EP0243557A1 - Appareil et méthode pour éliminer les ions strontium et/ou césium d'une solution aqueuse d'une solution aqueuse ayant une dureté chimique - Google Patents

Appareil et méthode pour éliminer les ions strontium et/ou césium d'une solution aqueuse d'une solution aqueuse ayant une dureté chimique Download PDF

Info

Publication number
EP0243557A1
EP0243557A1 EP86309286A EP86309286A EP0243557A1 EP 0243557 A1 EP0243557 A1 EP 0243557A1 EP 86309286 A EP86309286 A EP 86309286A EP 86309286 A EP86309286 A EP 86309286A EP 0243557 A1 EP0243557 A1 EP 0243557A1
Authority
EP
European Patent Office
Prior art keywords
aqueous solution
column
exchange resin
zeolite
cationic exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86309286A
Other languages
German (de)
English (en)
Inventor
Anuj Kumar Saha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Publication of EP0243557A1 publication Critical patent/EP0243557A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Definitions

  • This invention relates to an appartaus and method for removing strontium and/or cesium ions from an aqueous solution containing chemical hardness.
  • aqueous solutions of low level radioactive waste are treated using a combination of scavenging, precipitation, filtration, and ion exchange to reduce the radioactivity to a safe level.
  • This process has not proved to be entirely satisfactory because the chemical hardness in the solution interferes with the proper func­tioning of the organic ion exchange resin used to remove the radioactive ions.
  • a high sodium concentration in the waste solution also causes functional inefficiency in the organic ion exchanger.
  • the presence of phosphate ion greater than 0.5 ppm prevents the precipitation of calcium and magnesium ions during scavenging, and the presence of phosphate and other anions, such as chloride and sulfate, reduces the efficiency of the weak acid cationic exchange resin.
  • the removal of the strontium 90 ions in the solutions is not considered to be adequate.
  • the present invention resides in an apparatus for removing strontium and/or cesium ions from an aqueous solution containing chemical hardness characterised in that said appartaus comprises a first column containing an organic cationic exchange resin in alkali metal form; a second column containing erionite, chabazite, phillipsite, type A zeolite or mixtures of these zeolites; and means for passing said aqueous solution through said first column, then through said second column.
  • the invention also includes a method of removing radioactive strontium and/or cesium ions from an aqueous solution containing chemical hardness characterized by passing said aqueous solution through a first column containing an organic cationic exchange resin in alkali metal form; and passing said aqueous solution through a second column containing erionite, chabazite, phillipsite, and type A zeolite or mixtures of these zeolites.
  • All low radioactivity liquids including those of high hardness concentration and those that contain anions such as phosphate, fluoride, and sulfate, can be handled regardless of sodium ion concentration.
  • the decontamination factor can be increased by dividing the zeolite ion exchange bed into upper and lower portions, using a different mix of zeolites in each portion.
  • an aqueous solution containing radioactive ions enters filter 1 which removes any particulate matter that may be present.
  • the solution then passes through line 2, valve 3, line 4, and valve 5 into column 6 which contains an organic cationic exchange resin in alkali metal form (Na+ form).
  • the solution is atomized by atomizer 7 to help produce more surface area and thereby promote an intimate contact of the liquid and the solid resin bed.
  • the solution is atomized by atomizer 16, and leaves column 12 by line 17, passing through valve 18 into lines 19, valve 20, and line 21 for discharge. Should column 6 become exhausted or malfunction, valve 5 can be closed and valve 22 can be opened, permitting the aqueous solution to pass through line 23 into column 24 where it is atomized by atomizer 25. The aqueous solution then leaves column 24 by line 26 through valve 27 into line 28, valve 10, line 11, and into column 12. Aqueous solution leaving columns 6 and 24 can be tested for chemical hardness, and, if insufficient hardness has been removed, the solution can be recycled through valve 29 and line 30.
  • valve 10 can be closed and valve 31 can be opened, permitting the fluid to pass through line 32, and atomizer 33 into column 34, which is also filled with a specially selected zeolite, and is divided into upper portion 35 and lower portion 36, sepa­rated by liquid redistributor plate 37.
  • the aqueous solution leaves column 34 by line 38 and valve 39 into line 19.
  • Some low level radioactive waste solutions consist of evaporator condensates or overshoots (resulting from higher activity streams or evaporator malfunction) that contain very low or no chemical hardness. These condensates can enter the system by line 40. If chemical hardness is present, they can pass through line 41 and valve 42 into line 30 for treatment in column 6 or column 24. If chemical hardness is not present, valve 42 is closed and valve 43 is opened, and the condensate passes through line 44 and valve 45 through atomizer 46 into column 47, which is also packed with a specially selected zeolite, and is divided into an upper portion 48 and a lower portion 49, separated by liquid redistributor plate 50.
  • Condensate leaving column 47 by line 51 through valve 52 can be sent through lines 19 and 21 to discharge if the radioactivity is sufficiently low to meet the discharge limits. However, if any of the fluids leaving columns 47, 12, or 34 do not meet the discharge limits, valve 20 can be closed and valve 53 can be opened so that the fluids pass through line 54, which recycles them through columns 47, 12, or 34, until the radioactivity is reduced to the discharge limits. Should column 47 become exhausted or malfunction, valve 45 can be closed and valve 55 can be opened, and the condensate will pass through line 56 into column 34.
  • the waste water treated according to this inven­tion contains cesium and strontium ions and also contains chemical hardness such as calcium, magnesium, and/or iron ions.
  • the aqueous solution contains no particulate matter as it is removed by a filter that precedes treatment in the ion exchange columns.
  • the aqueous liquid also should not contain organic liquids as they interfere with the removal of radioactive ions from the solution. While any amount of cesium and strontium ions may be present, a typical low level waste solution will contain about 10 ⁇ 3 to about 10 microcuries per cubic centimeter and about 5 to about 1000 parts per million (ppm) of chemical hardness as calcium, magnesium, and iron.
  • the organic cationic exchange columns remove chemical hardness from the solution and reduce the solu­tion's conductivity. In addition, they also remove some of the strontium.
  • the organic cationic exchange resin must be in alkali metal from, preferably the sodium form, rather than the acid form, as the acid form is not effective in removing calcium. It is preferable to use a strong acid form rather than a weak acid form because a strong acid form is more durable and lasts longer.
  • a sulfonic acid based cationic exchange resin is preferable as it is readily available and works well. While either the gel or macroreticular type of exchange resin can be used, it is preferable to use a macroreticular exchange resin as that type of resin does not expand, is easier to work with, and is easier to dispose of.
  • phosphate ion is present in the aqueous solution, it is preferable to include about one to about 20 percent (all percentages herein are of weight unless otherwise specified) of an organic anionic ion exchange resin in with the organic cationic exchange resin in order to remove the phosphate ion. Also, as is shown in the drawing, it is preferable to use two columns so the process can continue by switching to a second column should one column become exhausted, plugged, or otherwise break down. The fluid leaving the organic cationic exchange column should be tested for calcium to determine when the column has become exhausted.
  • the aqueous solution is passed through a second type of column containing particular zeolites.
  • the zeolites that are used in this invention are erionite, chabazite, type A zeolite (a synthetic zeolite), and phil­lipsite. We have discovered that these particular zeolites have a higher capacity for removing cesium and strontium than do other ion exchange materials, such as organic cationic exchange resins.
  • the zeolites preferably have a pore size of about 4 to about 5 angstroms.
  • the second stage of the process is itself preferivelyably divided into two portions within the column.
  • the column is preferably divided to achieve a more selective Sr-90 partition/decontamination in the upper portion and more selective Cs-137 partition/decontamination in the lower portion.
  • the minimum packing height of the upper stage is preferably five feet.
  • the steam exiting the upper stage drop into a liquid redistributor plate, then trickles into the lower stage.
  • the upper portion contains a higher proportion of type A zeolite, which removes strontium better, and the lower portion contains a higher proportion of chabazite and/or erionite, which removes cesium better.
  • the upper stage preferably contains from 55 to 60% by volume type A zeolite and from 40 to 45% by volume chabazite and/or erionite.
  • the lower stage preferably contains from 25 to 30% by volume type A zeolite and from 70 to 75% by volume chabazite and/or erionite.
  • the ion exchange columns When the ion exchange columns are exhausted, they can be sluiced to a cement mixture where they are solidi­fied in cement, or otherwise disposed of.
  • This example shows the dynamic column test data obtained by passing a radioactive solution containing chemical hardness through an organic ion exchange prefilter and then through a zeolite bed.
  • the organic ion exchange bed removes chemical hardness (Ca++, Mg++, etc.) very effectively and at the same time decontaminates a very substantial quantity of Sr-90 and Cs-137.
  • the effluent from the organic ion-filter bed goes to the zeolite bed where the remaining traces of radioactivity is so effec­tively removed that the Cs-137 and Sr-90 levels of the effluent zeolite bed are undetectable. ( ⁇ 10 ⁇ 8uCi/c.c).
  • the organic ion exchange prefilter was strong acid cation exchange resin in Na+ form sold by Rohm & Hass under the trade designation IR-122.
  • the zeolite was erionite sold by Phelps dodge zeolites under the trade designation PDZ-50. The following tables give the conditions and results of this experiment.
EP86309286A 1986-04-30 1986-11-27 Appareil et méthode pour éliminer les ions strontium et/ou césium d'une solution aqueuse d'une solution aqueuse ayant une dureté chimique Withdrawn EP0243557A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US85767786A 1986-04-30 1986-04-30
US857677 1986-04-30

Publications (1)

Publication Number Publication Date
EP0243557A1 true EP0243557A1 (fr) 1987-11-04

Family

ID=25326506

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86309286A Withdrawn EP0243557A1 (fr) 1986-04-30 1986-11-27 Appareil et méthode pour éliminer les ions strontium et/ou césium d'une solution aqueuse d'une solution aqueuse ayant une dureté chimique

Country Status (3)

Country Link
EP (1) EP0243557A1 (fr)
JP (1) JPS62262784A (fr)
KR (1) KR870010563A (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990009026A1 (fr) * 1989-01-31 1990-08-09 Franz Roiner Procede pour decontaminer des substances attaquees part des ions metalliques et/ou des matieres radioactives
ES2046947A1 (es) * 1992-05-13 1994-02-01 Univ La Laguna Metodo de tratamiento de aguas residuales en columna zeolitica.
CN104054137A (zh) * 2012-01-18 2014-09-17 大日精化工业株式会社 放射性铯的除去方法、用于除去放射性铯的亲水性树脂组合物、放射性碘和放射性铯的除去方法以及用于除去放射性碘和放射性铯的亲水性树脂组合物
JP2015017003A (ja) * 2013-07-09 2015-01-29 富士チタン工業株式会社 セシウムとストロンチウムの両方の吸着能力に優れた人工ゼオライトとその製造方法
EP2556511A4 (fr) * 2010-03-09 2015-03-04 Kurion Inc Séparation et vitrification spécifiques d'isotopes au moyen de milieux spécifiques d'ions
JP2015052522A (ja) * 2013-09-06 2015-03-19 株式会社荏原製作所 放射性セシウムと塩類とを含む排水の除染装置及び除染方法
US9365911B2 (en) 2012-03-26 2016-06-14 Kurion, Inc. Selective regeneration of isotope-specific media resins in systems for separation of radioactive isotopes from liquid waste materials
RU168418U1 (ru) * 2016-08-08 2017-02-02 Общество с ограниченной ответственностью Научно-производственное предприятие "Эксорб" Устройство для очистки растворов от радионуклидов
RU2672662C2 (ru) * 2016-05-11 2018-11-19 Общество с ограниченной ответственностью "Акватория" Способ очистки солевых растворов от радионуклидов и установка для его осуществления
US10183870B2 (en) 2015-05-22 2019-01-22 Access Business Group International Llc Point-of-use water treatment system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170072356A (ko) * 2009-01-12 2017-06-26 액세스 비지니스 그룹 인터내셔날 엘엘씨 사용 시점 수처리 시스템
JP5909096B2 (ja) * 2012-01-17 2016-04-26 三菱重工業株式会社 放射性廃液処理装置
JP2014048168A (ja) * 2012-08-31 2014-03-17 Fuji Electric Co Ltd 放射性物質汚染物質の除染方法及びその除染装置
JP6175354B2 (ja) * 2013-11-05 2017-08-02 太平洋セメント株式会社 汚染水の処理方法及び処理装置
KR101551233B1 (ko) * 2014-09-16 2015-09-10 한국원자력연구원 원전 중대사고 시 발생하는 방사성 폐액 처리방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD78224A (fr) *
US2752309A (en) * 1952-04-30 1956-06-26 Ardath H Emmons Process for water decontamination
FR1399711A (fr) * 1964-04-09 1965-05-21 Kuhlmann Ets Procédé de décontamination d'une solution radioactive
DE1517610A1 (de) * 1964-05-21 1970-01-29 Planungs Und Forschungsgesells Verfahren und Vorrichtung zur Entfernung radioaktiver Kationen aus weichen Oberflaechenwaessern im Grossversorgungsbetrieb mit Schnellfilteranlagen insbesondere fuer die Trinkwasserversorgung aus Talsperren und natuerlichen,stehenden Gewaessern
FR2310616A1 (fr) * 1975-05-07 1976-12-03 Shin Tohoku Chemical Ind Co Lt Procede de traitement des eaux residuaires radio-actives
EP0117315A1 (fr) * 1983-02-11 1984-09-05 The Dow Chemical Company Méthode pour éliminer le césium d'un liquide aqueux, méthode pour purifier le réfrigératif du réacteur dans des réacteurs à eau bouillante et à eau pressurisée et lit de mélange de résines à échange d'ions utile pour ladite purification

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD78224A (fr) *
US2752309A (en) * 1952-04-30 1956-06-26 Ardath H Emmons Process for water decontamination
FR1399711A (fr) * 1964-04-09 1965-05-21 Kuhlmann Ets Procédé de décontamination d'une solution radioactive
DE1517610A1 (de) * 1964-05-21 1970-01-29 Planungs Und Forschungsgesells Verfahren und Vorrichtung zur Entfernung radioaktiver Kationen aus weichen Oberflaechenwaessern im Grossversorgungsbetrieb mit Schnellfilteranlagen insbesondere fuer die Trinkwasserversorgung aus Talsperren und natuerlichen,stehenden Gewaessern
FR2310616A1 (fr) * 1975-05-07 1976-12-03 Shin Tohoku Chemical Ind Co Lt Procede de traitement des eaux residuaires radio-actives
EP0117315A1 (fr) * 1983-02-11 1984-09-05 The Dow Chemical Company Méthode pour éliminer le césium d'un liquide aqueux, méthode pour purifier le réfrigératif du réacteur dans des réacteurs à eau bouillante et à eau pressurisée et lit de mélange de résines à échange d'ions utile pour ladite purification

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990009026A1 (fr) * 1989-01-31 1990-08-09 Franz Roiner Procede pour decontaminer des substances attaquees part des ions metalliques et/ou des matieres radioactives
ES2046947A1 (es) * 1992-05-13 1994-02-01 Univ La Laguna Metodo de tratamiento de aguas residuales en columna zeolitica.
US9437336B2 (en) 2010-03-09 2016-09-06 Kurion, Inc. Isotope-specific separation and vitrification using ion-specific media
US10020085B2 (en) 2010-03-09 2018-07-10 Kurion, Inc. Isotope-specific separation and vitrification
EP2556511A4 (fr) * 2010-03-09 2015-03-04 Kurion Inc Séparation et vitrification spécifiques d'isotopes au moyen de milieux spécifiques d'ions
EP2806426A4 (fr) * 2012-01-18 2015-12-16 Dainichiseika Color Chem Procédé pour l'élimination de césium radioactif, composition de résine hydrophile pour l'élimination de césium radioactif, procédé pour l'élimination d'iode radioactif et de césium radioactif et composition de résine hydrophile pour l'élimination d'iode radioactif et de césium radioactif
CN104054137A (zh) * 2012-01-18 2014-09-17 大日精化工业株式会社 放射性铯的除去方法、用于除去放射性铯的亲水性树脂组合物、放射性碘和放射性铯的除去方法以及用于除去放射性碘和放射性铯的亲水性树脂组合物
CN104054137B (zh) * 2012-01-18 2016-09-07 大日精化工业株式会社 放射性铯的除去方法、用于除去放射性铯的亲水性树脂组合物、放射性碘和放射性铯的除去方法以及用于除去放射性碘和放射性铯的亲水性树脂组合物
US9365911B2 (en) 2012-03-26 2016-06-14 Kurion, Inc. Selective regeneration of isotope-specific media resins in systems for separation of radioactive isotopes from liquid waste materials
US9714457B2 (en) 2012-03-26 2017-07-25 Kurion, Inc. Submersible filters for use in separating radioactive isotopes from radioactive waste materials
US10480045B2 (en) 2012-03-26 2019-11-19 Kurion, Inc. Selective regeneration of isotope-specific media resins in systems for separation of radioactive isotopes from liquid waste materials
JP2015017003A (ja) * 2013-07-09 2015-01-29 富士チタン工業株式会社 セシウムとストロンチウムの両方の吸着能力に優れた人工ゼオライトとその製造方法
JP2015052522A (ja) * 2013-09-06 2015-03-19 株式会社荏原製作所 放射性セシウムと塩類とを含む排水の除染装置及び除染方法
US10183870B2 (en) 2015-05-22 2019-01-22 Access Business Group International Llc Point-of-use water treatment system
RU2672662C2 (ru) * 2016-05-11 2018-11-19 Общество с ограниченной ответственностью "Акватория" Способ очистки солевых растворов от радионуклидов и установка для его осуществления
RU168418U1 (ru) * 2016-08-08 2017-02-02 Общество с ограниченной ответственностью Научно-производственное предприятие "Эксорб" Устройство для очистки растворов от радионуклидов

Also Published As

Publication number Publication date
KR870010563A (ko) 1987-11-30
JPS62262784A (ja) 1987-11-14

Similar Documents

Publication Publication Date Title
EP0243557A1 (fr) Appareil et méthode pour éliminer les ions strontium et/ou césium d'une solution aqueuse d'une solution aqueuse ayant une dureté chimique
Pansini Natural zeolites as cation exchangers for environmental protection
Singh et al. Removal of fluoride from spent pot liner leachate using ion exchange
US2752309A (en) Process for water decontamination
US5407889A (en) Method of composite sorbents manufacturing
EP0118493B1 (fr) Fixation de materiaux anioniques au moyen d'un agent de complexage
Harjula et al. Removal of radioactive cesium from nuclear waste solutions with the transition metal hexacyanoferrate ion exchanger CsTreat
US4853130A (en) Method for purifying liquids
US6991731B2 (en) Treatment process for removing radioactive thorium from solvent extraction liquid effluent
EP0555996B1 (fr) Procédés et appareil pour traiter un effluent industriel aqueux
JPH0247599A (ja) 放射性核種含有廃液の処理方法
JPH0327264B2 (fr)
US2373632A (en) Removal of fluorine from water
JPH0319520B2 (fr)
JPS6334999B2 (fr)
US5879433A (en) Method and apparatus for reducing the acid gas and/or inert particulate content of steam
JP3727212B2 (ja) ホウ素を含む排水の処理装置及び処理方法
RU2055814C1 (ru) Способ очистки бессолевых сточных вод, содержащих азотсодержащие компоненты и тяжелые металлы
US3660283A (en) Method for regenerating cation exchange resin
US4654146A (en) Ion exchanger to separate heavy alkali metal ions
Campbell et al. Low-level liquid waste decontamination by ion exchange
Kozlov et al. Development of a process for cesium recovery from the clarified phase of high-level waste storage tanks of the Mayak Production Association with a ferrocyanide sorbent
Park et al. An experimental study on liquid radioactive waste treatment process using inorganic ion exchanger
RU2050027C1 (ru) Способ очистки растворов от радионуклидов
DE3513943C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19880428

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19890531

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SAHA, ANUJ KUMAR