 5 et 30, une teneur en sodium inférieure à 0,2 % et de manière préférée inférieure à 0,1% (par rapport au poids de zéolithe sèche), un volume de maille V de la maille élémentaire compris entre 2,78 et 2,73 nm3 et de manière préférée entre 2,77 et 2,74 nm3, une capacité d'absorption de benzène supérieure à 5 % et de préférence supérieure à 8 % (par rapport au poids de solide sec). La mordénite ainsi préparée est ensuite mélangée à une matrice généralement amorphe (alumine, silice alumine, kaolin,...) et mise en forme par toute méthode connue de l'homme du métier (extrusion, pastillage, dragéification). La teneur en mordénite du support ainsi obtenu doit être supérieure à 40 % et de préférence supérieure à 60 % en poids.
On peut également utiliser un catalyseur à base de zéolithe oméga Ω ou mazzite. Ladite zéolithe possède un rapport molaire SiO2/Al2O3 compris entre 6,5 et 80, de préférence entre 10 et 40, une teneur pondérale en sodium inférieure à 0,2 %, de préférence inférieure à 0,1 %, par rapport au poids de zéolithe sèche. Elle possède habituellement des paramètres cristallins "a" et "c" respectivement inférieurs ou égaux à 1,814 nm et 0,760 nm (1 nm = 10-9 m), de préférence respectivement compris entre 1,814 et 1,794 nm et entre 0,760 et 0,749 nm, une capacité d'adsorption d'azote, mesurée à 77 K sous une pression partielle égale à 0,19 bar, supérieure à environ 8 % en poids, de préférence supérieure à environ 11 % en poids. Sa répartition poreuse comprend généralement entre 5 et 50 % du volume poreux contenu dans des pores de rayon (mesurés par la méthode BJH) situés entre 1,5 et 14 nm, de préférence entre 2,0 et 8,0 nm (mésopores). D'une façon générale, son taux de cristallinité DX (mesurée d'après son diffractogramme de rayons X) est supérieur à 60 %.
Le support zéolithique ainsi obtenu a une surface spécifique généralement comprise entre 300 et 550 m2/g et de préférence entre 350 et 500 m2/g et un volume poreux généralement compris entre 0,3 et 0,6 cm3/g et de préférence entre 0,35 et 0,5 cm3/g.
Quel que soit le support du catalyseur d'isomérisation (alumine ou zéolithe), au moins un métal hydrogénant du groupe VIII, de préférence choisi dans le groupe formé par le platine, le palladium et le nickel, est ensuite déposé sur ce support, par toute technique connue de l'homme du métier, par exemple dans le cas du platine par échange anionique sous forme d'acide hexachloroplatinique lorsque le support est l'alumine et par échange cationique avec du chlorure de platine tétramine lorsque le support est une zéolithe.
Dans le cas du platine ou du palladium, la teneur en poids est comprise entre 0,05 et 1 % et de manière préférée entre 0,1 et 0,6 %. Dans le cas du nickel la teneur pondérale est comprise entre 0,1 et 10 % et de manière préférée entre 0,2 et 5 %.
Le catalyseur d'isomérisation ainsi préparé peut être réduit sous hydrogène. Dans le cas où le support est à base d'alumine, ledit catalyseur est soumis à un traitement d'halogénation, de préférence de chloration, par tout composé halogéné, de préférence chloré, connu de l'homme du métier tel que par exemple le tétrachlorure de carbone ou le perchloréthylène. La teneur en halogène, de préférence en chlore, du catalyseur final est comprise de préférence entre 5 et 15% poids et de manière préférée entre 6 et 12% poids. Ce traitement d'halogénation, de préférence de chloration, du catalyseur peut être effectué soit directement dans l'unité avant injection de la charge ("in-situ" ) soit hors site. Dans un tel cas, il est aussi possible de procéder au traitement d'halogénation, de préférence de chloration, préalablement au traitement de réduction du catalyseur sous hydrogène.
Les conditions opératoires mises en oeuvre en zone d'isomérisation sont généralement celles décrites ci-après, selon le type de catalyseur.
Avec le premier type de catalyseur d'isomérisation, à base d'alumine, la température est généralement comprise entre 80 et 300°C et de préférence entre 100 et 200°C. La pression partielle d'hydrogène est comprise entre 0,1 et 70 bar et de préférence entre 1 et 50 bar. La vitesse spatiale est comprise entre 0,2 et 10, de préférence entre 0,5 et 5, litres d'hydrocarbures liquides par litre de catalyseur et par heure. Le rapport molaire hydrogène sur hydrocarbures à l'entrée de la zone d'isomérisation est tel que le rapport molaire hydrogène sur hydrocarbures dans l'isomérat est supérieur à 0,06 et de préférence compris entre 0,06 et 10.
Avec le second type de catalyseur d'isomérisation, zéolithique, la température est généralement entre 200 et 300°C et de préférence entre 230 et 280°C, et la pression partielle d'hydrogène est comprise entre 0,1 et 70 bar et de préférence entre 1 et 50 bar. La vitesse spatiale est généralement comprise entre 0,5 et 10, de préférence entre 1 et 5 litres d'hydrocarbures liquides par litre de catalyseur et par heure. Le rapport molaire hydrogène sur hydrocarbures dans l'isomérat peut varier entre de larges limites et est généralement compris entre 0,07 et 15 et de préférence entre 1 et 5.
Les figures 1 à 3 constituent chacune une illustration d'une possibilité de réalisation du procédé selon l'invention. Les dispositifs similaires sont représentés par les mêmes chiffres sur toutes les figures.
Une première réalisation du procédé est représentée sur la figure 1. Le réformat brut C5 +, contenant généralement de faibles quantités d'hydrocarbures C4 -, est envoyé dans une colonne 2 par la ligne 1. Ladite colonne contient des internes de distillation, qui sont par exemple dans le cas représenté sur la figure 1 des plateaux ou du garnissage, représentés en partie par des traits pointillés sur ladite figure. Elle contient également au moins un interne catalytique 3 renfermant un catalyseur d'hydrogénation, qui peut être alterné avec les internes de distillation. Les internes catalytiques sont alimentés à leur base, par les lignes 4c et 4d, par de l'hydrogène provenant des lignes 4, puis 4a et 4b. En pied de colonne, la fraction la moins volatile du réformat, constituée principalement par les hydrocarbures à 7 atomes de carbone et plus, est récupérée par la ligne 5, rebouillie dans l'échangeur 6 et évacuée par la ligne 7. La vapeur de rebouillage est réintroduite dans la colonne par la ligne 8. En tête de colonne, la vapeur d'hydrocarbures légers, c'est-à-dire comprenant principalement 6 atomes de carbone et moins par molécule, est envoyée par la ligne 9 dans un condenseur 10 puis dans un ballon 11 où intervient une séparation entre une phase liquide et une phase vapeur constituée principalement par l'hydrogène en excès éventuellement envoyé par les lignes 16 puis 4a puis 4b puis 4c ou 4d.
La phase vapeur est évacuée du ballon par les lignes 14 puis 15. Une fraction est éventuellement recyclée vers la colonne par la ligne 16, après avoir été remise en pression au moyen d'un dispositif non représenté sur la figure 1.
La phase liquide du ballon 11 est renvoyée pour partie, par la ligne 12, en tête de colonne pour en assurer le reflux. L'autre partie est dirigée par les lignes 13 puis 17 vers le réacteur d'isomérisation 18. Un courant d'hydrogène y est éventuellement adjoint par la lignes 4 puis 4a. L'isomérat est récupéré par la ligne 19, refroidi, et envoyé dans un ballon 20 où se sépare une phase vapeur constituée essentiellement d'hydrogène, qui est évacuée par les lignes 22 puis 23, et éventuellement recyclée après purification vers le circuit hydrogène par la ligne 24 puis par les lignes 4a, 4b, et 4c ou 4d.
La phase liquide est soutirée par la ligne 21 et constitue, après stabilisation si nécessaire, une composante pour essences, quasi exempte de composés insaturés comprenant au plus 6 atomes de carbone par molécule, d'indice d'octane élevé.
Selon un second mode de réalisation du procédé, représenté sur la figure 2, le réformat brut C5 +, contenant généralement de faibles quantités d'hydrocarbures C4 -, est envoyé par la ligne 1 dans une colonne de distillation 2, munie d'internes de distillation qui sont par exemple dans le cas de la figure 2 des plateaux de distillation, ainsi que d'un plateau de soutirage (ou de prélèvement) de phase liquide. La phase liquide soutirée du plateau de soutirage par la ligne 25 est mise en contact avec de l'hydrogène acheminé par les lignes 4, 4a et 4b, et dirigée vers un réacteur d'hydrogénation 33. Le réacteur d'hydrogénation peut fonctionner soit en écoulement ascendant, soit en écoulement descendant ainsi qu'il a été représenté sur la figure 2. L'effluent de ce réacteur est récupéré par la ligne 26 et recyclé à la colonne de distillation par les lignes 27 puis 32, généralement dans la partie supérieure de la zone de distillation située sous le plateau de soutirage à proximité dudit plateau. On considère généralement qu'un maximum de quatre réacteurs d'hydrogénation peuvent constituer la zone d'hydrogénation, dans le cas où elle est externe à la zone de distillation, quel que soit le nombre de niveau(x) de prélèvement.
Selon une variante du procédé, tout ou partie de l'effluent du réacteur récupéré par la ligne 26 est refroidi (échangeur non représenté) et dirigé par la ligne 28 vers le ballon 29 où se sépare une phase vapeur riche en hydrogène, évacuée par la ligne 30, et une phase liquide qui est recyclée vers la colonne 2 par les lignes 31 et 32. Les effluents de tête et de fond de colonne sont traités comme décrit ci-dessus pour la première réalisation du procédé.
Selon une troisième version du procédé, représentée sur la figure 3, la zone d'hydrogénation est partagée entre une partie interne à la colonne de distillation, comme décrit pour la première version du procédé, et une partie externe à cette colonne, comme décrit pour la seconde version du procédé.
EXEMPLES
Les exemples qui suivent illustrent l'invention dans le cas particulier de la figure 1.
Exemple 1 :
On utilise une colonne de distillation métallique de diamètre 50 mm, rendue adiabatique par des enveloppes chauffantes dont les températures sont régulées de manière à reproduire le gradient de température qui s'établit dans la colonne. Sur une hauteur de 4,5 m, la colonne comporte, de la tête vers le pied : une zone de rectification composée de 11 plateaux perforés à déversoir et descente, une zone de distillation catalytique hydrogénante et une zone d'épuisement composée de 63 plateaux perforés. La zone de distillation catalytique hydrogénante est constituée de trois doublets de distillation catalytique, chaque doublet étant constitué lui-même par une cellule catalytique surmontée de trois plateaux perforés. Le détail de construction d'une cellule catalytique ainsi que sa disposition dans la colonne sont présentés schématiquement à titre indicatif sur la figure 4. La cellule catalytique 41 consiste en un conteneur cylindrique à fond plat, d'un diamètre extérieur inférieur de 2 mm au diamètre inférieur de la colonne. Elle est munie à sa partie inférieure, au dessus du fond, d'une grille 42 qui sert à la fois de support pour le catalyseur et de distributeur de liquide pour l'hydrogène, et à sa partie supérieure, d'une grille de retenue du catalyseur 43, dont la hauteur peut être variée. Le catalyseur 44 remplit tout le volume compris entre ces deux grilles. La cellule catalytique reçoit le liquide provenant du plateau de distillation supérieur 45, par la descente 46. Après avoir parcouru la cellule dans le sens ascendant, le liquide est évacué par débordement par la descente 47 et coule sur le plateau de distillation inférieur 48. La vapeur issue du plateau inférieur 48 emprunte la cheminée centrale 49 solidaire de la cellule, en pénétrant par des orifices 50 (un seul apparent sur la figure) et en ressortant sous le plateau supérieur 45 par des orifices 51 (un seul apparent sur la figure). L'hydrogène est introduit au pied de la cellule catalytique par la tubulure 52, puis par les orifices 53 (six au total) répartis sur la périphérie de la cellule, au voisinage immédiat du fond. Des joints d'étanchéité 54 évitent toute fuite d'hydrogène avant son arrivée sur le lit catalytique.
Chacune des trois cellules est garnie de 36 g de catalyseur au nickel vendu par la société PROCATALYSE sous la référence LD 746. Sur le 37ème plateau de la colonne, en partant du fond, on introduit 250 g/h d'un réformat constitué essentiellement d'hydrocarbures ayant au moins 5 atomes de carbone dans leur molécule, dont la composition est présentée dans la deuxième colonne du tableau 1. On introduit également à la base de chaque cellule un débit de 4,5 Nl/h d'hydrogène. La colonne est mise en régime en établissant un taux de reflux égal à 5 et en régulant la température de fond à 195°C et la pression absolue à 6 bar.
En régime stabilisé, on recueille à raison de 181 g/h et 69 g/h, respectivement un résidu et un distillat dont les compositions sont données dans les troisième et quatrième colonnes du tableau 1.
Le distillat est envoyé conjointement avec de l'hydrogène, avec un rapport molaire hydrogène/hydrocarbures fixé à 0,125, dans un réacteur d'isomérisation contenant 57 g de catalyseur à base de platine sur alumine chlorée, vendu par la société PROCATALYSE sous la référence IS612A, fonctionnant à une température de 150°C et une pression de 30 bar. L'effluent du réacteur d'isomérisation ou isomérat a la composition présentée dans la dernière colonne du tableau 1.
Sur les trois dernières lignes du tableau 1 se trouvent reportés les indices d'octane RON (Recherche), MON (Moteur) et (RON+MON)/2 (Octane moyen) du réformat, des effluents de la colonne et de l'isomérat. L'isomérat présente un indice d'octane de 3 points supérieur au distillat, et peut être valorisé comme composante de carburant, à condition de le stabiliser, c'est-à-dire, de le débarrasser par distillation des 3% de constituants très volatils (C3 -) formés au cours de l'isomérisation, principalement par décomposition des isoparaffines à 7 atomes de carbone par molécule. En mélangeant le résidu de la distillation avec l'isomérat stabilisé on reconstitue une essence quasi exempte de benzène et d'oléfines ayant un indice d'octane moyen égal à 90,3. Comparée au réformat de départ, l'essence reconstituée accuse donc une perte d'octane moyen de 0,3 point et est produite avec une perte de rendement de 0,8 point.
compositions (%poids) et indices d'octane des différents flux pour l'exemple 1
Réformat Résidu Distillat Isomérat
Hydrocarbures C6- 26,4 0,20 94,9 97,9
dont: C3- - - - 3,0
   oléfines 0,19 - - -
   benzène 4,70 - 0,48 -
   cyclohexane 0,08 0,19 16,3 6,85
Hydrocarbures C7+ 73,6 99,8 5,1 2,1
dont: isoC7 9,47 11,1 5,1 2,1
   toluène 19,7 27,2 - -
   xylène 20,1 27,7 - -
Total 100 100 100 100
RON 95,5 100,1 77,6 80,5
MON 85,8 89,1 74,5 77,8
(RON+MON)/2 90,6 94,6 76,1 79,1
Exemple 2.:
On reproduit la marche décrite dans l'exemple 1, avec le même appareillage, les mêmes catalyseurs d'hydrogénation et d'isomérisation, et les mêmes conditions opératoires, sauf pour ce qui concerne la colonne de distillation, dont la consigne de régulation de la température de fond est fixée à 188°C. Ainsi l'effluent de tête de la zone de distillation est pratiquement exempt de cyclohexane et d'isoparaffines à 7 atomes de carbone par molécule.
On recueille en pied et en tête de la colonne de distillation un résidu et un distillat, respectivement avec un débit de 195,7 et 54,2 g/h, dont les compositions et les indices d'octane sont présentés dans les troisième et quatrième colonnes du tableau 2. Dans la dernière colonne du tableau figurent la composition et les indices d'octane de l'isomérat.
Comparativement à l'exemple 1, le distillat a une teneur en cyclohexane beaucoup plus faible et une teneur en isoparaffines à 7 atomes de carbone par molécule très faible. Son isomérisation permet d'en relever l'indice d'octane moyen de plus de 10 points, pratiquement sans perte sous forme de produits très volatils (C3 -). En mélangeant l'isomérat avec le résidu de la distillation on obtient une essence reconstituée quasi exempte de benzène et d'oléfines, ayant un indice d'octane moyen égal à 90,8, soit sensiblement supérieur à celui du réformat de départ, et sans perte significative de rendement.
compositions (%poids) et indices d'octane des différents flux pour l'exemple 2
Réformat Résidu Distillat Isomérat
Hydrocarbures C6- 26,4 6,1 99,9 99,9
dont: C3- - - - 0,08
   oléfines 0,19 - - -
   benzène 4,70 0,01 0,54 -
   cyclohexane 0,08 5,83 0,43 1,27
Hydrocarbures C7+ 73,6 93,9 0,18 0,1
dont: isoC7 9,47 12,1 0,18 0,1
   toluène 19,7 25,2 - -
   xylène 20,1 25,6 - -
Total 100 100 100 100
RON 95,5 98,5 72,5 83,3
MON 85,8 87,6 71,6 82,3
(RON+MON)/2 90,6 93,1 72,1 82,8

Claims (31)

  1. Procédé de traitement d'une charge, constituée en majeure partie par des hydrocarbures comportant au moins 5 atomes de carbone par molécule et comprenant au moins un composé insaturé comportant au plus six atomes de carbone par molécule dont du benzène, tel que:
    on traite ladite charge dans une zone de distillation, comportant une zone d'épuisement et une zone de rectification, associée à une zone réactionnelle d'hydrogénation, comprenant au moins un lit catalytique, dans laquelle on réalise l'hydrogénation d'au moins une partie des composés insaturés, comprenant au plus six atomes de carbone par molécule et contenus dans la charge, en présence d'un catalyseur d'hydrogénation et d'un flux gazeux comprenant de l'hydrogène, la charge de la zone réactionnelle étant prélevée à la hauteur d'un niveau de prélèvement et représentant au moins une partie du liquide coulant dans la zone de rectification, l'effluent de la zone réactionnelle étant au moins en partie réintroduit dans la zone de distillation, de manière à assurer la continuité de la distillation, et de façon à sortir finalement en tête de la zone de distillation un effluent très appauvri en composés insaturés comprenant au plus six atomes de carbone par molécule et en fond de zone de distillation un effluent appauvri en composés insaturés comprenant au plus six atomes de carbone par molécule,
    on traite au moins une partie de l'effluent, soutiré en tête de zone de distillation dans une zone d'isomérisation, ladite partie renfermant des paraffines contenant 5 et/ou 6 atomes de carbone par molécule en présence d'un catalyseur d'isomérisation, de façon à obtenir un isomérat.
  2. Procédé selon la revendication 1 tel que la distillation est réalisée sous une pression comprise entre 2 et 20 bar, avec un taux de reflux compris entre 1 et 10, la température de tête de zone de distillation étant comprise entre 40 et 180°C et la température de fond de zone de distillation étant comprise entre 120 et 280°C.
  3. Procédé selon l'une des revendications 1 ou 2 dans lequel la zone réactionnelle d'hydrogénation est au moins en partie interne à la zone de distillation.
  4. Procédé selon l'une des revendications 1 ou 2 dans lequel la zone réactionnelle d'hydrogénation est au moins en partie externe à la zone de distillation.
  5. Procédé selon l'une des revendications 1 ou 2 dans lequel la zone d'hydrogénation est à la fois partiellement incorporée dans la zone de rectification de la zone de distillation et partiellement externe à la zone de distillation.
  6. Procédé selon l'une des revendications 3 ou 5 tel que, pour la partie de la réaction d'hydrogénation interne à la zone de distillation, la réaction d'hydrogénation est conduite à une température comprise entre 100 et 200°C, à une pression comprise entre 2 et 20 bar, et le débit de l'hydrogène alimentant la zone d'hydrogénation est compris entre une fois et 10 fois le débit correspondant à la stoechiométrie des réactions d'hydrogénation en jeu.
  7. Procédé selon l'une des revendications 4 ou 5 tel que, pour la partie de la réaction d'hydrogénation externe à la zone de distillation, la pression requise pour cette étape d'hydrogénation est comprise entre 1 et 60 bar, la température est comprise entre 100 et 400°C, la vitesse spatiale au sein de la zone d'hydrogénation, calculée par rapport au catalyseur, est généralement comprise entre 1 et 50 h-1 (volume de charge par volume de catalyseur et par heure), et le débit d'hydrogène correspondant à la stoechiométrie des réactions d'hydrogénation en jeu est compris entre 0,5 et 10 fois ladite stoechiométrie.
  8. Procédé selon l'une des revendications 3, 5 ou 6 tel que le catalyseur d'hydrogénation est en contact avec une phase liquide descendante et avec une phase vapeur ascendante, pour tout lit catalytique de la partie interne de la zone d'hydrogénation.
  9. Procédé selon la revendication 8 tel que le flux gazeux comprenant de l'hydrogène nécessaire à la zone d'hydrogénation est joint à la phase vapeur, sensiblement à l'entrée d'au moins un lit catalytique de la zone d'hydrogénation.
  10. Procédé selon l'une des revendications 1 à 7 tel que l'écoulement du liquide à hydrogéner est co-courant à l'écoulement du flux gazeux comprenant de l'hydrogène, pour tout lit catalytique de la partie interne de la zone d'hydrogénation.
  11. Procédé selon l'une des revendications 3, 5 ou 6 tel que l'écoulement du liquide à hydrogéner est co-courant à l'écoulement du flux gazeux comprenant de l'hydrogène et tel que la vapeur de distillation n'est pratiquement pas en contact avec le catalyseur, pour tout lit catalytique de la partie interne de la zone d'hydrogénation.
  12. Procédé selon la revendication 11 tel que la zone d'hydrogénation comporte au moins un dispositif de distribution de liquide dans tout lit catalytique de ladite zone et au moins un dispositif de distribution du flux gazeux comprenant de l'hydrogène, pour tout lit catalytique de la zone d'hydrogénation interne à ladite zone.
  13. Procédé selon la revendication 12 tel que le dispositif de distribution du flux gazeux comprenant de l'hydrogène est disposé avant le dispositif de distribution de liquide.
  14. Procédé selon la revendication 12 tel que le dispositif de distribution du flux gazeux comprenant de l'hydrogène est disposé au niveau du dispositif de distribution de liquide.
  15. Procédé selon la revendication 12 tel que le dispositif de distribution du flux gazeux comprenant de l'hydrogène est disposé après le dispositif de distribution de liquide.
  16. Procédé selon l'une des revendications 1 à 15 tel que l'effluent de fond de la zone de distillation est mélangé au moins en partie à l'effluent d'isomérisation.
  17. Procédé selon l'une des revendications 1 à 16 tel que l'effluent de tête de la zone de distillation est pratiquement exempt de cyclohexane et d'isoparaffines à 7 atomes de carbone par molécule.
  18. Procédé selon l'une des revendications 1 à 17 tel que le catalyseur utilisé dans la zone d'hydrogénation comprend au moins un métal choisi dans le groupe formé par le nickel et le platine.
  19. Procédé selon l'une des revendications 1 à 18 tel que le catalyseur utilisé dans la zone d'hydrogénation comprend un support.
  20. Procédé selon l'une des revendications 1 à 19 tel que le catalyseur d'isomérisation comprend au moins un métal du groupe VIII de la classification périodique des éléments et un support comportant de l'alumine.
  21. Procédé selon la revendication 20 tel que ledit catalyseur comprend en outre au moins un halogène.
  22. Procédé selon l'une des revendications 20 ou 21 tel que la température est comprise entre 80 et 300°C, la pression partielle d'hydrogène est comprise entre 0,1 et 70 bar, la vitesse spatiale est comprise entre 0,2 et 10 litres d'hydrocarbures liquides par litre et catalyseur et par heure, et le rapport molaire hydrogène sur hydrocarbures dans l'isomérat est supérieur à 0,06.
  23. Procédé selon l'une des revendications 1 à 19 tel que le catalyseur d'isomérisation comprend au moins un métal du groupe VIII de la classification périodique des éléments et une zéolithe.
  24. Procédé selon la revendication 23 tel que ladite zéolithe est choisie dans le groupe formé par la mordénite et la zéolithe oméga.
  25. Procédé selon l'une des revendication 23 ou 24 tel que la température est comprise entre 200 et 300°C, la pression partielle d'hydrogène est comprise entre 0,1 et 70 bar, la vitesse spatiale est comprise entre 0,5 et 10 litres d'hydrocarbures liquides par litre de catalyseur et par heure, et le rapport molaire hydrogène sur hydrocarbure dans l'isomérat est compris entre 0,07 et 15.
  26. Procédé selon l'une des revendications 20 à 25 tel que le métal du groupe VIII est choisi dans le groupe formé par le platine, le nickel et le palladium.
  27. Procédé selon l'une des revendications 1 à 26 tel que l'hydrogène éventuellement en excès qui sort en tête de zone de distillation peut être récupéré, puis comprimé et réutilisé dans la zone d'hydrogénation.
  28. Procédé selon l'une des revendications 1 à 26 tel que l'hydrogène éventuellement en excès qui sort en tête de zone de distillation peut être récupéré, puis comprimé et réutilisé dans la zone d'isomérisation.
  29. Procédé selon l'une de revendications 1 à 26 tel que l'hydrogène éventuellement en excès, qui sort en tête de zone de distillation est récupéré, puis injecté en amont des étapes de compression associées à une unité de réformage catalytique, en mélange avec de l'hydrogène provenant de ladit unité.
  30. Procédé selon la revendication 29 tel que ladite unité de réformage catalytique opère à une pression inférieure à 8 bar.
  31. Procédé selon l'une des revendications 1 à 30 tel que l'on traite aussi dans la zone d'isomérisation une autre coupe comprenant des paraffines renfermant en majeure partie 5 et/ou 6 atomes de carbone par molécule.
EP96402910A 1995-12-27 1996-12-27 Procédé de réduction sélective de la teneur en benzène et en composés insaturés légers d'une coupe d'hydrocarbures Expired - Lifetime EP0781831B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9515529A FR2743081B1 (fr) 1995-12-27 1995-12-27 Procede de reduction selective de la teneur en benzene et en composes insatures legers d'une coupe d'hydrocarbures
FR9515529 1995-12-27

Publications (2)

Publication Number Publication Date
EP0781831A1 EP0781831A1 (fr) 1997-07-02
EP0781831B1 true EP0781831B1 (fr) 2001-12-12

Family

ID=9485987

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96402910A Expired - Lifetime EP0781831B1 (fr) 1995-12-27 1996-12-27 Procédé de réduction sélective de la teneur en benzène et en composés insaturés légers d'une coupe d'hydrocarbures

Country Status (8)

Country Link
US (1) US6048450A (fr)
EP (1) EP0781831B1 (fr)
JP (1) JP3806810B2 (fr)
KR (1) KR100447857B1 (fr)
CA (1) CA2194085C (fr)
DE (1) DE69617892T2 (fr)
ES (1) ES2171636T3 (fr)
FR (1) FR2743081B1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2765206B1 (fr) * 1997-06-25 1999-08-06 Inst Francais Du Petrole Zeolithe eu-1, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines
FR2778342B1 (fr) * 1998-05-07 2000-06-16 Inst Francais Du Petrole Catalyseur utilisable dans l'hydrogenation des composes aromatiques dans une charge hydrocarbonnee contenant des composes soufres
US6294492B1 (en) * 1999-06-30 2001-09-25 Philips Petroleum Company Catalytic reforming catalyst activation
US6291381B1 (en) * 1999-06-30 2001-09-18 Phillips Petroleum Company Catalytic reforming catalyst activation
US6855853B2 (en) * 2002-09-18 2005-02-15 Catalytic Distillation Technologies Process for the production of low benzene gasoline
MXPA06015023A (es) * 2006-12-19 2008-10-09 Mexicano Inst Petrol Aplicacion de material adsorbente microporoso de carbon, para reducir el contenido de benceno de corrientes de hidrocarburos.
FR2933987B1 (fr) * 2008-07-18 2010-08-27 Inst Francais Du Petrole Procede d'hydrogenation du benzene
US9315741B2 (en) * 2008-09-08 2016-04-19 Catalytic Distillation Technologies Process for ultra low benzene reformate using catalytic distillation
US7910070B2 (en) * 2008-12-09 2011-03-22 Uop Llc Process for reducing benzene concentration in reformate
US20100145118A1 (en) * 2008-12-09 2010-06-10 Zimmerman Cynthia K Process for Reducing Benzene Concentration in Reformate
EP2277980B1 (fr) 2009-07-21 2018-08-08 IFP Energies nouvelles Procédé de réduction sélective de la teneur en benzène et en composés insatures legers de differentes coupes hydrocarbures
US8808533B2 (en) * 2010-04-23 2014-08-19 IFP Energies Nouvelles Process for selective reduction of the contents of benzene and light unsaturated compounds of different hydrocarbon fractions
JP5937234B2 (ja) 2012-02-01 2016-06-22 サウジ アラビアン オイル カンパニー ベンゼン含量が低減されたガソリンを製造するための接触改質法および接触改質システム
IN2014DN07540A (fr) * 2012-02-13 2015-04-24 Ltd Company Reactive Rectification Technology
US10702795B2 (en) 2016-01-18 2020-07-07 Indian Oil Corporation Limited Process for high purity hexane and production thereof
CN112705122B (zh) * 2019-10-25 2022-07-08 中国石油化工股份有限公司 一种液相加氢反应器及加氢方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008860B2 (fr) 1978-07-27 1991-12-04 CHEMICAL RESEARCH & LICENSING COMPANY Système catalytique
US4215011A (en) 1979-02-21 1980-07-29 Chemical Research And Licensing Company Catalyst system for separating isobutene from C4 streams
US4307254A (en) 1979-02-21 1981-12-22 Chemical Research & Licensing Company Catalytic distillation process
US4336407A (en) 1980-02-25 1982-06-22 Chemical Research & Licensing Company Catalytic distillation process
IT1137527B (it) 1981-04-10 1986-09-10 Anic Spa Procedimento per la preparazione di eteri alchilici terziari
DE3148109A1 (de) * 1981-12-04 1983-06-09 EC Erdölchemie GmbH, 5000 Köln Verfahren zur herstellung von methyl-tert.-butylether (mtbe) und weitgehend von i-buten und vom methanol befreiten kohlenwasserstoff-raffinaten
US4487430A (en) 1982-01-29 1984-12-11 Bernardin Sarah A Fold and hold answer book
JPS58149987A (ja) * 1982-03-02 1983-09-06 Sumitomo Chem Co Ltd 炭化水素類の選択的水素添加の方法
US4439350A (en) 1982-06-21 1984-03-27 Chemical Research & Licensing Company Contact structure for use in catalytic distillation
US4471154A (en) 1983-06-10 1984-09-11 Chevron Research Company Staged, fluidized-bed distillation-reactor and a process for using such reactor
US4648959A (en) * 1986-07-31 1987-03-10 Uop Inc. Hydrogenation method for adsorptive separation process feedstreams
GB8702654D0 (en) * 1987-02-06 1987-03-11 Davy Mckee Ltd Process
US4847430A (en) * 1988-03-21 1989-07-11 Institut Francais Du Petrole Process for manufacturing a tertiary alkyl ether by reactive distillation
US5417938A (en) 1988-09-02 1995-05-23 Sulzer Brothers Limited Device for carrying out catalyzed reactions
EP0414590B1 (fr) * 1989-08-22 1993-08-25 Institut Français du Pétrole Procédé de reduction de la teneur en benzène des essences
US5073236A (en) 1989-11-13 1991-12-17 Gelbein Abraham P Process and structure for effecting catalytic reactions in distillation structure
DE69019731T2 (de) 1990-03-30 1996-01-18 Koch Eng Co Inc Struktur und Verfahren zum katalytischen Reagieren von Fluidströmen in einem Stoffaustauschapparat.
US5130102A (en) 1990-06-11 1992-07-14 Chemical Research & Licensing Company Catalytic distillation reactor
US5308592A (en) 1990-12-03 1994-05-03 China Petrochemical Corporation (Sinopec) Equipment for mixed phase reaction distillation
FR2671492B1 (fr) 1991-01-11 1994-07-22 Benzaria Jacques Conteneur pour materiaux solides granulaires, sa fabrication et ses applications notamment en catalyse et en adsorption.
ES2057965T3 (es) 1991-03-08 1994-10-16 Inst Francais Du Petrole Aparato de destilacion-reaccion y su utilizacion.
CH686357A5 (fr) 1991-05-06 1996-03-15 Bobst Sa Dispositif de lecture d'une marque imprimée sur un élément en plaque ou en bande.
US5210348A (en) * 1991-05-23 1993-05-11 Chevron Research And Technology Company Process to remove benzene from refinery streams
EP0522920B1 (fr) 1991-07-09 1997-11-26 Institut Français du Pétrole Dispositif de distillation-réaction et son utilisation pour la réalisation de réactions équilibrées
US5189001A (en) 1991-09-23 1993-02-23 Chemical Research & Licensing Company Catalytic distillation structure
FR2684893A1 (fr) * 1991-12-16 1993-06-18 Inst Francais Du Petrole Procede de distillation reactive catalytique et appareillage pour sa mise en óoeuvre.
DE69326030T2 (de) * 1992-01-15 2000-01-05 Inst Francais Du Petrole Erniedrigung des Benzolgehaltes von Benzinen
FR2694565B1 (fr) * 1992-08-04 1994-09-30 Inst Francais Du Petrole Réduction de la teneur en benzène dans les essences.
US5177283A (en) * 1992-02-03 1993-01-05 Uop Hydrocarbon conversion process
FR2688198B1 (fr) 1992-03-06 1994-04-29 Benzaria Jacques Chaine de conteneurs pour materiaux solides granulaires, sa fabrication et ses utilisations.
US5338517A (en) 1992-05-18 1994-08-16 Chemical Research & Licensing Company Catalytic distillation column reactor and tray
US5266546A (en) 1992-06-22 1993-11-30 Chemical Research & Licensing Company Catalytic distillation machine
FR2714388B1 (fr) * 1993-12-29 1996-02-02 Inst Francais Du Petrole Procédé de réduction de la teneur en benzène dans les essences.
US5773670A (en) * 1995-03-06 1998-06-30 Gildert; Gary R. Hydrogenation of unsaturated cyclic compounds
FR2737132B1 (fr) * 1995-07-24 1997-09-19 Inst Francais Du Petrole Procede et dispositif de distillation reactive avec distribution particuliere des phases liquide et vapeur
FR2743079B1 (fr) * 1995-12-27 1998-02-06 Inst Francais Du Petrole Procede et dispositif d'hydrogenation selective par distillation catalytique comportant une zone reactionnelle a co-courant ascendant liquide-gaz
FR2743080B1 (fr) * 1995-12-27 1998-02-06 Inst Francais Du Petrole Procede de reduction selective de la teneur en benzene et en composes insatures legers d'une coupe d'hydrocarbures
US5830345A (en) * 1996-02-28 1998-11-03 Chinese Petroleum Corporation Process of producing a debenzenated and isomerized gasoline blending stock by using a dual functional catalyst
US5856602A (en) * 1996-09-09 1999-01-05 Catalytic Distillation Technologies Selective hydrogenation of aromatics contained in hydrocarbon streams

Also Published As

Publication number Publication date
JP3806810B2 (ja) 2006-08-09
FR2743081A1 (fr) 1997-07-04
DE69617892D1 (de) 2002-01-24
KR970033028A (ko) 1997-07-22
KR100447857B1 (ko) 2004-11-12
EP0781831A1 (fr) 1997-07-02
ES2171636T3 (es) 2002-09-16
CA2194085A1 (fr) 1997-06-28
DE69617892T2 (de) 2002-04-25
CA2194085C (fr) 2007-03-06
FR2743081B1 (fr) 1998-01-30
US6048450A (en) 2000-04-11
JPH09202886A (ja) 1997-08-05

Similar Documents

Publication Publication Date Title
EP0781830B1 (fr) Procédé de réduction sélective de la teneur en benzène et en composés insaturés légers d'une coupe d'hydrocarbures
EP0781829B1 (fr) Procédé et dispositif d'hydrogénation sélective par distillation catalytique
EP0781831B1 (fr) Procédé de réduction sélective de la teneur en benzène et en composés insaturés légers d'une coupe d'hydrocarbures
EP0245124B1 (fr) Procédé combiné d'hydroréformage et d'hydroisomérisation
CA2738541C (fr) Procede ameliore de reduction selective de la teneur en benzene et en composes insatures legers de differentes coupes hydrocarbures
EP0552070B1 (fr) Réduction de la teneur en benzène dans les essences
WO1998006684A1 (fr) Procede de production d'isobutene de haute purete a partir d'une coupe c4 contenant de l'isobutene et du butene-1
CA2266003C (fr) Procede de conversion d'hydrocarbures par traitement dans une zone de distillation associee a une zone reactionnelle et son utilisation en hydrogenation du benzene
EP0949315B1 (fr) Procédé de conversion d'hydrocarbures par traitement dans une zone de distillation associée à une zone réactionnelle, et son utilisation en hydrogenation du benzène
EP0980909B1 (fr) Procédé de conversion d'hydrocarbures et son utilisation en hydrogénation du benzène
EP0787786B1 (fr) Procédé d'isomérisation de paraffines par distillation réactive
FR2787117A1 (fr) Procede de conversion d'hydrocarbures par traitement dans une zone de distillation associee a une zone reactionnelle comprenant le recontactage du distillat vapeur avec la charge, et son utilisation en hydrogenation du benzene
EP0787785A1 (fr) Procédé d'isomérisation de paraffines
EP2277980B1 (fr) Procédé de réduction sélective de la teneur en benzène et en composés insatures legers de differentes coupes hydrocarbures
EP0552072B1 (fr) Réduction de la teneur en benzène dans les essences
WO2023117594A1 (fr) Unité de production et de séparation des aromatiques avec valorisation d'un extrait et/ou d'un raffinat provenant d'un procédé d'extraction liquide-liquide
FR2948380A1 (fr) Procede de reduction selective de la teneur en benzene et en composes insatures legers de differentes coupes hydrocarbures
FR2694565A1 (fr) Réduction de la teneur en benzène dans les essences.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19980102

17Q First examination report despatched

Effective date: 19991025

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 69617892

Country of ref document: DE

Date of ref document: 20020124

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020225

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2171636

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 69617892

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

Ref country code: DE

Ref legal event code: R081

Ref document number: 69617892

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20141203

Year of fee payment: 19

Ref country code: GB

Payment date: 20141218

Year of fee payment: 19

Ref country code: FR

Payment date: 20141014

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20141218

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141218

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141222

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69617892

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151227

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151227

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180507