EP0241642B1 - Lichtelektrische Längen- oder Winkelmesseinrichtung - Google Patents

Lichtelektrische Längen- oder Winkelmesseinrichtung Download PDF

Info

Publication number
EP0241642B1
EP0241642B1 EP87100897A EP87100897A EP0241642B1 EP 0241642 B1 EP0241642 B1 EP 0241642B1 EP 87100897 A EP87100897 A EP 87100897A EP 87100897 A EP87100897 A EP 87100897A EP 0241642 B1 EP0241642 B1 EP 0241642B1
Authority
EP
European Patent Office
Prior art keywords
brightness
signals
measuring device
light source
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87100897A
Other languages
English (en)
French (fr)
Other versions
EP0241642A2 (de
EP0241642A3 (en
Inventor
Walter Ing. Grad. Schmitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Johannes Heidenhain GmbH
Original Assignee
Dr Johannes Heidenhain GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Johannes Heidenhain GmbH filed Critical Dr Johannes Heidenhain GmbH
Priority to AT87100897T priority Critical patent/ATE64005T1/de
Publication of EP0241642A2 publication Critical patent/EP0241642A2/de
Publication of EP0241642A3 publication Critical patent/EP0241642A3/de
Application granted granted Critical
Publication of EP0241642B1 publication Critical patent/EP0241642B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses

Definitions

  • the invention relates to a photoelectric length or angle measuring device according to the preamble of claim 1.
  • Such measuring devices are used in particular in processing machines for measuring the relative position of a tool with respect to a workpiece to be machined, and in coordinate measuring machines for determining the position and / or dimensions of test objects.
  • DE-AS 1 548 708 discloses a photoelectric length measuring device for measuring the relative position of two objects that are movable relative to one another, in which the division of a material measure connected to the first object is scanned by a scanning unit connected to the second object with a light source to generate a periodic scanning signal becomes.
  • the light source is assigned an additional photo element for generating a brightness signal proportional to the brightness of the light source, which is a control unit for regulating the brightness of the light source in order to achieve a corresponding temperature response between the control unit and the scanning unit.
  • DE-AS 1 548 747 shows a photoelectric length measuring device for measuring the relative position of two mutually movable objects, in which the division of a material measure connected to the first object is scanned by a scanning unit connected to the second object with a light source to generate two periodic scanning signals .
  • the light source is assigned an additional photo element for generating a brightness signal proportional to the brightness of the light source, which, together with a predetermined desired signal, acts on a control unit for regulating the brightness of the light source to compensate for interference in the beam path of the scanning unit.
  • a photoelectric length measuring device for measuring the relative position of two mutually movable objects is known, in which the division of a scale connected to the first object is scanned by a scanning device connected to the second object with two spaced-apart scanning units.
  • Each scanning unit has a light source, a scanning graduation on a common scanning plate and a photo element. That of the two photo elements of the two scanning units
  • the two periodic scanning signals obtained are additively superimposed on one another in analog form, so that there is a higher measuring accuracy, since the two scanning units scan an overall larger range of the scale division than with only one scanning unit provided. With this measure, possible inaccuracies in the division of the scale result in smaller signal errors.
  • DE-OS 18 11 961 describes a photoelectric angle measuring device in which the division of a partial disk connected to the first object is scanned by a scanning device connected to the second object with two spaced-apart pairs of diametrically opposite scanning units.
  • Each scanning unit has a light source, a scanning graduation on a scanning plate and a photo element.
  • the two periodic scanning signals obtained from the two photoelements of each pair of scanning units are superimposed on one another in an analog form, so that in addition to the ineffectiveness of possible inaccuracies in the division of the graduated disk, eccentricity errors in the mounting of the graduated disk are also eliminated.
  • the maximum amplitudes of the two periodic scanning signals obtained from the two interacting scanning units must be the same amount or one have a certain predetermined amount ratio. However, this condition must be ensured over the entire operating time or service life of the light sources of the scanning units.
  • Such commercially available light sources in photoelectric measuring devices generally have a different aging characteristic with regard to their brightness, which can lead to a deviation from the predetermined magnitude ratio between the maximum amplitudes of the periodic scanning signals and thus to measurement inaccuracies.
  • the invention has for its object to rule out measurement inaccuracies due to different aging phenomena of the light sources of the scanning units in a photoelectric measuring device of the type mentioned.
  • the advantages achieved by the invention are, in particular, that in a photoelectric measuring device with at least two separate, spaced-apart scanning units, each with its own light source, in which the periodic scanning signals obtained from the scanning units are superimposed on one another, keeping a certain predetermined one constant with simple means Ratio of the magnitudes of the maximum amplitudes of the periodic scanning signals over the entire operating period or lifespan of the light sources of the scanning units despite a different aging characteristic of the Light sources are achieved, so that in the case of length measuring devices, pitch errors in the graduation of the measuring standard and in the case of angle measuring devices, in addition, eccentricity errors in the mounting of the graduated disk can be eliminated.
  • the quality of the light sources with regard to the same aging characteristics do not have to be particularly stringent, but inexpensive commercial light sources can be used. By monitoring the brightness of the light sources to a minimum value that should not be undercut, timely replacement of the light sources can be ensured.
  • FIG. 1 shows a photoelectric length measuring device in a schematic side view, in which the graduation T of a material measure M connected to a first object, not shown, is scanned in the form of a scale by a scanning device A connected to a second object, not shown, the two in one determined constant distance C in the measuring direction X contains scanning units AE1, AE2.
  • FIG. 2 shows the first scanning unit AE1 in a schematic cross section according to section 2-2 of FIG. 1 and in FIG. 3 the second scanning unit AE2 in a schematic cross section according to section 3-3 of FIG. 1.
  • the two objects, not shown, whose mutual relative position is to be measured, can be formed by the bed and the carriage of a processing machine, not shown.
  • the first scanning unit AE1 has a first lighting unit B1 with a first light source L1 and a first condenser K1, a first scanning plate AP1 with a first scanning division AT1 and a first photo element P1 assigned to the first scanning division AT1;
  • the second scanning unit AE2 has a second lighting unit B2 with a second light source L2 and a second condenser K2, a second scanning plate AP2 with a second scanning division AT2 and a second one assigned to the second scanning division AT2 Photoelement P2 on.
  • the two light sources L1, L2 in the form of miniature spiral lamps of the two scanning units AE1, AE2 are connected in series between a voltage source SQ and ground N, and the two photoelements P1, P2 are each connected to ground N with one pole.
  • the two respective luminous fluxes emanating from the two light sources L1, L2 of the lighting units B1, B2 are separated by the division T of the scale M and by the two Scanning divisions AT1, AT2 of the two scanning plates AP1, AP2 modulated and fall on the two associated photo elements P1, P2, which generate two periodic scanning signals S1, S2, which are superimposed in an analog form on top of each other and an evaluation device AWE with a pulse shaper stage F and a forward / Down counter Z are supplied, which displays the length measurements in digital form.
  • the two photo elements P1, P2 of the two scanning units AE1, AE2 can each be assigned in a known manner, not shown, three further photo elements, so that each of the two scanning units has four periodic scanning signals with a certain mutual phase offset to discriminate the measuring direction and to eliminate the DC components of the periodic scanning signals are supplied. Since these measures, which are described, for example, in DE-PS 30 07 311, do not affect the invention, their presentation has been improved for reasons of better Clarity waived.
  • the additive superposition of the two periodic scanning signals S1, S2 of the two scanning units AE1, AE2 in analog form results in a higher measuring accuracy, since the two scanning units AE1, AE2 scan twice the area T of the scale M, so that any inaccuracies in the division T can be eliminated.
  • the maximum amplitudes AM1, AM2 of the two periodic scanning signals S1, S2 have a certain predetermined magnitude ratio, preferably a magnitude ratio of 1: 1, that is, that the amounts of the maximum amplitudes AM1, AM2 of the two periodic scanning signals S1, S2 are equal to one another; 4 shows the two periodic scanning signals S1, S2 with their maximum amplitudes AM1, AM2 as a function of the measuring path s.
  • the first photo element P1 becomes the first scanning unit AE1
  • a first additional photo element ZP1 which from the first light source L1 of the first lighting unit B1 through the transparent scale M outside the division T and through the first transparent scanning plate AP1 outside the scanning division AT1 with modulated light (constant light) during the measuring movement of the scanning device A is applied with respect to the scale M
  • the second photo element P2 of the second scanning unit AE2 is assigned a second additional photo element ZP2, which is emitted by the second light source L2 of the second lighting unit B2 through the transparent scale M outside the division T and through the second transparent scan tplatte AP2 outside the second scanning division AT2 with modulated light (constant light) is applied during the measuring movement of the scanning device A with respect to the scale M
  • FIG. 5 shows a first control circuit with the two light sources L1, L2 in the form of light-emitting diodes of the two scanning units AE1, AE2 and with the additional photoelements ZP1, ZP2 assigned to the two photoelements P1, P2.
  • the two light sources L1, L2 are in series switched between a controllable constant current source KSQ and ground N.
  • the first additional photo element ZP1 is connected to the cathode with ground N and to the anode with the inverting input of a comparator V with a gain greater than zero of a control unit RE;
  • the second additional photo element ZP2 is connected to the cathode with ground N and to the anode with the non-inverting input of the comparator V.
  • the first additional photo element ZP1 is assigned a first potentiometer PM1 and the second additional photo element ZP2 a second potentiometer PM2 in parallel as controllable load resistors.
  • the output of the comparator V is connected in the control unit RE to an actuator SG for the two light sources L1, L2, which has a first NPN transistor TS1 and a second PNP transistor TS2.
  • the first transistor TS1 is connected to the collector with the anode of the first light source L1 and with the emitter to the cathode of the first light source L1; likewise the second transistor TS2 is connected to the collector via ground N to the cathode and to the emitter to the anode of the second light source L2.
  • a third potentiometer PM3 and the second light source L2 a fourth potentiometer PM4 are connected in parallel to the first light source L1.
  • the two light sources L1, L2 connected in series are set to maximum brightness by means of the adjustable constant current source KSQ and adjusted to the same brightness with the third potentiometer PM3 and the fourth potentiometer PM4, so that the two maximum amplitudes AM1, AM2 of the two scanning signals S1, S2 of the two, of the modulated Luminous fluxes of the same brightness of the two light sources L1, L2 applied to photo elements P1, P2 of the two scanning units AE1, AE2 are identical to one another, which can be checked by means of an oscillograph.
  • the two additional photo elements ZP1, ZP2 are acted upon by the unmodulated light fluxes of the same brightness of the two light sources L1, L2; the two additional photo elements ZP1, ZP2 thus supply two brightness signals HS1, HS2, the equality of which is set by means of the first and second potentiometers PM1, PM2. Because of the equality between the first brightness signal HS1 of the first additional photo element ZP1 and the second brightness signal HS2 of the second additional photo element ZP2, the control signal RS has the value zero at the output of the comparator V.
  • the brightnesses of the two luminous fluxes of the two light sources L1, L2 decrease differently because of the different aging characteristics in general with such commercial light sources L1, L2 that a difference occurs between the two brightness signals HS1, HS2 of the two additional photo elements ZP1, ZP2, which leads to a finite positive or negative control signal RS, depending on the sign of the difference, at the output of the comparator V.
  • This control signal RS of the comparator V is fed to the actuator SG for the two light sources L1, L2 and causes the brightness of the brighter light source L1, L2 to match the brightness of the darker ones Light source L1, L2 is lowered, so that when there is renewed equality between the brightnesses of the two light fluxes of the two light sources L1, L2, there is no longer a difference between the two brightness signals HS1, HS2 of the two additional photoelements ZP1, ZP2 and the control signal RS at the output of the Comparator V again assumes the value zero.
  • the two periodic scanning signals S1, S2 of the two scanning units AE1, AE2 have the same maximum amplitudes AM1, AM2, so that the additive superimposition of the two periodic scanning signals S1, S2 in analogue form, the measuring accuracy increases with the length measuring device, since the two scanning units AE1, AE2 simultaneously scan twice the area T of the scale M, so that any partial inaccuracies of the pitch T remain ineffective and do not impair the measuring accuracy.
  • FIG. 6 shows a first monitoring circuit with which the brightnesses of the two light sources L1, L2 are monitored for falling below a certain brightness minimum, which is necessary for generating maximum amplitudes AM1, AM2 of the two scanning signals S1, S2 that are still suitable for the correct length measurement.
  • This required minimum brightness is specified by a certain absolute reference signal RFS, which is fed to the inverting input of a trigger TG, the non-inverting input of which is supplied with the first brightness signal HS1 of the first additional photo element ZP1 or with the second brightness signal HS2 of the second additional photo element ZP2.
  • a warning signal WS appears at the output of the trigger TG, which is fed to a known warning device (not shown) with an optical or acoustic error display.
  • FIG. 7 shows an angle measuring device in a schematic plan view, in which an angular division TW of a material measure MW in the form of a graduated disk from a scanning device AW with a first pair of two diametrically opposed scanning units AEW1, AEW2 spaced 180 ° apart in the measuring direction XW and is scanned with a second pair of two diametrically opposed scanning units AEW3, AEW4 spaced 180 ° apart in the measuring direction XW.
  • the first scanning unit AEW1 and the second scanning unit AEW2 of the first pair are offset by 90 ° with respect to the third scanning unit AEW3 and the fourth scanning unit AEW4 of the second pair.
  • these four scanning units AEW1-AEW4 have the same elements, which accordingly also have the same reference numerals with the addition of the letter W.
  • the first control circuit according to FIG. 5 with the corresponding identical elements also serves to control the equality of the brightnesses of the two light sources LW1, LW2 of the first pair of the two scanning units AEW1, AEW2 and thus the equality of the maximum amplitudes AMW1, AMW2 of the two periodic scanning signals SW1, SW2 ( Figure 4) of the two scanning units AEW1, AEW2 des first couple.
  • the first control circuit according to FIG. 5 with the corresponding identical elements also serves to control the equality of the brightnesses of the two light sources LW3, LW4 of the second pair of the two scanning units AEW3, AEW4 and thus the equality of the maximum amplitudes AMW3, AMW4 of the two periodic scanning signals SW3, SW4 ( Figure 4) of the two scanning units AEW3, AEW4 of the second pair.
  • FIG. 8 shows a second monitoring circuit with which the brightnesses of the first light source LW1 of the first scanning unit AEW1 and the second light source LW2 of the second scanning unit AEW2 of the first pair and the brightnesses of the third light source LW3 of the third scanning unit AEW3 and the fourth light source LW4 fourth scanning unit AEW4 of the second pair according to FIG. 7 are monitored for falling below a certain brightness minimum, which to generate maximum amplitudes AMW1, AMW2, AMW3, AMW4 of the four scanning signals SW1, SW2, SW3, SW4 of the four scanning units AEW1, AEW2, which are still suitable for the angle measurement , AEW3, AEW4 is required.
  • This required minimum brightness is specified by a certain absolute reference signal RFSW, which is fed to the inverting input of a first trigger TGW1 and the inverting input of a second trigger TGW2.
  • the first brightness signal HSW1 of the first additional photo element ZPW1 or the second brightness signal HSW2 of the second additional photo element ZPW2 act on the non-inverting input of the first trigger TGW1 and the third brightness signal HSW3 of the third additional photo element ZPW3 or the fourth brightness signal HSW4 of the fourth additional photo element ZPW4 the non-inverting input of the second trigger TGW2.
  • a first warning signal WSW1 appears at the output of the first trigger TGW1; Likewise, a second warning signal WSW2 appears at the output of the second trigger TGW2 when the third brightness signal HSW3 or the fourth brightness signal HSW4 fall below the absolute reference signal RFSW.
  • the monitoring circuit according to FIG. 8 also allows the monitoring of a maximum relative difference between the brightnesses of the two light sources LW1, LW2 that is still permissible for the correct angle measurement of the two scanning units AEW1, AEW2 of the first pair and the brightness of the two light sources LW3, LW4 of the two scanning units AEW3, AEW4 of the second pair.
  • the third brightness signal HSW3 of the third additional photo element ZPW3 or the fourth brightness signal HSW4 of the fourth additional photo element ZPW4 are once the non-inverting input of the third trigger TGW3 and the other via a first voltage divider ST1 the inverting input of the fourth trigger TGW4 and the first brightness signal HSW1 of the first additional photo element ZPW1 or the second brightness signal HSW2 of the second additional Photoelements ZPW2 supplied to the non-inverting input of the fourth trigger TGW4 on the one hand and to the inverting input of the third trigger TGW3 via a second voltage divider ST2 on the other hand; the two voltage dividers ST1, ST2 connected to ground N determine the maximum permissible relative difference between the brightnesses of the first pair of the two light sources LW1, LW2 and the second pair of the two light sources LW3, LW4.
  • the additive superimposition of the two scanning signals SW1, SW2 of the first pair of scanning units AEW1, AEW2 with the same maximum amplitudes AMW1, AMW2 in analog form allows, in addition to the elimination of pitch errors of the angular division TW of the graduated disk MW of the angle measuring device, the elimination of eccentricity errors of the mounting of the graduated disk MW.
  • the additive superposition of the two scanning signals SW3, SW4 of the second pair of scanning units AEW3, AEW4 with the same maximum amplitudes AMW3, AMW4 in analog form also allows the elimination of the so-called 2 ⁇ error (bending error or saddle error) of the indexing disk MW of the angle measuring device.
  • FIG. 9 shows a second control circuit with which the brightnesses of the first light source L1 of the first scanning unit AE1 and the second light source L2 of the second scanning unit AE2 of the scanning device A of the length measuring device according to FIGS. 1-3 are controlled for equality; elements identical to these figures have the same reference numerals.
  • the first light source L1 of the first scanning unit AE1 and the second light source L2 of the second scanning unit AE2 are connected in series between the constant current source KSQ and ground N.
  • the first additional photo element ZP1 assigned to the first photo element P1 of the first scanning unit AE1 is connected with its cathode to ground N and with its anode to the inverting input of a first comparator V1 of a first control unit RE1.
  • a first control signal RS1 at the output of the first comparator V1 acts on a first actuator SG1 of the first control unit RE1 in the form of a shunt regulator with a first transistor TS1, the collector of which is connected to the anode of the first light source L1 and the emitter of which is connected to the cathode of the first light source L1 .
  • the second additional photoelement ZP2 assigned to the second photoelement P2 of the second scanning unit AE2 is connected with its cathode to ground N and with its anode to the inverting input of a second comparator V2 of a second control unit RE2.
  • a second control signal RS2 at the output of the second comparator V2 is applied to a second actuator SG2 of the second control unit RE2 in the form of a shunt regulator with a second transistor TS2, the collector of which is connected to the anode of the second light source L2 and the emitter of which is connected to the cathode of the second light source L2.
  • the non-inverting input of the first comparator V1 and the non-inverting input of the second comparator V2 are acted upon by a predetermined constant command signal FS, the constant voltage value of which is set by a third voltage divider ST3, which consists of a resistor and a Zener diode and between a supply voltage U and Ground N is switched.
  • the first control signal RS1 of the first comparator V1 and the second control signal RS2 of the second comparator V2 are additionally fed via a second OR gate OG2 to the inverting input of a switching stage SS, the non-inverting input of which is acted upon by a reference signal BS.
  • a first potentiometer PM1 is connected to the first additional photoelement ZP1 and a second potentiometer PM2 to the second additional photoelement ZP2.
  • the constant current source KSQ is adjusted for maximum current output and the command signal FS is specified with such a constant voltage value that the two control signals RS1, RS2 of the two comparators V1, V2 activate the two actuators SG1, SG2 acting as shunt regulators in such a way that that the same brightnesses of the two light sources L1, L2 have a degree of brightness that is approximately in the middle between the maximum brightness and that still permissible for the measurement minimum brightness.
  • the first brightness signal HS1 of the first additional photo element ZP1 and the second brightness signal HS2 of the second additional photo element ZP2 due to the illumination by the two light sources L1, L2 with unmodulated light are set to equality by means of the first potentiometer PM1 and by means of the second potentiometer PM2 and act on them inverting inputs of the two comparators V1, V2, so that the maximum amplitudes AM1, AM2 of the first photo element P1 and the second photo element P2 are equal to one another, which can be checked with an oscillograph.
  • the first control unit RE1 and the second control unit RE2 regulate the brightnesses of the first light source L1 and the second light source L2 independently of one another on the basis of the predetermined constant guide signal FS even with different brightness decreases over the course of their operating life or lifespan due to a different aging characteristic to ensure equality by the two Control signals RS1, RS2 of the two comparators V1, V2 regulate down the two actuators SG1, SG2 due to the two brightness signals HS1, HS2 of the two additional photo elements ZP1, ZP2.
  • the switching stage SS which is acted upon by the two control signals RS1, RS2 via the second OR gate OG2, outputs a second warning signal WS2 at its output to identify the End of the adjustment range from one of the two actuators SG1, SG2.
  • a third control circuit is shown in FIG. with which the brightnesses of the first light source LW1 and the second light source LW2 of the first pair and the third light source LW3 and the fourth light source LW4 of the second pair of the four scanning units AEW1-AEW4 of the scanning device AW of the angle measuring device according to FIG. 7 independently of one another on the basis of the predetermined constant guide signal FSW can be regulated for equality even with different brightness decreases in the course of their operating life or lifespan due to different aging characteristics.
  • This third control circuit has four control units REW1-REW4 with four comparators VW1-VW4 and four actuators SGW1-SGW4 for the four light sources LW1-LW4; the four additional photo elements ZPW1-ZPW4 are assigned four potentiometers PMW1-PMW4.
  • the four brightness signals HSW1-HSW4 of the four additional photo elements ZPW1-ZPW4 are fed to the four inverting inputs of the four comparators VW1-VW4, the non-inverting inputs of which are jointly acted upon by the predetermined constant command signal FSW.
  • this third control circuit has the same mode of operation as the second control circuit according to FIG. 9.
  • this third control circuit In contrast to the second control circuit according to FIG. 9, in this third control circuit the four control signals RSW1-RSW4 are fed via a third OR gate OG3 to a guide signal controller FR, which lowers the predetermined constant voltage value of the guide signal FSW to a reduced constant voltage value as soon as one of the four actuators SGW1 -SGW4 has reached the end of its adjustment range in order to make particularly good use of the four light sources LW1-LW4 in their service life to be able to.
  • the reduced constant command signal FSW By specifying the reduced constant command signal FSW, the four light sources LW1-LW4 are reduced to the same reduced brightness, which is still within the permissible range for reliable measurement, so that the four actuators SGW1-SGW4 have their original setting range again.
  • a positive limit value signal GS of a limit value unit GE is applied to the positive input of the command signal controller FR and the negative input of the command signal controller FR is connected to the third OR gate OG3; the output of the command signal regulator FR is connected via a light-emitting diode D to a fourth voltage divider ST4 for generating the command signal FSW. If the control signals RSW1-RSW4 of the four comparators VW1-VW4 are below the limit value signal GS of the limit value unit GE, the positive output signal of the guide signal regulator FR does not reach the fourth voltage divider ST4 due to the diode D switched in the reverse direction, so that the originally specified guide signal FSW remains valid .
  • the negative output signal of the guide signal regulator FR reduces the guide signal FSW to the reduced constant voltage value via the diode D now operating in the forward direction; At the same time, the diode D lights up to indicate the reduced brightness of the four light sources LW1-LW4.
  • the respective end of the service life of the four light sources LW1-LW4 can be reported by a warning display (not shown), for example by the switching stage SS in FIG. 9.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Measurement Of Optical Distance (AREA)
  • Tape Measures (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Description

  • Die Erfindung betrifft eine lichtelektrische Längen- oder Winkelmeßeinrichtung gemäß dem Oberbegriff des Anspruchs 1.
  • Derartige Meßeinrichtungen werden insbesondere bei Bearbeitungsmaschinen zur Messung der Relativlage eines Werkzeugs bezüglich eines zu bearbeitenden Werkstücks sowie bei Koordinatenmeßmaschinen zur Ermittlung von Lage und/oder Abmessungen von Prüfobjekten eingesetzt.
  • Aus der DE-AS 1 548 708 ist eine lichtelektrische Längenmeßeinrichtung zur Messung der Relativlage zweier zueinander beweglicher Objekte bekannt, bei der die Teilung einer mit dem ersten Objekt verbundenen Maßverkörperung von einer mit dem zweiten Objekt verbundenen Abtasteinheit mit einer Lichtquelle zur Erzeugung eines periodischen Abtastsignals abgetastet wird. Der Lichtquelle ist ein zusätzliches Photoelement zur Erzeugung eines der Helligkeit der Lichtquelle proportionalen Helligkeitssignals zugeordnet, das eine Regeleinheit zur Regelung der Helligkeit der Lichtquelle zur Erzielung eines übereinstimmenden Temperaturganges zwischen der Regeleinheit und der Abtasteinheit beaufschlagt.
  • Der DE-AS 1 548 747 entnimmt man eine lichtelektrische Längenmeßeinrichtung zur Messung der Relativlage zweier zueinander beweglicher Objekte, bei der die Teilung einer mit dem ersten Objekt verbundenen Maßverkörperung von einer mit dem zweiten Objekt verbundenen Abtasteinheit mit einer Lichtquelle zur Erzeugung zweier periodischer Abtastsignale abgetastet wird. Der Lichtquelle ist ein zusätzliches Photoelement zur Erzeugung eines der Helligkeit der Lichtquelle proportionalen Helligkeitssignals zugeordnet, das mitsamt einem vorgegebenen Sollsignal eine Regeleinheit zur Regelung der Helligkeit der Lichtquelle zur Kompensation von Störeinflüssen im Strahlengang der Abtasteinheit beaufschlagt.
  • Aus der DE-PS 29 52 106 ist eine lichtelektrische Längenmeßeinrichtung zur Messung der Relativlage zweier zueinander beweglicher Objekte bekannt, bei der die Teilung eines mit dem ersten Objekt verbundenen Maßstabs von einer mit dem zweiten Objekt verbundenen Abtasteinrichtung mit zwei voneinander beabstandeten Abtasteinheiten abgetastet wird. Jede Abtasteinheit weist eine Lichtquelle, eine Abttastteilung auf einer gemeinsamen Abtastplatte sowie ein Photoelement auf. Die von den beiden Photoelementen der beiden Abtasteinheiten gewonnenen zwei periodischen Abtastsignale werden in analoger Form einander additiv überlagert, so daß sich eine höhere Meßgenauigkeit ergibt, da durch die beiden Abtasteinheiten ein insgesamt größerer Bereich der Teilung des Maßstabs als bei nur einer vorgesehenen Abtasteinheit abgetastet wird. Durch diese Maßnahme haben eventuelle Ungenauigkeiten der Teilung des Maßstabs kleinere Signalfehler zur Folge.
  • In der DE-OS 18 11 961 ist eine lichtelektrische Winkelmeßeinrichtung beschrieben, bei der die Teilung einer mit dem ersten Objekt verbundenen Teilscheibe von einer mit dem zweiten Objekt verbundenen Abtasteinrichtung mit zwei voneinander beabstandeten Paaren von einander diametral gegenüberliegenden Abtasteinheiten abgetastet wird. Jede Abtasteinheit weist eine Lichtquelle, eine Abtastteilung auf einer Abtastplatte sowie ein Photoelement auf. Die von den beiden Photoelementen jedes Paares von Abtasteinheiten gewonnenen zwei periodischen Abtastsignale werden einander in analoger Form additiv überlagert, so daß neben der Unwirksammachung von eventuellen Ungenauigkeiten der Teilung der Teilscheibe auch Exzentrizitätsfehler der Lagerung der Teilscheibe eliminiert werden.
  • Zur Eliminierung der vorgenannten Teilungsfehler und/oder Exzentrizitätsfehler müssen aber die maximalen Amplituden der zwei von den beiden jeweils zusammenwirkenden Abtasteinheiten gewonnenen periodischen Abtastsignale den gleichen Betrag oder ein bestimmtes vorgegebenes Betragsverhältnis aufweisen. Diese Bedingung muß aber über die gesamte Betriebsdauer bzw. Lebensdauer der Lichtquellen der Abtasteinheiten sichergestellt sein. Derartige handelsübliche Lichtquellen bei lichtelektrischen Meßeinrichtungen weisen im allgemeinen jedoch bezüglich ihrer Helligkeiten eine unterschiedliche Alterungscharakteristik auf, die zu einer Abweichung vom vorgegebenen Betragsverhältnis zwischen den maximalen Amplituden der periodischen Abtastsignale und damit zu Meßungenauigkeiten führen kann.
  • Der Erfindung liegt die Aufgabe zugrunde, bei einer lichtelektrischen Meßeinrichtung der genannten Gattung Meßungenauigkeiten infolge von unterschiedlichen Alterungserscheinungen der Lichtquellen der Abtasteinheiten auszuschließen.
  • Diese Aufgabe wird erfindungsgemäß durch die Merkmale der Ansprüche 1 und 2 gelöst.
  • Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß bei einer lichtelektrischen Meßeinrichtung mit wenigstens zwei separaten, voneinander beabstandeten Abtasteinheiten mit jeweils einer eigenen Lichtquelle, bei der die von den Abtasteinheiten gewonnenen periodischen Abtastsignale einander überlagert werden, mit einfachen Mitteln eine Konstanthaltung eines bestimmten vorgegebenen Betragsverhältnisses der maximalen Amplituden der periodischen Abtastsignale über die gesamte Betriebsdauer bzw. Lebensdauer der Lichtquellen der Abtasteinheiten trotz einer unterschiedlichen Alterungscharakteristik der Lichtquellen erzielt wird, so daß bei Längenmeßeinrichtungen Teilungsfehler der Teilung der Maßverkörperung und bei Winkelmeßeinrichtungen zusätzlich noch Exzentrizitätsfehler der Lagerung der Teilscheibe eliminiert werden können. An die Qualität der Lichtquellen bezüglich einer gleichen Alterungscharakteristik brauchen keine hohen Anforderungen gestellt zu werden, sondern es können preiswerte handelsübliche Lichtquellen verwendet werden. Durch eine Überwachung der Helligkeit der Lichtquellen auf einen nicht zu unterschreitenden Minimalwert kann für einen rechtzeitigen Austausch der Lichtquellen gesorgt werden.
  • Vorteilhafte Weiterbildungen der Erfindung entnimmt man den abhängigen Ansprüchen.
  • Ausführungsbeispiele der Erfindung werden anhand der Zeichnung näher erläutert.
  • Es zeigen
  • Figur 1
    eine lichtelektrische Längenmeßeinrichtung in einer schematischen Seitenansicht;
    Figur 2
    eine erste Abtasteinheit in einem schematischen Querschnitt gemäß dem Schnitt 2-2 der Figur 1;
    Figur 3
    eine zweite Abtasteinheit in einem schematischen Querschnitt gemäß dem Schnitt 3-3 der Fig. 1;
    Figur 4
    ein Diagramm der Abtastsginale;
    Figur 5
    eine erste Regelschaltung;
    Figur 6
    eine erste Überwachungsschaltung;
    Figur 7
    eine Winkelmeßeinrichtung in einer schematischen Draufsicht;
    Figur 8
    eine zweite Überwachungsschaltung;
    Figur 9
    eine zweite Regelschaltung und
    Figur 10
    eine dritte Regelschaltung.
  • In Figur 1 ist eine lichtelektrische Längenmeßeinrichtung in einer schematischen Seitenansicht dargestellt, bei der die Teilung T einer mit einem nicht gezeigten ersten Objekt verbundenen Maßverkörperung M in Form eines Maßstabes von einer mit einem nicht gezeigten zweiten Objekt verbundenen Abtasteinrichtung A abgetastet wird, die zwei in einem bestimmten konstanten Abstand C in Meßrichtung X voneinander angeordnete Abtasteinheiten AE1, AE2 enthält. In Figur 2 sind die erste Abtasteinheit AE1 in einem schematischen Querschnitt gemäß dem Schnitt 2-2 der Figur 1 und in Figur 3 die zweite Abtasteinheit AE2 in einem schematischen Querschnitt gemäß dem Schnitt 3-3 der Figur 1 dargestellt. Die beiden nicht gezeigten Objekte, deren gegenseitige Relativlage gemessen werden soll, können durch das Bett und den Schlitten einer nicht dargestellten Bearbeitungsmaschine gebildet sein.
  • Die erste Abtasteinheit AE1 weist eine erste Beleuchtungseinheit B1 mit einer ersten Lichtquelle L1 und einem ersten Kondensor K1, eine erste Abtastplatte AP1 mit einer ersten Abtastteilung AT1 sowie ein der ersten Abtastteilung AT1 zugeordnetes erstes Photoelement P1 auf; die zweite Abtasteinheit AE2 weist eine zweite Beleuchtungseinheit B2 mit einer zweiten Lichtquelle L2 und einem zweiten Kondensor K2, eine zweite Abtastplatte AP2 mit einer zweiten Abtastteilung AT2 sowie ein der zweiten Abtastteilung AT2 zugeordnetes zweites Photoelement P2 auf. Die beiden Lichtquellen L1,L2 in Form von Miniaturwendellampen der beiden Abtasteinheiten AE1, AE2 sind in Reihe zwischen einer Spannungsquelle SQ und Masse N geschaltet und die beiden Photoelemente P1,P2 mit jeweils einem Pol mit Masse N verbunden.
  • Bei der Relativbewegung der Abtasteinrichtung A mit den beiden separaten Abtasteinheiten AE1, AE2 bezüglich des Maßstabs M in Meßrichtung X werden die beiden von den zwei Lichtquellen L1,L2 der Beleuchtungseinheiten B1,B2 ausgehenden jeweiligen Lichtströme durch die Teilung T des Maßstabs M und durch die beiden Abtastteilungen AT1, AT2 der beiden Abtastplatten AP1,AP2 moduliert und fallen auf die beiden zugehörigen Photoelemente P1,P2, die zwei periodische Abtastsignale S1,S2 erzeugen, die in analoger Form einander additiv überlagert und einer Auswerteeinrichtung AWE mit einer Impulsformerstufe F und einem Vorwärts-/Rückwärtszähler Z zugeführt werden, der die Längenmeßwerte in digitaler Form anzeigt.
  • Den beiden Photoelementen P1,P2 der beiden Abtasteinheiten AE1, AE2 können in bekannter, nicht dargestellter Weise jeweils drei weitere Photoelemente zugeordnet werden, so daß von den beiden Abtasteinheiten jeweils vier periodische Abtastsignale mit einem bestimmten gegenseitigen Phasenversatz zur Diskriminierung der Meßrichtung und zur Eliminierung der Gleichspannungsanteile der periodischen Abtastsignale geliefert werden. Da diese Maßnahmen, die beispielsweise in der DE-PS 30 07 311 beschrieben sind, nicht die Erfindung berühren, wurde auf deren Darstellung aus Gründen einer besseren Übersichtlichkeit verzichtet.
  • Durch die additive Überlagerung der beiden periodischen Abtastsignale S1,S2 der beiden Abtasteinheiten AE1,AE2 in analoger Form ergibt sich eine höhere Meßgenauigkeit, da durch die beiden Abtasteinheiten AE1,AE2 ein doppelt so großer Bereich der Teilung T des Maßstabs M abgetastet wird, so daß eventuelle Ungenauigkeiten der Teilung T eliminiert werden.
  • Für diese additive Überlagerung der beiden periodischen Abtastsignale S1,S2 in analoger Form ist es aber erforderlich, daß die maximalen Amplituden AM1, AM2 der beiden periodischen Abtastsignale S1,S2 ein bestimmtes vorgegebenes Betragsverhältnis, vorzugsweise ein Betragsverhältnis von 1:1 aufweisen, das heißt, daß die Beträge der maximalen Amplituden AM1, AM2 der beiden periodischen Abtastsignale S1,S2 einander gleich sind; in Figur 4 sind die beiden periodischen Abtastsignale S1,S2 mit ihren maximalen Amplituden AM1,AM2 in Abhängigkeit vom Meßweg s dargestellt.
  • Diese Bedingung des bestimmten vorgegebenen Betragsverhältnisses zwischen den maximalen Amplituden AM1, AM2 der beiden periodischen Abtastsignale S1,S2 der beiden Photoelemente P1,P2 muß aber über die gesamte Betriebsdauer bzw. Lebensdauer der beiden Lichtquellen L1,L2 der beiden Abtasteinheiten AE1, AE2 sichergestellt sein. Derartige handelsübliche Lichtquellen L1,L2 der beiden Beleuchtungseinheiten B1,B2 bei lichtelektrischen Meßeinrichtungen weisen im allgemeinen jedoch eine unterschiedliche Alterungscharakteristik auf, die zu einer Abweichung vom vorgegebenen Betragsverhältnis zwischen den maximalen Amplituden AM1,AM2 der beiden periodischen Abtastsignale S1,S2 und damit zu Meßungenauigkeiten führen kann.
  • Zur Konstanthaltung dieses bestimmten vorgegebenen Betragsverhältnisses von 1:1, bei dem die Beträge der maximalen Amplituden AM1,AM2 der beiden periodischen Abtastsignale S1,S2 der beiden Photoelemente P1,P2 der beiden Abtasteinheiten AE1,AE2 einander gleich sind, werden dem ersten Photoelement P1 der ersten Abtasteinheit AE1 ein erstes zusätzliches Photoelement ZP1, das von der ersten Lichtquelle L1 der ersten Beleuchtungseinheit B1 durch den transparenten Maßstab M außerhalb der Teilung T und durch die erste transparente Abtastplatte AP1 außerhalb der Abtastteilung AT1 mit ummoduliertem Licht (Gleichlicht) bei der Meßbewegung der Abtasteinrichtung A bezüglich des Maßstabs M beaufschlagt wird, und dem zweiten Photoelement P2 der zweiten Abtasteinheit AE2 ein zweites zusätzliches Photoelement ZP2 zugeordnet, das von der zweiten Lichtquelle L2 der zweiten Beleuchtungseinheit B2 durch den transparenten Maßstab M außerhalb der Teilung T und durch die zweite transparente Abtastplatte AP2 außerhalb der zweiten Abtastteilung AT2 mit ummoduliertem Licht (Gleichlicht) bei der Meßbewegung der Abtasteinrichtung A bezüglich des Maßstabs M beaufschlagt wird.
  • In Figur 5 ist eine erste Regelschaltung mit den beiden Lichtquellen L1,L2 in Form von lichtemittierenden Dioden der beiden Abtasteinheiten AE1,AE2 sowie mit den den beiden Photoelementen P1,P2 zugeordneten zusätzlichen Photoelementen ZP1,ZP2 dargestellt. Die beiden Lichtquellen L1,L2 sind in Reihe zwischen einer regelbaren Konstantstromquelle KSQ und Masse N geschaltet. Das erste zusätzliche Photoelement ZP1 ist mit der Kathode mit Masse N und mit der Anode mit dem invertierenden Eingang eines Vergleichers V mit einer Verstärkung größer Null einer Regeleinheit RE verbunden; das zweite zusätzliche Photoelement ZP2 ist mit der Kathode mit Masse N und mit der Anode mit dem nichtinvertierenden Eingang des Vergleichers V verbunden. Dem ersten zusätzlichen Photoelement ZP1 sind ein erstes Potentiometer PM1 und dem zweiten zusätzlichen Photoelement ZP2 ein zweites Potentiometer PM2 als regelbare Arbeitswiderstände parallel zugeordnet. Der Ausgang des Vergleichers V ist in der Regeleinheit RE mit einem Stellglied SG für die beiden Lichtquellen L1, L2 verbunden, die einen ersten NPN-Transistor TS1 und einen zweiten PNP-Transistor TS2 aufweist. Der erste Transistor TS1 ist mit dem Kollektor mit der Anode der ersten Lichtquelle L1 und mit dem Emitter mit der Kathode der ersten Lichtquelle L1 verbunden; gleichfalls ist der zweite Transistor TS2 mit dem Kollektor über Masse N mit der Kathode und mit dem Emitter mit der Anode der zweiten Lichtquelle L2 verbunden. Der ersten Lichtquelle L1 sind ein drittes Potentiometer PM3 und der zweiten Lichtquelle L2 ein viertes Potentiometer PM4 parallel geschaltet.
  • Bei der anfänglichen Inbetriebnahme der Meßeinrichtung werden die beiden in Reihe geschalteten Lichtquellen L1,L2 mittels der regelbaren Konstantstromquelle KSQ auf maximale Helligkeit eingestellt und mit dem dritten Potentiometer PM3 und dem vierten Potentiometer PM4 auf gleiche Helligkeit eingeregelt, so daß die beiden maximalen Amplituden AM1,AM2 der beiden Abtastsignale S1,S2 der beiden, von den modulierten Lichtströmen gleicher Helligkeit der beiden Lichtquellen L1,L2 beaufschlagten Photoelemente P1,P2 der beiden Abtasteinheiten AE1,AE2 einander gleich sind, was mittels eines Oszillographen überprüft werden kann. Gleichzeitig werden die beiden zusätzlichen Photoelemente ZP1,ZP2 von den unmodulierten Lichtströmen gleicher Helligkeit der beiden Lichtquellen L1,L2 beaufschlagt; die beiden zusätzlichen Photoelemente ZP1, ZP2 liefern somit zwei Helligkeitssignale HS1,HS2, deren Gleichheit mittels des ersten und zweiten Potentiometers PM1,PM2 eingestellt wird. Wegen der Gleichheit zwischen dem ersten Helligkeitssignal HS1 des ersten zusätzlichen Photoelements ZP1 und dem zweiten Helligkeitssignal HS2 des zweiten zusätzlichen Photoelements ZP2 besitzt das Regelsignal RS am Ausgang des Vergleichers V den Wert Null.
  • Mit zunehmender Betriebsdauer bzw. Lebensdauer der beiden Lichtquellen L1,L2 beispielsweise in Form von lichtemittierenden Dioden oder von Miniaturwendellampen werden wegen der im allgemeinen bei derartigen handelsüblichen Lichtquellen L1,L2 unterschiedlichen Alterungscharakteristik die Helligkeiten der beiden Lichtströme der beiden Lichtquellen L1,L2 unterschiedlich abnehmen, so daß zwischen den beiden Helligkeitssignalen HS1, HS2 der beiden zusätzlichen Photoelemente ZP1, ZP2 eine Differenz auftritt, die zu einem endlichen positiven oder negativen Regelsignal RS,je nach dem Vorzeichen der Differenz, am Ausgang des Vergleichers V führt. Dieses Regelsignal RS des Vergleichers V wird dem Stellglied SG für die beiden Lichtquellen L1,L2 zugeführt und bewirkt, daß die Helligkeit der helleren Lichtquelle L1,L2 auf die Helligkeit der dunkleren Lichtquelle L1,L2 abgesenkt wird, so daß bei der erneuten Gleichheit zwischen den Helligkeiten der beiden Lichtströme der beiden Lichtquellen L1,L2 keine Differenz zwischen den beiden Helligkeitssignalen HS1,HS2 der beiden zusätzlichen Photoelemente ZP1,ZP2 mehr auftritt und das Regelsignal RS am Ausgang des Vergleichers V wieder den Wert Null annimmt. Durch diese permanente Regelung der Helligkeiten der beiden Lichtquellen L1,L2 auf Gleichheit besitzen die beiden periodischen Abtastsignale S1,S2 der beiden Abtasteinheiten AE1,AE2 die gleichen maximalen Amplituden AM1,AM2, so daß durch die additive Überlagerung der beiden periodischen Abtastsignale S1,S2 in analoger Form sich bei der Längenmeßeinrichtung die Meßgenauigkeit erhöht, da durch die beiden Abtasteinheiten AE1,AE2 gleichzeitig ein doppelt so großer Bereich der Teilung T des Maßstabs M abgetastet wird, so daß eventuelle partielle Ungenauigkeiten der Teilung T unwirksam bleiben und nicht die Meßgenauigkeit beeinträchtigen.
  • In Figur 6 ist eine erste Überwachungsschaltung gezeigt, mit der die Helligkeiten der beiden Lichtquellen L1,L2 auf Unterschreitung eines bestimmten Helligkeitsminimums überwacht werden, das zur Erzeugung für die korrekte Längenmessung noch geeigneter maximaler Amplituden AM1, AM2 der beiden Abtastsignale S1,S2 erforderlich ist. Dieses erforderliche Helligkeitsminimum wird durch ein bestimmtes absolutes Referenzsignal RFS vorgegeben, das dem invertierenden Eingang eines Triggers TG zugeführt wird, dessen nichtinvertierender Eingang mit dem ersten Helligkeitssignal HS1 des ersten zusätzlichen Photoelements ZP1 oder mit dem zweiten Helligkeitssignal HS2 des zweiten zusätzlichen Photoelements ZP2 beaufschlagt wird. Wenn das erste Helligkeitssignal HS1 oder das zweite Helligkeitssignal HS2 das absolute Referenzsignal RFS unterschreiten, erscheint am Ausgang des Triggers TG ein Warnsignal WS, das einer nicht gezeigten bekannten Warneinrichtung mit einer optischen oder akustischen Fehleranzeige zugeführt wird.
  • In Figur 7 ist eine Winkelmeßeinrichtung in einer schematischen Draufsicht dargestellt, bei der eine Winkelteilung TW einer Maßverkörperung MW in Form einer Teilscheibe von einer Abtasteinrichtung AW mit einem ersten Paar von zwei sich diametral gegenüberliegenden, um 180° gegeneinander in Meßrichtung XW beabstandeten Abtasteinheiten AEW1,AEW2 und mit einem zweiten Paar von zwei sich diametral gegenüberliegenden, um 180° gegeneinander in Meßrichtung XW beabstandeten Abtasteinheiten AEW3,AEW4 abgetastet wird. Die erste Abtasteinheit AEW1 und die zweite Abtasteinheit AEW2 des ersten Paares sind gegenüber der dritten Abtasteinheit AEW3 und der vierten Abtasteinheit AEW4 des zweiten Paares um 90° versetzt. Diese vier Abtasteinheiten AEW1-AEW4 weisen analog zu den beiden Abtasteinheiten AE1,AE2 der Figuren 1-3 die gleichen Elemente auf, die dementsprechend auch die gleichen Bezugszeichen unter Hinzufügung des Buchstabens W aufweisen.
  • Die erste Regelschaltung nach Figur 5 mit den entsprechenden gleichen Elementen dient gleichfalls zur Regelung der Gleichheit der Helligkeiten der beiden Lichtquellen LW1, LW2 des ersten Paares der beiden Abtasteinheiten AEW1,AEW2 und damit der Gleichheit der maximalen Amplituden AMW1, AMW2 der beiden periodischen Abtastsignale SW1,SW2 (Figur 4) der beiden Abtasteinheiten AEW1,AEW2 des ersten Paares.
  • Die erste Regelschaltung nach Figur 5 mit den entsprechenden gleichen Elementen dient ebenso zur Regelung der Gleichheit der Helligkeiten der beiden Lichtquellen LW3,LW4 des zweiten Paares der beiden Abtasteinheiten AEW3,AEW4 und damit der Gleichheit der maximalen Amplituden AMW3,AMW4 der beiden periodischen Abtastsignale SW3,SW4 (Figur 4) der beiden Abtasteinheiten AEW3,AEW4 des zweiten Paares.
  • In Figur 8 ist eine zweite Überwachungsschaltung gezeigt, mit der die Helligkeiten der ersten Lichtquelle LW1 der ersten Abtasteinheit AEW1 und der zweiten Lichtquelle LW2 der zweiten Abtasteinheit AEW2 des ersten Paares sowie die Helligkeiten der dritten Lichtquelle LW3 der dritten Abtasteinheit AEW3 und der vierten Lichtquelle LW4 der vierten Abtasteinheit AEW4 des zweiten Paares nach Figur 7 auf Unterschreitung eines bestimmten Helligkeitsminimums überwacht werden, das zur Erzeugung noch für die Winkelmessung geeigneter maximaler Amplituden AMW1,AMW2,AMW3,AMW4 der vier Abtastsignale SW1,SW2, SW3,SW4 der vier Abtasteinheiten AEW1,AEW2,AEW3, AEW4 erforderlich ist. Dieses erforderliche Helligkeitsminimum wird durch ein bestimmtes absolutes Referenzsignal RFSW vorgegeben, das dem invertierenden Eingang eines ersten Triggers TGW1 und dem invertierenden Eingang eines zweiten Triggers TGW2 zugeführt wird. Das erste Helligkeitssignal HSW1 des ersten zusätzlichen Photoelements ZPW1 oder das zweite Helligkeitssignal HSW2 des zweiten zusätzlichen Photoelements ZPW2 beaufschlagen den nichtinvertierenden Eingang des ersten Triggers TGW1 und das dritte Helligkeitssignal HSW3 des dritten zusätzlichen Photoelements ZPW3 oder das vierte Helligkeitssignal HSW4 des vierten zusätzlichen Photoelements ZPW4 den nichtinvertierenden Eingang des zweiten Triggers TGW2. Wenn das erste Helligkeitssignal HSW1 oder das zweite Helligkeitssignal HSW2 das absolute Referenzsignal RFSW unterschreiten, erscheint am Ausgang des ersten Triggers TGW1 ein erstes Warnsignal WSW1; desgleichen erscheint am Ausgang des zweiten Triggers TGW2 ein zweites Warnsignal WSW2, wenn das dritte Helligkeitssignal HSW3 oder das vierte Helligkeitssignal HSW4 das absolute Referenzsignal RFSW unterschreiten.
  • Neben dieser Absolutwertüberwachung der Helligkeiten der vier Lichtquellen LW1-LW4 der vier Abtasteinheiten AEW1-AEW4 der Abtasteinrichtung AW der Winkelmeßeinrichtung erlaubt die Überwachungsschaltung nach Figur 8 auch die Überwachung eines für die korrekte Winkelmessung noch zulässigen maximalen relativen Unterschieds zwischen den Helligkeiten der beiden Lichtquellen LW1,LW2 der beiden Abtasteinheiten AEW1,AEW2 des ersten Paares und den Helligkeiten der beiden Lichtquellen LW3,LW4 der beiden Abtasteinheiten AEW3,AEW4 des zweiten Paares.
  • Zu diesem Zweck werden das dritte Helligkeitssignal HSW3 des dritten zusätzlichen Photoelements ZPW3 oder das vierte Helligkeitssignal HSW4 des vierten zusätzlichen Photoelements ZPW4 einmal dem nichtinvertierenden Eingang des dritten Triggers TGW3 und zum anderen über einen ersten Spannungsteiler ST1 dem invertierenden Eingang des vierten Triggers TGW4 und das erste Helligkeitssignal HSW1 des ersten zusätzlichen Photoelements ZPW1 oder das zweite Helligkeitssignal HSW2 des zweiten zusätzlichen Photoelements ZPW2 einmal dem nichtinvertierenden Eingang des vierten Triggers TGW4 und zum anderen über einen zweiten Spannungsteiler ST2 dem invertierenden Eingang des dritten Triggers TGW3 zugeführt; die beiden an Masse N angeschlossenen Spannungsteiler ST1,ST2 legen den maximal zulässigen relativen Unterschied zwischen den Helligkeiten des ersten Paares der beiden Lichtquellen LW1, LW2 und des zweiten Paares der beiden Lichtquellen LW3,LW4 fest.
  • Bei Unterschreitung dieses zulässigen maximalen relativen Unterschieds erscheinen je nach dem Vorzeichen der Differenz zwischen dem ersten Helligkeitssignal HSW1 oder dem zweiten Helligkeitssignal HSW2 und dem dritten Helligkeitssignal HSW3 oder dem vierten Helligkeitssignal HSW4 entweder am Ausgang des dritten Triggers TGW3 ein drittes Warnsignal WSW3 oder am Ausgang des vierten Triggers TGW4 ein viertes Warnsignal WSW4. Die vier Warnsignale WSW1-WSW4 der vier Trigger TGW1-TGW4 werden über ein erstes Odergatter OG1 einer nicht gezeigten bekannten Warneinrichtung mit einer akustischen oder optischen Fehleranzeige zugeleitet.
  • Die additive Überlagerung der beiden Abtastsignale SW1,SW2 des ersten Paares der Abtasteinheiten AEW1,AEW2 mit gleichen maximalen Amplituden AMW1,AMW2 in analoger Form erlaubt zusätzlich zur Elimination von Teilungsfehlern der Winkelteilung TW der Teilscheibe MW der Winkelmeßeinrichtung noch die Eliminierung von Exzentrizitätsfehlern der Lagerung der Teilscheibe MW. Die additive Überlagerung der beiden Abtastsignale SW3,SW4 des zweiten Paares der Abtasteinheiten AEW3,AEW4 mit gleichen maximalen Amplituden AMW3,AMW4 in analoger Form gestattet ferner die Eliminierung des sogenannten 2φ-Fehlers (Verbiegungsfehler oder Sattelfehler) der Teilscheibe MW der Winkelmeßeinrichtung.
  • In Figur 9 ist eine zweite Regelschaltung dargestellt, mit der die Helligkeiten der ersten Lichtquelle L1 der ersten Abtasteinheit AE1 und der zweiten Lichtquelle L2 der zweiten Abtasteinheit AE2 der Abtasteinrichtung A der Längenmeßeinrichtung gemäß den Figuren 1-3 auf Gleichheit geregelt werden; mit diesen Figuren identische Elemente weisen das gleiche Bezugszeichen auf. Die erste Lichtquelle L1 der ersten Abtasteinheit AE1 und die zweite Lichtquelle L2 der zweiten Abtasteinheit AE2 sind in Reihe zwischen der Konstantstromquelle KSQ und Masse N geschaltet. Das dem ersten Photoelement P1 der ersten Abtasteinheit AE1 zugeordnete erste zusätzliche Photoelement ZP1 ist mit seiner Kathode mit Masse N und mit seiner Anode mit dem invertierenden Eingang eines ersten Vergleichers V1 einer ersten Regeleinheit RE1 verbunden. Ein erstes Regelsignal RS1 am Ausgang des ersten Vergleichers V1 beaufschlagt ein erstes Stellglied SG1 der ersten Regeleinheit RE1 in Form eines Nebenschlußreglers mit einem ersten Transistor TS1, dessen Kollektor mit der Anode der ersten Lichtquelle L1 und dessen Emitter mit der Kathode der ersten Lichtquelle L1 verbunden sind. Das dem zweiten Photoelement P2 der zweiten Abtasteinheit AE2 zugeordnete zweite zusätzliche Photoelement ZP2 ist mit seiner Kathode mit Masse N und mit seiner Anode mit dem invertierenden Eingang eines zweiten Vergleichers V2 einer zweiten Regeleinheit RE2 verbunden. Ein zweites Regelsignal RS2 am Ausgang des zweiten Vergleichers V2 beaufschlagt ein zweites Stellglied SG2 der zweiten Regeleinheit RE2 in Form eines Nebenschlußreglers mit einem zweiten Transistor TS2, dessen Kollektor mit der Anode der zweiten Lichtquelle L2 und dessen Emitter mit der Kathode der zweiten Lichtquelle L2 verbunden sind. Der nichtinvertierende Eingang des ersten Vergleichers V1 und der nichtinvertierende Eingang des zweiten Vergleichers V2 werden von einem vorgegebenen konstanten Führungssignal FS beaufschlagt, dessen konstanter Spannungswert mit einem dritten Spannungsteiler ST3 eingestellt wird, der aus einem Widerstand und aus einer Zenerdiode besteht und zwischen einer Versorgungsspannung U und Masse N geschaltet ist. Das erste Regelsignal RS1 des ersten Vergleichers V1 und das zweite Regelsignal RS2 des zweiten Vergleichers V2 werden zusätzlich über ein zweites Odergatter OG2 dem invertierenden Eingang einer Schaltstufe SS zugeführt, dessen nichtinvertierender Eingang von einem Bezugssignal BS beaufschlagt ist. An das erste zusätzliche Photoelement ZP1 sind ein erstes Potentiometer PM1 und an das zweite zusätzliche Photoelement ZP2 ein zweites Potentiometer PM2 angeschaltet.
  • Bei der anfänglichen Inbetriebnahme der Längenmeßeinrichtung werden die Konstantstromquelle KSQ auf maximale Stromabgabe eingeregelt und das Führungssignal FS mit einem derartigen konstanten Spannungswert vorgegeben, daß die beiden Regelsignale RS1,RS2 der beiden Vergleicher V1,V2 die beiden als Nebenschlußregler wirkenden Stellglieder SG1,SG2 derart aufsteuern, daß die gleichen Helligkeiten der beiden Lichtquellen L1,L2 einen Helligkeitsgrad aufweisen, der etwa in der Mitte zwischen der maximalen Helligkeit und der für die Messung noch zulässigen minimalen Helligkeit liegt. Das erste Helligkeitssignal HS1 des ersten zusätzlichen Photoelements ZP1 und das zweite Helligkeitssignal HS2 des zweiten zusätzlichen Photoelements ZP2 aufgrund der Beleuchtung durch die beiden Lichtquellen L1,L2 mit unmoduliertem Licht werden mittels des ersten Potentiometers PM1 und mittels des zweiten Potentiometers PM2 auf Gleichheit eingestellt und beaufschlagen die invertierenden Eingänge der beiden Vergleicher V1,V2, so daß auch die maximalen Amplituden AM1,AM2 des ersten Photoelements P1 und des zweiten Photoelements P2 einander gleich sind, was mit einem Oszillographen überprüft werden kann.
  • Die erste Regeleinheit RE1 und die zweite Regeleinheit RE2 regeln die Helligkeiten der ersten Lichtquelle L1 und der zweiten Lichtquelle L2 unabhängig voneinander aufgrund des vorgegebenen konstanten Führungssignals FS auch bei unterschiedlichen Helligkeitsabnahmen im Laufe ihrer Betriebsdauer bzw. Lebensdauer infolge einer unterschiedlichen Alterungscharakteristik auf Gleichheit, indem die beiden Regelsignale RS1,RS2 der beiden Vergleicher V1,V2 aufgrund der beiden Helligkeitssignale HS1,HS2 der beiden zusätzlichen Photoelemente ZP1,ZP2 die beiden Stellglieder SG1,SG2 herunterregeln. Bei einem bestimmten Minimalwert der beiden Regelsignale RS1,RS2, der durch das Bezugssignal BS vorgegeben ist, gibt die Schaltstufe SS, die von den beiden Regelsignalen RS1,RS2 über das zweite Odergatter OG2 beaufschlagt ist, an ihrem Ausgang ein zweites Warnsignal WS2 zur Kenntlichmachung des Endes des Stellbereiches eines der beiden Stellglieder SG1,SG2 ab.
  • In Figur 10 ist eine dritte Regelschaltung dargestellt, mit der die Helligkeiten der ersten Lichtquelle LW1 und der zweiten Lichtquelle LW2 des ersten Paares sowie die dritte Lichtquelle LW3 und die vierte Lichtquelle LW4 des zweiten Paares der vier Abtasteinheiten AEW1-AEW4 der Abtasteinrichtung AW der Winkelmeßeinrichtung gemäß Figur 7 unabhängig voneinander aufgrund des vorgegebenen konstanten Führungssignals FSW jeweils auf Gleichheit auch bei unterschiedlichen Helligkeitsabnahmen im Laufe ihrer Betriebsdauer bzw. Lebensdauer infolge einer unterschiedlichen Alterungscharakteristik geregelt werden. Diese dritte Regelschaltung weist vier Regeleinheiten REW1-REW4 mit vier Vergleichern VW1-VW4 und vier Stellgliedern SGW1-SGW4 für die vier Lichtquellen LW1-LW4 auf; den vier zusätzlichen Photoelementen ZPW1-ZPW4 sind vier Potentiometer PMW1-PMW4 zugeordnet. Die vier Helligkeitssignale HSW1-HSW4 der vier zusätzlichen Photoelemente ZPW1-ZPW4 werden den vier invertierenden Eingängen der vier Vergleicher VW1-VW4 zugeführt, deren nichtinvertierende Eingänge gemeinsam vom vorgegebenen konstanten Führungssignal FSW beaufschlagt sind. Bezüglich der vorgenannten Elemente weist diese dritte Regelschaltung die gleiche Funktionsweise wie die zweite Regelschaltung gemäß Figur 9 auf.
  • Im Unterschied zur zweiten Regelschaltung nach Figur 9 werden bei dieser dritten Regelschaltung die vier Regelsignale RSW1-RSW4 über ein drittes Odergatter OG3 einem Führungssignalregler FR zugeführt, der den vorgegebenen konstanten Spannungswert des Führungssignals FSW auf einen reduzierten konstanten Spannungswert absenkt, sobald eines der vier Stellglieder SGW1-SGW4 am Ende seines Stellbereiches angelangt ist, um die vier Lichtquellen LW1-LW4 in ihrer Lebensdauer besonders gut ausnutzen zu können. Durch die Vorgabe des reduzierten konstanten Führungssignals FSW werden die vier Lichtquellen LW1-LW4 auf eine gleiche reduzierte Helligkeit abgesenkt, die noch im zulässigen Bereich für eine zuverlässige Messung liegt, so daß die vier Stellglieder SGW1-SGW4 wieder über ihren ursprünglichen Stellbereich verfügen.
  • Zu diesem Zweck wird der positive Eingang des Führungssignalreglers FR mit einem vorgegebenen Grenzwertsignal GS einer Grenzwerteinheit GE beaufschlagt und ist der negative Eingang des Führungssignalreglers FR mit dem dritten Odergatter OG3 verbunden; der Ausgang des Führungssignalreglers FR ist über eine lichtemittierende Diode D an einem vierten Spannungsteiler ST4 zur Erzeugung des Führungssignals FSW angeschlossen. Wenn die Regelsignale RSW1-RSW4 der vier Vergleicher VW1-VW4 unterhalb des Grenzwertsignals GS der Grenzwerteinheit GE liegen, gelangt das positive Ausgangssignal des Führungssignalreglers FR infolge der in Sperrichtung geschalteten Diode D nicht zum vierten Spannungsteiler ST4, so daß das ursprünglich vorgegebene Führungssignal FSW gültig bleibt. Übersteigt dagegen eines der vier Regelsignale RSW1-RSW4 das Grenzwertsignal GS, so reduziert das negative Ausgangssignal des Führungssignalreglers FR über die nun in Durchlaßrichtung arbeitende Diode D das Führungssignal FSW auf den reduzierten konstanten Spannungswert; gleichzeitig leuchtet die Diode D zur Anzeige der reduzierten Helligkeit der vier Lichtquellen LW1-LW4 auf. Das jeweilige Ende der Lebensdauer der vier Lichtquellen LW1-LW4 kann durch eine nicht gezeigte Warnanzeige gemeldet werden, beispielsweise durch die Schaltstufe SS der Figur 9.

Claims (10)

  1. Lichtelektrische Längen- oder Winkelmeßeinrichtung zur Messung der Relativlage zweier zueinander beweglicher Objekte, mit mehreren in Meßrichtung voneinander beabstandeten und mit einem der Objekte zu verbindenden Abtasteinheiten (AE, AEW) mit jeweils einer eigenen Lichtquelle (L, LW) zur Abtastung einer Teilung (T) einer mit dem anderen Objekt zu verbindenden Maßverkörperung (M) und mit einer Vorrichtung (AWE) zur additiven Überlagerung und anschließenden Auswertung der von den Abtasteinheiten (AE, AEW) erzeugten Abtastsignale (S, SW) dadurch gekennzeichnet, daß die Abtasteinheiten (AE, AEW) zur konstanthaltung eines vorgegebenen Betragsverhältnisses der maximalen Amplituden (AM, AMW) der beiden Abtastsignale (S, SW) jeweils ein zusätzliches Photoelement (ZP, ZPW) zur Erzeugung eines der Helligkeit der Lichtquelle (L, LW) proportionalen Helligkeitssignales (HS, HSW) aufweisen und mit einer Regeleinheit (RE, REW) zur Regelung und zur Überwachung der Helligkeiten der Lichtquellen (L, LW) Verbunden sind, wobei die Regeleinheit (RE, REW) zur Überwachung der Helligkeiten der Lichtquellen (L, LW) wenigstens eines der Helligkeitssignale (HS, HSW) auf Unterschreitung eines bestimmten Helligkeitsminimums mit einem vorgegebenen Referenzsignal (RFS, RFSW) vergleicht und/oder bei wenigstens zwei Paaren von Helligkeitssignalen (HSW) den relative Unterschied zwischen zwei Paaren von Helligkeitssignalen (HSW) mit einem bestimmten, durch Spannungsteilung erzeugten Teil eines dieser Helligkeitssignale (HSW) vergleicht.
  2. Lichtelektrische Längen- oder Winkelmeßeinrichtung zur Messung der Relativlage zweier zueinander beweglicher Objekte, mit mehreren in Meßrichtung voneinander beabstandeten und mit einem der Objekte zu verbindenden Abtasteinheiten (AE, AEW) mit jeweils einer eigenen Lichtquelle (L, LW) zur Abtastung einer Teilung (T) einer mit dem anderen Objekt zu verbindenden Maßverkörperung (M) und mit einer Vorrichtung (AWE) zur additiven Überlagerung und anschließenden Auswertung der von den Abtasteinheiten (AE, AEW) erzeugten Abtastsignale (S, SW) dadurch gekennzeichnet, daß jede Abtasteinheit (AE, AEW) zur Konstanthaltung eines vorgegebenen Betragsverhältnisses der maximalen Amplituden (AM, AMW) der Abtastsignale (S, SW) ein zusätzliches Photoelement (ZP, ZPW) zur Erzeugung eines der Helligkeit der Lichtquelle (L, LW) proportionalen Helligkeitssignals (HS, HSW) aufweist und mit einer Regeleinheit (RE, REW) zur Regelung der Helligkeit der zugehörigen Lichtquelle (L, LW) Verbunden ist, wobei jede Regeleinheit (RE, REW) mit einer Vorrichtung zu Erzeugung eines gemeinsamen vorgegebenen Führungssignals (FS, FSW) und zu ihrer Überwachung mit einer Vorrichtung (ss) zum Vergleich der Regelsignale (RS, RSW) der Regeleinheiten (RE, REW) mit einem vorgegebenen Bezugssignal (BS) verbunden ist.
  3. Meßeinrichtung nach Anspruch 2, dadurch gekennzeichnet, daß das Führungssignal (FSW) von einem Führungssignalregler (FR) regelbar ist.
  4. Meßeinrichtung nach den Ansprüchen 3, dadurch gekennzeichnet, daß am Eingang des Führungssignalreglers (FR) Regelsignale (RSW) der Regeleinheiten (REW) anliegen.
  5. Meßeinrichtung nach Anspruch 4, dadurch gekennzeichnet, daß am Eingang des Führungssignalreglers (FR) zusätzlich ein vorgegebenes Grenzwertsignal (GS) einer Grenzwerteinheit (GE) anliegt.
  6. Meßeinrichtung nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Regeleinheit (RE, REW) einen Vergleicher (V, VW) und ein Stellglied (SG, SGW) aufweist.
  7. Meßeinrichtung nach Anspruch 6, dadurch gekennzeichnet, daß das Stellglied (SG) zwei Transistoren (TS1, TS2) mit entgegengesetztem Leitfähigkeitstyp aufweist, deren Emitter zusammengeschaltet sind.
  8. Meßeinrichtung nach Anspruch 6, dadurch gekennzeichnet, daß das Stellglied (SG, SGW) einen Nebenschlußregler bildet.
  9. Meßeinrichtung nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß den zusätzlichen Photoelementen (ZP, ZPW) Potentiometer (PH, PMW) zugeordnet sind.
  10. Meßeinrichtung nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Lichtquellen (L, LW) von lichtemittierenden Dioden gebildet und in Reihe geschaltet von einer Konstantstromquelle (KSQ) gespeist sind.
EP87100897A 1986-02-11 1987-01-23 Lichtelektrische Längen- oder Winkelmesseinrichtung Expired - Lifetime EP0241642B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87100897T ATE64005T1 (de) 1986-02-11 1987-01-23 Lichtelektrische laengen- oder winkelmesseinrichtung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863604215 DE3604215A1 (de) 1986-02-11 1986-02-11 Lichtelektrische laengen- oder winkelmesseinrichtung
DE3604215 1986-02-11

Publications (3)

Publication Number Publication Date
EP0241642A2 EP0241642A2 (de) 1987-10-21
EP0241642A3 EP0241642A3 (en) 1988-12-21
EP0241642B1 true EP0241642B1 (de) 1991-05-29

Family

ID=6293834

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87100897A Expired - Lifetime EP0241642B1 (de) 1986-02-11 1987-01-23 Lichtelektrische Längen- oder Winkelmesseinrichtung

Country Status (4)

Country Link
EP (1) EP0241642B1 (de)
AT (1) ATE64005T1 (de)
DE (2) DE3604215A1 (de)
ES (1) ES2022159B3 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719965A (ja) * 1993-06-30 1995-01-20 Ando Electric Co Ltd 光波長計

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1548708B1 (de) * 1966-07-27 1970-02-12 Licentia Gmbh Fotoelektrischer Messwertgeber mit einem von mindestens einer Lichtquelle durchleuchteten Rastermassstab

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH444964A (de) * 1965-10-02 1967-10-15 Oerlikon Buehrle Holding Ag Anordnung zur Kompensation veränderlicher Störeinflüsse auf eine strahlungselektrische Mess- oder Steuerstrecke
BE789538A (fr) * 1971-10-13 1973-01-15 Sopelem Perfectionnements aux systemes de mesures de
DE2818789A1 (de) * 1978-04-28 1979-11-08 Wolfgang Dipl Phys Dr I Schulz Dickenmessgeraet
DE2952106C2 (de) * 1979-12-22 1982-11-04 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Lichtelektrische inkrementale Längen- oder Winkelmeßeinrichtung
CH646784A5 (en) * 1982-02-08 1984-12-14 Compac Device for measuring linear dimensions or variations in these dimensions using an optical reader, and with electronic interpolation
JPS6035217A (ja) * 1983-08-06 1985-02-23 Brother Ind Ltd フオトエンコ−ダ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1548708B1 (de) * 1966-07-27 1970-02-12 Licentia Gmbh Fotoelektrischer Messwertgeber mit einem von mindestens einer Lichtquelle durchleuchteten Rastermassstab

Also Published As

Publication number Publication date
DE3604215A1 (de) 1987-08-13
DE3604215C2 (de) 1992-04-23
ES2022159B3 (es) 1991-12-01
ATE64005T1 (de) 1991-06-15
DE3770315D1 (de) 1991-07-04
EP0241642A2 (de) 1987-10-21
EP0241642A3 (en) 1988-12-21

Similar Documents

Publication Publication Date Title
EP0058302B1 (de) Lichtelektrische inkrementale Positioniereinrichtung
DE2952106C2 (de) Lichtelektrische inkrementale Längen- oder Winkelmeßeinrichtung
EP0036976B1 (de) Prüfeinrichtung für ein digitales elektrisches Längen- oder Winkelmessystem
DE3879250T2 (de) Ansteuerungsvorrichtung fuer einen halbleiterlaser.
DE2718807C2 (de) Gerät zur Messung einer Dimension, insbesondere des Durchmessers, eines Objekts
DE69222762T2 (de) Steuerungsteil und Fehlerverstärker enthaltende Vorrichtung mit einer Schaltung zum Messen der auf einen Spannungssollwert bezogenen Spannungsschwankungen
EP0102472B1 (de) Längen- oder Winkelmesseinrichtung
DE102014206292B4 (de) Elektroniksteuervorrichtung
DE2729440C3 (de) Servoregelungssystem für die Drehung einer Welle
EP0066682B1 (de) Positioniereinrichtung
DE2313997A1 (de) Beruehrungsloses potentiometer
EP0241642B1 (de) Lichtelektrische Längen- oder Winkelmesseinrichtung
EP0172803A1 (de) Verfahren zur digitalen elektrischen Längen- oder Winkelmessung und Schaltungsanordnung zur Durchführung dieses Verfahrens
EP1314965B1 (de) Kontrollvorrichtung einer Positionsmesseinrichtung
DE3417016C1 (de) Verfahren zur Ermittlung der Lage und Geschwindigkeit von Objekten
DE3611204C2 (de)
EP0352643B1 (de) Lichtelektrische Positionsmesseinrichtung
DE69316354T2 (de) Verfahren und Gerät zur photoelektrischen Detektion
DE4323031A1 (de) Halbleiterlaser-Treiberschaltung
DE3220736C2 (de)
DE2920531B2 (de) Einrichtung zur Dimensionsmessung von eigenleuchtendem Meßgut
EP0057368A2 (de) Digitale elektrische Längen- oder Winkelmesseinrichtung
EP0257305A2 (de) Schaltungsanordnung für einen positionsempfindlichen Strahlungsdetektor
DE3855595T2 (de) Absoluter Kodierer des Multiumlaufstyps
DE2008826A1 (de) Differentialdensitometer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870207

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19891222

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DR. JOHANNES HEIDENHAIN GMBH

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 64005

Country of ref document: AT

Date of ref document: 19910615

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3770315

Country of ref document: DE

Date of ref document: 19910704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920124

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920131

Ref country code: CH

Effective date: 19920131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 87100897.5

Effective date: 19920806

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001212

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010103

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011217

Year of fee payment: 16

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050123