EP0239583B2 - Vorbehandlungsverfahren von pulpe mit stabilisierungsmitteln und peroxid vor der mechanischen raffinierung - Google Patents
Vorbehandlungsverfahren von pulpe mit stabilisierungsmitteln und peroxid vor der mechanischen raffinierung Download PDFInfo
- Publication number
- EP0239583B2 EP0239583B2 EP19860905113 EP86905113A EP0239583B2 EP 0239583 B2 EP0239583 B2 EP 0239583B2 EP 19860905113 EP19860905113 EP 19860905113 EP 86905113 A EP86905113 A EP 86905113A EP 0239583 B2 EP0239583 B2 EP 0239583B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- chips
- per litre
- impregnation solution
- impregnation
- peroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 150000002978 peroxides Chemical class 0.000 title claims abstract description 132
- 238000007670 refining Methods 0.000 title claims abstract description 78
- 239000003381 stabilizer Substances 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims description 93
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 24
- 244000144992 flock Species 0.000 claims abstract description 19
- 238000005470 impregnation Methods 0.000 claims description 203
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 81
- 230000008569 process Effects 0.000 claims description 72
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 claims description 45
- 229960003330 pentetic acid Drugs 0.000 claims description 45
- 239000000126 substance Substances 0.000 claims description 38
- 239000004115 Sodium Silicate Substances 0.000 claims description 35
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 35
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 35
- 239000002738 chelating agent Substances 0.000 claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 22
- 239000013522 chelant Substances 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 239000011777 magnesium Substances 0.000 claims description 16
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 15
- 229910052749 magnesium Inorganic materials 0.000 claims description 15
- 238000000354 decomposition reaction Methods 0.000 claims description 14
- 239000000356 contaminant Substances 0.000 claims description 13
- 159000000003 magnesium salts Chemical class 0.000 claims description 13
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 claims description 11
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 11
- 229960001484 edetic acid Drugs 0.000 claims description 11
- 239000000377 silicon dioxide Substances 0.000 claims description 11
- 235000012239 silicon dioxide Nutrition 0.000 claims description 11
- 235000019832 sodium triphosphate Nutrition 0.000 claims description 11
- 229910021645 metal ion Inorganic materials 0.000 claims description 10
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 claims description 10
- 150000004760 silicates Chemical class 0.000 claims description 10
- 229940042400 direct acting antivirals phosphonic acid derivative Drugs 0.000 claims description 9
- 150000003007 phosphonic acid derivatives Chemical class 0.000 claims description 9
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 8
- 239000011121 hardwood Substances 0.000 claims description 8
- 244000166124 Eucalyptus globulus Species 0.000 claims description 7
- 241000796765 Gmelina <amphipod> Species 0.000 claims description 7
- 238000004537 pulping Methods 0.000 claims description 7
- 241000183024 Populus tremula Species 0.000 claims description 6
- 239000011122 softwood Substances 0.000 claims description 6
- 235000008331 Pinus X rigitaeda Nutrition 0.000 claims description 5
- 241000018646 Pinus brutia Species 0.000 claims description 5
- 235000011613 Pinus brutia Nutrition 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 239000002244 precipitate Substances 0.000 claims description 4
- 241000609240 Ambelania acida Species 0.000 claims description 3
- 239000010905 bagasse Substances 0.000 claims description 3
- 239000010902 straw Substances 0.000 claims description 3
- 244000283070 Abies balsamea Species 0.000 claims description 2
- 235000007173 Abies balsamea Nutrition 0.000 claims description 2
- 239000012978 lignocellulosic material Substances 0.000 claims 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims 1
- 239000000835 fiber Substances 0.000 abstract description 32
- 230000015572 biosynthetic process Effects 0.000 abstract description 6
- 238000011065 in-situ storage Methods 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000002203 pretreatment Methods 0.000 abstract 2
- 229920001131 Pulp (paper) Polymers 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 120
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 78
- 238000004061 bleaching Methods 0.000 description 65
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 44
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 26
- 235000019341 magnesium sulphate Nutrition 0.000 description 22
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 20
- 238000010411 cooking Methods 0.000 description 18
- 239000002023 wood Substances 0.000 description 17
- 238000011282 treatment Methods 0.000 description 15
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 14
- 238000006277 sulfonation reaction Methods 0.000 description 14
- 239000002994 raw material Substances 0.000 description 12
- 229920005610 lignin Polymers 0.000 description 11
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 10
- 235000010265 sodium sulphite Nutrition 0.000 description 9
- 102100031260 Acyl-coenzyme A thioesterase THEM4 Human genes 0.000 description 8
- 101000638510 Homo sapiens Acyl-coenzyme A thioesterase THEM4 Proteins 0.000 description 8
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 7
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 229910001425 magnesium ion Inorganic materials 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000010998 test method Methods 0.000 description 6
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 241001236219 Pinus echinata Species 0.000 description 4
- 235000005018 Pinus echinata Nutrition 0.000 description 4
- 235000017339 Pinus palustris Nutrition 0.000 description 4
- 239000007844 bleaching agent Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000021523 carboxylation Effects 0.000 description 3
- 238000006473 carboxylation reaction Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000002939 deleterious effect Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000013055 pulp slurry Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 241000006121 Eucalyptus regnans Species 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 150000007942 carboxylates Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- JVBXVOWTABLYPX-UHFFFAOYSA-L sodium dithionite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])=O JVBXVOWTABLYPX-UHFFFAOYSA-L 0.000 description 2
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 241000218657 Picea Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000009897 hydrogen peroxide bleaching Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 description 1
- 229940061634 magnesium sulfate heptahydrate Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- -1 sodium hydrosulfite Chemical class 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21B—FIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
- D21B1/00—Fibrous raw materials or their mechanical treatment
- D21B1/04—Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
- D21B1/12—Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by wet methods, by the use of steam
- D21B1/14—Disintegrating in mills
- D21B1/16—Disintegrating in mills in the presence of chemical agents
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21B—FIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
- D21B1/00—Fibrous raw materials or their mechanical treatment
- D21B1/02—Pretreatment of the raw materials by chemical or physical means
- D21B1/021—Pretreatment of the raw materials by chemical or physical means by chemical means
Definitions
- Pulping processes can be broadly classified into high yield processes using mechanical fiberizing equipment and low yield processes using chemical reactions to produce individual fibers or pulp from lignocellulosic raw materials, usually wood in chip form.
- high yield category there are many variations which involve varying combinations of chemical, mechanical, and thermal treatments to effect fiber separation, remove some lignin and other chemical components from the original fibers, or increase the brightness and papermaking strength of the resulting fibers.
- This invention is directed to the art of high yield pulping in which mechanical treatment either with or without heat is the primary means of fiber separation and mild chemical treatment is used to facilitate fiber separation and to increase the papermaking strength and brightness. The application of heat may be utilized in combination with mechanical and chemical treatments to further assist in fiber separation and to accelerate chemical reactions.
- the primary goal of this invention is to economically produce pulp in the highest possible yield of the original lignocellulosic raw material by retaining and chemically modifying the lignin in the fibers to obtain the desired papermaking properties.
- the papermaking strength of high yield pulps can be increased by sulfonation of the lignin, particularly when the wood chips are treated with the sulfonation chemicals (usually sodium sulfite and sodium hydroxide) prior to mechanical defibration (refining).
- the resulting fibers can also be bleached economically as with alkaline peroxide and/or sodium hydrosulfite to give both improved brightness and papermaking strength.
- the high levels of sulfonation required for high strength result in pulps which respond less to bleaching than similar non-sulfonated or low-sulfonated pulps, and therefore such highly sulfonated pulps have lower bleached brightnesses although high strength.
- sulfonation of lignin for increasing papermaking strength of high yield fibers is carboxylation of lignin with oxidants such as alkaline peroxide prior to and/or during defibration.
- carboxylation results in lignin with carboxylate groups.
- Both the sulfonate and the carboxylate groups are capable of participating in hydrogen bonding which increases the strength of paper made from such high yield pulps (papermaking strength).
- alkaline peroxide pretreatment of chips softens the lignocellulosic raw material resulting in easier fiber separation (less energy consumption) and less fines generations (fiber fragmentation) during refining.
- refiner bleaching with alkaline peroxide can potentially eliminate the need for separate post-refiner bleaching equipment, due to the facts that refiners are excellent mixers of pulp and bleaching agents, and the temperature within the refiner (about 100°C) causes bleaching to occur extremely fast relative to typical post-refiner alkaline peroxide bleaching steps (approximately 50 to 80°C).
- Peroxide decomposition is hastened by the high temperatures reached in refiners and by metal contaminants, particularly manganese, iron, and copper, which are contained in significant quantities in lignocellulosic raw materials and in lesser quantities in process water. Partial removal or inactivation of such metal contaminants in lignocellulosic raw material can be effected by introducing chelating agents into the wood chips and then removing the chelant-metal complexes. However, the physical entrapment and chemical attraction of such metals by fiber components within the chips make complete removal of the metals impossible.
- Alkaline peroxide stabilizers like water soluble sodium silicate and magnesium sulfate are often utilized in the peroxide bleaching of high yield pulps to further reduce peroxide decomposition caused by metal contaminants.
- the silicate forms a flock in alkaline peroxide solutions and this flock attracts and adsorbes the metal ions on its surface thereby reducing their ability to decompose peroxide.
- Magnesium ions also reduce peroxide decomposition by electronically deactivating the metal ions, thereby reducing the potential of the metal ions to decompose peroxide.
- the present invention is based in part upon the belief that flocks or precipitates formed by silicates and/or magnesium in alkaline peroxide solutions cannot readily penetrate into the wood chip structures prior to refining due to the large size of the flock relative to the pore size of the wood chips.
- This belief is reinforced by the fact that such stabilizers effectively stabilize peroxide against decomposition when pulp is being bleached with peroxide but are not as effective when the wood is in chip form rather than pulp.
- a common method for circumventing the problem of peroxide decomposition in alkaline peroxide bleaching of chips during refining is to add the bleaching agent directly to the refining zone to minimize the contact time between the chip and alkaline peroxide, and in some cases to allow more intimate contact between metal contaminants and silicate and/or magnesium ion stabilizer flocks (See for example, U.S. Patent Nos. 3,023,140-Textor, 3,069,309-Fennell, 4,022,965-Goheen et al., 4,270,976-Sandstrom et al., 4,311,553-Akerlund et al.; Japanese Patent Application No. 80-72091, and Federal Republic of Germany Patent No.2818,320).
- wood chips have been pretreated by impregnation and/or refining with chelants (U.S. Patent Nos. 3,023,140-Textor, 4,311,553-Akerlund et al., Japanese Patent Application No. 80-72091, and Federal Republic of Germany Patent No. 2818-320) or with sodium silicate (U.S. Patent Nos. 3,069,309-Fennell, 4,311,553-Akerlund et al.), or with magnesium salts (U.S. Patent Nos. 3,023,140-Textor, 3,069,309-Fennell, 4,311,553-Akerlund et al.
- the present invention is based in part upon the hypothesis that with processes employing alkaline peroxide addition directly into the refiner, the majority of defibration occurs before the alkali and peroxide contact the fibers and have an opportunity to swell and react with the wood, thereby reducing the potential for papermaking strength development, along with requiring more energy for refining and increasing the generation of fines, all of which could be avoided if alkaline peroxide could be inserted and stabilized within the chip prior to defibration.
- Impregnation of the chips with alkaline peroxide prior to refining has also been practiced (U.S. Patents 4,187,141-Ahrel, and 4,270,976-Sandstrom et al. and Canadian patents 1,078,558, and 1,173,604).
- the brightness obtained has comparable to that obtainable with post refiner alkaline peroxide bleaching.
- metal contaminants are not removed or deactivated; rather, peroxide decomposition is reduced by lower alkalinity (U.S. Patent Nos. 4,270,976-Sandstrom et al., Canadian Patent 1,078,558, and 1,173,604) or by minimizing refining temperature (U.S. Patent No.
- the present invention is based in part upon the theory that refining of chips impregnated with highly alkaline peroxide can be practiced to achieve both high brightness and high strength if stabilizers such as magnesium ions and silicate are impregnated into the chip in a manner to form a stabilizer flock "in situ" within the chip to stabilize alkaline peroxide within the chip.
- stabilizers such as magnesium ions and silicate are impregnated into the chip in a manner to form a stabilizer flock "in situ" within the chip to stabilize alkaline peroxide within the chip.
- Chips are usually in the size range of less than 3 centimeters average diameter but can vary.
- Suitable hardwoods include Aspen, Gmelina, Eucalyptus, Birch, Beech, Oak and Ash.
- Suitable softwoods include Pine, Spruce, Fir and Hemlock.
- the lignocellulosic raw material in pieces referred to in the art as chips is treated to produce novel pulp according to the following sequence: (A) chips (usually pretreated with steam and/or washed and soaked in water) are impregnated with a first impregnation solution containing stabilizing chemicals for peroxide (such as a solution containing silicate or magnesium ions and optionally a chelating agent) under conditions of pH, temperature, and concentration for the stabilizing chemicals so that they remain soluble in the first impregnation solution; (B) the chips are impregnated with a second impregnation solution containing the additional stabilizing chemicals, e.g., silicate or magnesium ions, and optionally a chelating agent under conditions of pH, temperature, and concentration so that the chemicals are soluble in the second impregnation solution but precipitate and/or form a flock for stabilizing peroxide when mixed with the first impregnation solution within the chips; and (C) the chips
- Impregnation steps can be accomplished by squeezing the chips to expel excess liquids and air followed by allowing the chips to expand into the impregnation solution.
- impregnation solutions of steps B and C can be combined into a single impregnation solution and impregnation step.
- the alkaline peroxide impregnated chips are then refined in one or more stage(s) under atmospheric pressure or superatmospheric pressure.
- the refining pressure is usually associated with steam added to or generated within the refining device.
- the resulting pulp is dewatered and acidified and/or washed to remove bleaching and stabilizing chemicals to result in a novel nonsulfonated pulp having a unique combination of properties including high yield, superior brightness and papermaking strength, and low fines content.
- Recyclable peroxide is obtained from the dewatering of the pulp after refining and preferably before acidification.
- the peroxide obtained from the post refiner dewatering step can be reused as makeup in the impregnation step in which peroxide is added to the chips.
- This invention is useful in producing fibrous pulps from lignocellulosic raw materials such as softwoods, hardwoods, bagasse, straw and other similar fibrous materials which have been chopped or cut into appropriate sized pieces known in the art as chips for pulping into individual fiber form.
- lignocellulosic raw materials such as softwoods, hardwoods, bagasse, straw and other similar fibrous materials which have been chopped or cut into appropriate sized pieces known in the art as chips for pulping into individual fiber form.
- the resulting high yield (yield of 80% or higher of the original lignocellulosic raw material) non-sulfonated pulp has properties equal to or superior to sulfonated pulps prepared in similar yields from the same lignocellulosic raw materials. These properties are high brightness and papermaking strength, and low fines content.
- the process has the advantages of lower capital and operating costs to produce pulps of equal or better quality than comparable sulfonated pulps because of lower equipment costs for the pulping and waste treatment processes, and lower operating costs due to less chemical usage, lower refining energy, and easier treatment of process effluents.
- all parts are by weight unless otherwise specified, and all parts based upon the weight of chips are based upon the oven-dried weight of the chips.
- the chips Prior to the first impregnation step, the chips are preferably saturated with water and/or steam to expel any entrapped air in accordance with conventional procedures. Before and as a part of each impregnation step, the chips are preferably squeezed to expel liquid and any remaining air, and then allowed to expand into the impregnation solution so as to absorb the impregnation solution.
- the quantity of solution absorbed is influenced by the impregnation device and the particular material being impregnated.
- the level of chemical addition into the chips is primarily controlled by the concentration of the particular chemical in the impregnation solution, the degree of chip compression in the impregnation device, and the density of the chips being treated.
- the first impregnation solution is an aqueous solution consisting of stabilizers for peroxide and optionally chelating agents and has a pH, temperature, and concentration so as to avoid precipitation of the solutes in the impregnation solution. If a chelating agent is used in the first impregnation solution to effectively chelate deleterious metal ions like manganese, iron, and copper, the pH, temperature and concentration should also be selected to impede the chelant from combining with or inactivating the stabilizers.
- magnesium sulfate As the stabilizer but other stabilizers can be used such as water soluble magnesium salts (e.g., magnesium chloride, magnesium nitrate, magnesium carbonate, and combinations thereof).
- chelating agents or complexing agents in the first impregnation solution such as diethylene triaminepentaacetic acid (DTPA), ethylene diaminetetraacetic acid (EDTA), hydroxyethylethylenediamine-triacetic acid (HEEDTA), nitrilotriacetic acid (NTA) sodium tripolyphosphate (STPP) and phosphonic acid derivatives or other similar compounds known in the art for such functionality.
- DTPA diethylene triaminepentaacetic acid
- EDTA ethylene diaminetetraacetic acid
- HEEDTA hydroxyethylethylenediamine-triacetic acid
- NTA nitrilotriacetic acid
- STPP sodium tripolyphosphate
- the concentration of magnesium salt in the impregnation solution is preferably between 0.01 and 2.0 grams per liter calculated based upon the weight of magnesium in the salt so as to result in a magnesium content of the chips equivalent to preferably from 0.001% to 0.2% of the weight of chips.
- the chelating agent concentration in the impregnation solution should be preferably from 0.01 gram per liter to 20 grams per liter (expressed as 100% chelating agent in the solution) to give preferably 0.001% to 2.0% chelant based on the dry weight of chips but chelant concentration and addition level may extend beyond such ranges depending upon the specific chelating agent and the quantity and species of metal contaminants contained in the chips.
- the temperature of the first impregnation step is preferably between 15°C and 100°C (100°F and 212°F).
- the pH is preferably between 5 and 10 with between 7 and 9 being most preferred. Adjustments to the solution pH can be made with any suitable acid or alkaline substance which does not react with peroxide, cause darkening of the chips, or cause any of the components of the impregnation solution to be precipitated or to lose stabilizing and/or chelating ability.
- the pH, temperature and concentration ranges given above were selected to avoid precipitation of magnesium ions in the solution and to minimize interaction between magnesium ions and the chelant.
- the second impregnation solution is an aqueous alkaline solution which also consists of stabilizers for peroxide and optionally chelating agents and is at a pH, temperature, and concentration so as to avoid precipitation of the solutes before entering the chip, and if a chelating agent is used, so as to effectively chelate deleterious metal ions like manganese, iron, and copper but not combine with or deactivate the stabilizers to any significant extent.
- the critical aspect of the present invention is that the pH, temperature, and concentration of the components in the second impregnation solution be suitable for formation of a stabilizer flock after the solution enters the chip and mixes with already impregnated chemicals from the first impregnation step.
- the second impregnation solution it is preferred to use sodium silicate, especially a 40-42 degrees Baume' sodium silicate solution with 28.7% SiO2 and 8.9% Na2O although there are suitable substitutes recommended by silicate manufacturers for alkaline peroxide bleaching.
- chelating agents in the second impregnation solution of a type and in concentration and addition level ranges based upon the weight of the chips as described previously for the first impregnation solution.
- the concentration of sodium silicate in the second impregation solution is preferably between 1.0 and 100 grams per liter calculated and expressed as silicon dioxide (SiO2).
- the temperature of the second impregnation step is preferably between 15°C and 100°C (60°C and 212°F), and the pH is higher than the pH of the first impregnation solution and preferably greater than 9 with from 9 to 12 being particularly preferred and between 10 and 11 being most preferred. Adjustment to the solution pH can be made in the same manner as described for the first impregnation solution.
- the second impregnation of the chips results in between 0.1% and 10% silicates, calculated as SiO2 based upon the dry weight of the chips.
- the third impregnating solution is an aqueous alkaline peroxide solution which may also contain a combination of the stabilizers employed in the first and second impregnation solutions primarily for stabilizing the peroxide outside the chips.
- the third impregnation solution contains magnesium and silicate stabilizers, and optionally chelating agents of the types and in concentrations and addition levels described for the first and second impregnation solutions.
- the third impregnation solution contains preferably hydrogen peroxide or any other peroxygen compound suitable for bleaching, in the concentration range of preferably between 10 and 100 grams per liter (calculated and expressed as hydrogen peroxide) to give addition levels of preferably between 0.5% and 10% of the weight of chips expressed as hydrogen peroxide.
- an alkaline substance preferably sodium hydroxide
- the temperature of the third impregnating solution is preferably between 15°C and 100°C (60°F and 212°F).
- the most preferred impregnation sequence is the three stage sequence previously described and presented in more detail in the examples. However, it should be understood that the invention is not limited to the generally described three stage sequence.
- the second most preferred embodiment of the invention is a two-stage impregnation sequence in which the first impregnation stage is practiced as previously described and the second impregnation solution is combined with the third impregnation solution (alkaline peroxide) and used in a single impregnation step at a pH from 9 to 13. Reversing the solutions by using the first impregnation solution in the second impregnation step and the second impregnation solution in the first impregnation step of the three impregnation sequence described above is the third most preferred embodiment of the invention. That is the first impregnation solution description appearing on pages 9 and 10 becomes the description of the second impregnation solution and likewise the description of the second impregnation solution on pages 11 and 12 becomes the description of the first solution.
- one component of the stabilizing flock be in the first impregnation solution and a second component be in the second impregnation solution so that the two components form the flock within the chip when the two solutions mix during the second impregnation.
- the second component it is possible for the second component to be a base that results in a pH adjustment upon mixing of the first and second solutions in the chip to result in the "in situ" formation of the flock or sol.
- the invention is not limited to the concentration and addition level ranges previously described for stabilizers and chelating agents, since differences in metal contamination levels of lignocellulosic raw materials and/or process water could justify stabilizer or chelating agent usages outside of the specified preferred ranges.
- the chips are mechanically refined in a suitable defibration apparatus in one or more stages in accordance with conventional processes and equipment.
- the pressure during refining is optional and can be at atmospheric and/or superatmospheric pressure, depending on the species being pulped and the desired pulp properties.
- Superatmospheric pressure refining (particularly useful in first stage refining) does increase the papermaking strength, and decrease refining energy and fines generation but at the expense of higher peroxide usage and lower brightness compared to atmospheric refining.
- the effect on papermaking strength and fines generation is particularly pronounced when the raw material is softwood as contrasted with hardwood.
- the pulp may be allowed to continue bleaching as long as is practical prior to expelling the impregnation solutions.
- the amount of peroxide used in the impregnation steps is preferably preselected to result in some residual peroxide remaining after refining in order to maintain high brightness, preferably the refined pulp is concentrated, e.g., by compressing or thickening, to remove residual impregnation solution containing potentially recyclable alkaline peroxide, then cooled and diluted with water, and acidified preferably with sulfur dioxide, sodium bisulfite, or sulfurous acid to a pH between 5.5 and 6.0, and then washed with water.
- the residual peroxide extracted from the pulp after refining can be recycled as a source of peroxide in one of the impregnation solutions particularly if the process is practiced continuously or in sequential batches.
- the washed pulp is preferably screened and cleaned to result in a pulp suitable for the production of paper products.
- Examples A, 1 and 2 compare the process of the present invention with a single step conventional process utilizing the same chemicals. The amount of refining was adjusted to result in comparable pulps in terms of pulp freeness.
- Example 1 For Example 1, two impregnation stages were used.
- the first impregnation solution was a water solution containing: 5.28 grams/liter of Epsom salts, technical grade (magnesium sulfate heptahydrate Mg SO4.7H2O); 4.0 grams/liter of the penta sodium salt of diethylenetriamine pentaacetic acid (hereinafter DTPA and available as Versenex 80TM from Dow Chemical Company) and sufficient hydrochloric acid to adjust the pH to 9.0. Impregnation of the Southern pine chips was accomplished with the Sprout-Waldron impregnator as described above.
- the second impregnation solution was a water solution containing: 5.28 grams/liter of Epsom salt; 0.4 grams/liter of DTPA; 42.2 grams/liter of sodium silicate solution (a 41° Baume' solution, 28.7% SiO2 and 8.9% Na2O, available as type "N" from P Q Corporation hereinafter referred to as "sodium silicate”); 50 grams/liter of sodium hydroxide (technical grade); and 60 grams/liter of hydrogen peroxide (added as a stabilized 50% H2O2 solution, technical grade).
- the resulting solution had a pH of 11.7.
- the chips were then refined at atmospheric pressure in a Sprout-Waldron 12'' laboratory refiner. Model 12-1CP.
- the disk space and the feed rates of chips into the refiner were adjusted as appropriate for the desired energy input.
- the pulp was dewatered to 25% to 35% consistency, diluted to about 3% consistency, and the pH of the resulting pulp slurry was adjusted to between 5.5 and 6.0 with sulfurous acid (H2SO3) before the pulp properties were tested.
- the resulting pulp was tested for brightness and the total amount of hydrogen peroxide consumed in the Example was determined. The results are given in Table 1.
- the dewatering to 25% to 35% consistency after refining yielded recyclable hydrogen peroxide.
- the "in situ" formation of stabilizing flock within the chips occurred during the second impregnation of the chips as a result of the mixing of the first and second impregnation solutions within the chips.
- Example 2 the same impregnation procedures, equipment and chemicals in the same total quantities were used as in Example 1.
- the main change in Example 2 versus Example 1 is that the chemicals were divided among three impregnation steps rather than two.
- the additional step between the first and second steps of Example 1 impregnates some of the sodium silicate at an alkaline pH into the chips to form a stabilizing flock "in situ" prior to the addition of the hydrogen peroxide in the third impregnation.
- the first impregnation solution for Example 2 was identical to the first impregnation solution in Example 1 and the same impregnating conditions, procedures and equipment were employed as in Example 1.
- the second impregnation solution was a water solution containing 21.1 grams/liter of sodium silicate and 0.4 grams/liter of DTPA and had a pH of 10.7.
- the same conditions, procedures and equipment were employed for impregnation as described in Example 1.
- the third impregnation solution was an aqueous solution containing 5.28 grams/liter of Epsom salt, 0.4 grams/liter of DTPA, 21.1 grams/liter sodium silicate solution, 50 grams/liter of sodium hydroxide, and 60 grams/liter of hydrogen peroxide (added as a stabilized 50% H2O2 solution) and had a PH of 11.7.
- Example A the same impregnating procedures, chemicals and equipment were used as in Examples 1 and 2 except that a single impregnation step was used containing all of the chemicals used in Examples 1 and 2 but the amount of DTPA was reduced because the higher levels of DTPA would be incompatible and react with hydrogen peroxide when combined in a single solution.
- the impregnation solution was a water solution containing 10.56 grams/liter of Epsom salt, 0.4 grams/ liter DTPA, 42.2 grams/liter sodium silicate solution, 50 grams/liter sodium hydroxide and 60 grams/liter of hydrogen peroxide (added as a stabilized 50% H2O2 solution) and had a pH of 11.7.
- Example 1 After the impregnation step, the chips from Example A were refined, and the resulting pulp was treated after refining as in Example 1. The pulp was then tested for brightness and the amount of hydrogen peroxide consumed was determined. The results are given in Table 1.
- Example A consumed 7.5% hydrogen peroxide based on the dry weight of the wood chips but achieved a brightness of only 60% (Elrepho brightness).
- the two-step impregnation sequence of Example 1 achieved a brightness of 72% Elrepho while only consuming 4.2% hydrogen peroxide based on the dry weight of the wood chips.
- the preferred method of practicing the present invention with the three-step impregnation sequence of Example 2 consumed only 3.7% hydrogen peroxide based on the dry weight of the wood chips and achieved the highest brightness of 75% Elrepho.
- Pulp produced from Southern Pine chips using the preferred three-stage sequence in Example 3 was compared with pulp produced by a high sulfonation CMP process (Example B) and pulp produced by a low sulfonation CTMP process (Example C) and utilizing commercial scale equipment.
- Examples 3 B and C the same source of lignocellulosic chips (Southern Pine chips passing through 3/4'' circular screens) was used as in Examples A, 1 and 2. The chips were pretreated with atmospheric steam for 30 minutes. For all the impregnations of Examples 3, B and C, a CE-Bauer Model 560GS Impressafiner was employed. It is a tapered screw press using a 4:1 compression ratio and achieves a temperature of 40°C to 60°C during impregnation due to heat generated within the equipment. After impregnation, the chips were allowed to drain of free impregnation liquor.
- the chips were refined under a steam pressure of 25 lbs/inch2 gage (psig) in a CE-Bauer Model 418 pressurized refiner and then subjected to secondary refining at atmospheric pressure in a CE-Bauer Model 401 atmospheric refiner.
- the refiner plate spacing and feed rates were adjusted as appropriate for the energy input and degree of refining which was selected to result in comparable pulps in terms of freeness.
- the refined pulp was diluted to about 3% consistency, and the pH of the resulting pulp slurry was adjusted to between 5.5 and 6.0 with sodium bisulfite (NaHSO3).
- the first impregnation solution was a water solution containing 4.4 grams/liter of Epsom salts, 0.4 grams/liter of DTPA and had a pH of 8.3.
- the second impregnation solution contained 17.6 grams/liter sodium silicate and 0.4 grams/liter DTPA, and had a pH of 10.6.
- the third impregnation solution contained 4.4 grams/liter of Epsom salt, 0.4 grams/liter of DTPA, 17.6 grams/liter sodium silicate, 60 grams/liter sodium hydroxide and 50 grams/liter hydrogen peroxide and had a pH of 11.9.
- the pulp produced was tested for brightness, freeness (Canadian standard freeness) and strength (breaking length). Results are given in Table 11.
- the liquor used in the impregnation stage contained 58 grams/liter SO2 (achieved with a mixture of sodium sulfite and sodium bisulfite) and had a pH of 7.4. A sufficient amount of solution was retained in the chips after impregnation to result in 6.3% SO2 applied to the chips in the Impressafiner. After impregnating the chips, the chips were cooked in a digester with a 4:1 liquor to wood ratio at 160°C for 30 minutes and then the chips were drained of cooking liquor. The cooking liquor contained 59 grams/liter SO2 (achieved with a sodium sulfite and sodium bisulfite mixture) and had a pH of 7.4.
- Example B The pulp of Example B was tested for brightness, both before (initial) and after bleaching (bleached), freeness and breaking length and the results are given in Table 11. The amount of energy consumed during refining is also given in Table 11.
- the Southern Pine wood chips were steamed at atmospheric pressure for 30 minutes, and then impregnated using the same equipment as in Example 3 with an impregnation liquor containing 64 grams/ liter sodium sulfite and having a pH of 9.0 to result in 3.8% SO2 applied to the chips based upon the dry weight of chips. After the impregnation step, the chips were subjected to atmospheric steam for 30 minutes. After impregnation and steaming, the chips were refined in the same manner as in Example 3. The resulting refined pulp was then dewatered, washed with water and bleached with peroxide.
- Bleaching consisted of pretreating the pulp for 10 minutes at 3% consistency with 0.25% DTPA, dewatering the pulp and then bleaching the pulp at 60°C and 12.5% consistency for two hours with a bleaching solution having 4% hydrogen peroxide, 3.5% sodium hydroxide, 4.5% sodium silicate, 0.05% Epsom salt and 0.5% DTPA, (all percentages based upon dry weight of the pulp). After bleaching, the pulp was dewatered, diluted to a 3% consistency and the pH adjusted to 5.5 with sulfurous acid. The pulp was tested for brightness (both before and after bleaching), freeness and breaking length. The amount of energy consumed during refining was also determined. The results are stated in Table 11.
- the pulp of Example 3 was the brightest and required the lowest refining energy. It was much stronger than the pulp of Example C and brighter and almost as strong as the pulp of Example B.
- Examples 4, 5 and D were essentially a repeat of Examples 1, 2 and A (present invention compared with a single stage impregnation process using the same chemicals) but with hard wood (Aspen) rather than softwood.
- the first impregnation solution contained 3.52 grams/liter Epsom salt, 4.0 grams/liter DTPA and had a pH of 9 obtained by adding hydrochloric acid.
- the second impregnation stage used an aqueous impregnation solution containing 3.52 grams/liter Epsom salt, 0.4 grams/liter DTPA, 28.16 grams/liter sodium silicate, 55 grams/liter sodium hydroxide, 40 grams/liter hydrogen peroxide. It had a pH of 12.5.
- the chips were refined at atmospheric pressure in the Sprout-Waldron 12'' laboratory refiner Model 12-1CP using the same procedures as in Example 1.
- the pulp was dewatered to a consistency between 25% and 35%, then diluted to about a 3% consistency and the pH of the resulting pulp slurry adjusted to between 5.5 and 6.0 with sulfurous acid.
- the pulp was then tested and the results are given in Table 11. The dewatering resulted in a source of hydrogen peroxide that could be recycled by utilizing it in the makeup of an impregnation solution.
- An aqueous solution identical to the first impregnation solution of Example 4 was used as the first impregnation solution.
- An aqueous solution containing 14.08 grams/liter sodium silicate and 0.4 grams/ liter DTPA and having a pH of 10.7 was used as the second impregnation solution.
- the third impregnation solution was an aqueous solution containing 3.52 grams/liter Epsom salt, 0.4 grams/liter DTPA 14.08 grams/liter sodium silicate, 55 grams/liter sodium hydroxide and 40 grams/liter hydrogen peroxide. It had a pH of 12.5.
- Example D was a single stage impregnation process using the same chemicals, procedures and equipment as in Examples 4 and 5 with the following exception.
- the impregnation stage of Example D employed an aqueous solution containing 7.04 grams/liter Epsom salt, 0.4 grams/liter DTPA, 28.16 grams/ liter sodium silicate, 55 grams/liter sodium hydroxide and 40 grams/liter hydrogen peroxide.
- the pH was 12.5.
- Example D consumed 4.7% peroxide and achieved a brightness of 76%.
- Example 4 (2 stages) consumed 3.4% peroxide and achieved a brightness of 82% while the preferred three-stage sequence of Example 5 consumed only 1.5% peroxide and achieved the highest brightness (83%).
- Example E compared the preferred three-stage impregnation process of Example 5 to the CMP process with post refining peroxide bleaching (Example E) and with the high alkaline CTMP process with post refining peroxide bleaching (Example F).
- Aspen chips of the same type used in Example 5 were presoaked in water for 12 hours under vacuum which is equivalent to the presteaming of Example 5.
- the soaked chips were then pretreated in a digester by cooking the chips with a 4:1 liquor to chip ratio at 150° for 90 minutes in a sodium sulfite and sodium bisulfite cooking liquor at an initial pH of 6.9 which resulted in 6% SO2 applied based on the dry weight of the chips.
- the chips were drained of free liquor and refined in the Sprout-Waldron laboratory refiner as in Example 5.
- the pulp was washed with water and then subjected to a post refining peroxide bleaching step which consisted of pretreating the pulp for 10 minutes at 3% consistency with 0.25% DTPA, dewatering the pulp and then bleaching the pulp at 60°C and at a consistency of 12.5% for 2 hours in a bleaching solution containing 2% hydrogen peroxide, 3.3% sodium hydroxide, 5% sodium silicate, 0.5% DTPA and 0.05% Epsom salt and having a pH of 11.5 (all percentages based upon the dry weight of the pulp). After bleaching, the pulp was dewatered and diluted to 3% consistency and the pH adjusted to 5.5 with sulfurous acid prior to being tested. The test results are given in Table 11.
- the Aspen chips were presoaked as in Example E and then were impregnated in a digester under vacuum using a 13.3:1 liquor to wood ratio for 12 hours at a temperature of 30°C.
- the cooking liquor impregnated into the chips was an aqueous solution containing 15 grams/liter of Na2SO3 and 26 grams/liter of sodium hydroxide and had a pH of 12.9. This resulted in 1.7% SO2 and 9.8% sodium hydroxide applied based on the dry weight of the chips.
- the chips were then drained of excess liquid and steamed at a pressure of 5 lbs/inch2 gauge (psig) for 30 minutes.
- the treated chips were refined under steam at 15 lbs/ inch2 gauge pressure in the Sprout-Waldron 12" laboratory refiner model 12-1C and then subjected to secondary refining in the same refiner at atmospheric pressure.
- After refining the pulp was dewatered, washed with water and subjected to hydrogen peroxide bleaching by first pretreating the pulp for 10 minutes at 3% consistency with 0.25% DTPA, dewatering the pulp and then bleaching the pulp at 60°C for 2 hours at 12.5% consistency with a bleaching solution containing 3% hydrogen peroxide, 3.8% sodium hydroxide, 5% sodium silicate, 0.5% DTPA, and 0.05% Epsom salt and having a pH of 11.5 (all percentages based upon the dry weight of the pulp).
- the bleached pulp was then dewatered, diluted to 3% consistency and the pH adjusted to 5.5 with sulfurous acid.
- Example 5 The pulp of Example 5 was brighter and stronger than the pulps of Examples E and F and required substantially less energy to refine than in Example E.
- the preferred three-stage impregnation process of the present invention was compared with CMP pulp subjected to post refining peroxide bleaching and compared with high alkalinity CTMP pulp subjected to post refining peroxide bleaching in order to substantiate the improved process of the present invention and its applicability to a difficult-to-pulp hardwood species (e.g., Eucalyptus Regnans).
- a difficult-to-pulp hardwood species e.g., Eucalyptus Regnans.
- Example 5 was repeated using Eucalyptus Regnans chips and with the impregnating solutions given below.
- the first impregnation solution was an aqueous solution containing 3.96 grams/liter of Epsom salt and 4.0 grams/liter DTPA and having a pH adjusted to 9 with hydrochloric acid.
- the second impregnation solution was an aqueous solution containing 15.8 grams/liter of sodium silicate, 0.4 grams/liter DTPA and having a pH of 10.7.
- the third impregnation solution was an aqueous solution containing 3.96 grams/liter of Epsom salt, 15.8 grams/liter of sodium silicate, 0.4 grams/liter DTPA, 60 grams/liter sodium hydroxide and 45 grams/liter hydrogen peroxide, and having a pH of 12.5.
- Example E for the CMP process was repeated with the same eucalyptus chips as in Example 6.
- the cooking and bleaching conditions were as follows:
- a 4:1 liquor to wood ratio was used at 150°C for 90 minutes.
- the cooking liquor had a pH of 9.5 and resulted in 6% SO2 applied to the chips based upon the dry weight of the chips.
- the post refining peroxide bleaching process employed a pretreatment with 0.25% DTPA at a 3% consistency for 10 minutes.
- the pulp was dewatered and then bleached with a bleaching solution containing 5% hydrogen peroxide, 4.8% sodium hydroxide, 5% sodium silicate, 0.5% DTPA, and 0.05% Epsom salt based upon the dry weight of the chips and having a pH of 10.9.
- Bleaching was at a consistency of 12.5%.
- Example F was repeated but using the same eucalyptus chips used in Example 6 and with the digestor treatment and bleaching conditions as follows:
- the digester liquor contained 17 grams/liter of Na2SO3 plus 28 grams/liter sodium hydroxide and had a pH of 12.9 which resulted in 1.3% SO2 and 10.4% sodium hydroxide applied to the chips based upon the dry weight of the chip.
- the impregnation temperature was 30°C.
- the chips were drained and steamed for 20 minutes with steam at a pressure of 5 lbs/inch2 gage (saturated).
- the post refining bleaching solution contained 6% hydrogen peroxide, 5.4% sodium hydroxide, 5% sodium silicate, 0.5% DTPA and 0.05% Epsom salt based upon the dry weight of the chips and had a pH of 11.3.
- the pulp of Example 6 had the highest brightness and required the least refining energy while its strength was comparable to the high alkalinity CTMP pulp and stronger than the CMP pulp.
- the preferred three-stage impregnation process of the present invention was compared with conventional CMP with post refiner peroxide bleaching and high alkalinity CTMP with post refiner peroxide bleaching utilizing Gmelina (a tropical hardwood) chips.
- Examples J, K and 7 were repetitions of Examples E, F and 5 with the exceptions noted below.
- Gmelina chips of a size that would pass through a 3/4'' circular hole screen were pretreated with atmospheric steam for 20 minutes and then washed with water prior to being utilized in Examples J, K and 7.
- Example 5 was repeated with the identical solutions as used in Example 5 but with Cmelina chips rather than Eucalyptus chips.
- Example E was repeated with the same type of Cmelina chips as in Example 7 and with the following cooking and bleaching conditions:
- the cooking liquor in the digester was used at a ratio of 4:1 of liquor to chips based on the dry weight of the chips. Cooking was done at 150°C for 75 minutes and then the cooked chips were drained of free cooking liquor.
- the cooking liquor contained 37 grams/liter of Na2SO3 plus 7.4 grams/liter of sodium hydroxide and had a pH of 13. This resulted in 4.4% SO2 and 3% sodium hydroxide applied to the chips based on the dry weight of the chips.
- the post refining peroxide bleaching treatment was with a solution that contained 5% peroxide, 4.9% sodium hydroxide, 5% sodium silicate, 0.5% DTPA and 0.05% Epsom salt based upon the dry weight of the pulp and had a pH of 11.3.
- the pulp Prior to bleaching, the pulp was pretreated at a 3% consistency with 0.25% DTPA for 10 minutes and then dewatered. After being bleached for 2 hours at 60°C, the pulp was dewatered and diluted to 3% consistency and the pH was adjusted to 5.5 with sulfurous acid.
- Example F was repeated except that the chips were of the same type of Gmelina chips as in Example 7 and with cooking and bleaching conditions as stated below.
- the cooking liquor contained 15 grams/liter of Na2SO3 and 31 grams/liter of sodium hydroxide and had a pH of 13.3.
- the cooking liquor used in the digester was used at a ratio of 4:1 liquor to chips.
- the chips were cooked for 45 minutes at 110°C, and then the cooked chips were drained free of cooking liquor. This resulted in 1.3% SO2 and 7.8% of sodium hydroxide applied based upon the dry weight of the chips.
- the peroxide bleaching solution contained 5% peroxide, 4.9% sodium hydroxide, 5% sodium silicate, 0.5% DTPA, and 0.05% Epsom salt and at a pH of 11.3. Prior to bleaching, the pulp was pretreated at a 3% consistency with 0.25% DTPA for 10 minutes and then dewatered.
- the pulps of Examples J, K and 7 were tested for brightness, freeness and strength and the energy required to refine the pulps was also determined. The results are given in Table 11.
- the pulp of Example 7 was the brightest and required the least refining energy although all three pulps had comparable tensile strength.
- the process of the present invention is capable of achieving novel non-sulfonated pulp having properties not previously achievable.
- a non-sulfonated pine pulp can be produced for the first time from Pine having a Yield greater than 85%, a Brightness greater than 70% and a Papermaking Strength of at least 3.0 km when refined to a Freeness of 600 ml.
- a non-sulfonated Aspen pulp can be produced having a Yield greater than 80%, a Brightness greater than 80% and a papermaking Strength of at least 4.0 km when refined to a freeness of 500 ml.
- a non-sulfonated Eucalyptus pulp can be produced having a Yield greater than 80%, a Brightness greater than 80% and a Papermaking Strength of at least 3.0 km when refined to a Freeness of 500 ml.
- a non-sulfonated Gmelina pulp can be produced having a Yield greater than 80%, a Brightness greater than 75% and a Papermaking Strength of at least 2.0 km when refined to a Freeness of 500.
- Hydrogen peroxide usage or consumption (expressed as a weight percent based on the dry weight of the chips) is the quantity of peroxide consumed from the impregnation solution (initial peroxide in the impregnating solution minus final peroxide in the impregnation solution) minus the quantity of residual peroxide in the pulp after refining if followed by a refining step or after bleaching when using post-refiner bleaching.
- the percentage, peroxide consumed is calculated as being equal to the quantity of peroxide consumed times 100 divided by the dry weight of the chips or pulp fibers.
- the quantity of peroxide in a solution was determined by iodometric titration using starch as an end point indicator.
- Brightness is defined as Elrepho brightness in percent units which is determined by using the sample preparation procedure given in the Technical Association of the Pulp and Paper Industry (TAPPI) Official Test Method T218 om-83. The brightness of the sample was measured using TAPPI Provisional Method T525 su-72.
- Refining energy (net refining energy) is expressed in horse-power days per ton (HPD/T) and is the total energy absorbed by the fibers and associated fluids during refining. It is determined by measuring the total energy input into the refiner during refining and subtracting the energy required to operate the refiner without chips being fed to the refiner (usually referred to as the idle energy required for the refiner). In small laboratory equipment the idle energy is usually significant and must be taken into account. In large industrial equipment it is usually insignificant and not taken into account in determining the energy for refining.
- HPD/T horse-power days per ton
- Freeness is defined as Canadian Standard Freeness (CSF) which is measured in milliliters (ml) and was determined in accordance with TAPPI Official Test Method T227 os-58.
- Papermaking Strength is defined as breaking length (measure of papermaking tensile strength) which is measured in kilometers (km) and is a measure of the maximum length of a paper sheet that is self supporting.
- the paper sheet was prepared using the sample preparation procedure given in TAPPI Official Test Method T205 om-81, the test specimen of the paper sheet was prepared using the sample preparation procedure given in TAPPI Official Test Method T220 om-83, and the strength measurement of the test specimen was determined by using the procedure given in TAPPI Official Test Method T494 om-81.
- Yield is a percentage and is defined as the dry weight of pulp times 100 divided by the dry weight of the chips from which the pulp was made.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Paper (AREA)
Claims (39)
- Verpulpungsverfahren mit hoher Ausbeute für Lignincellulosematerial in Chipform umfassend in der folgenden Reihenfolge:(a) Imprägnieren der Chips mit einer ersten Imprägnier- lösung, die stabilisierende Chemikalien für Peroxid enthält, unter pH-, Temperatur- und Konzentrationsbedingungen für die stabilisierenden Chemikalien, so daß sie in der ersten Imprägnierlösung löslich sind;(b) Imprägnieren der Chips mit einer zweiten Imprägnierlösung, die stabilisierende Chemikalien für Peroxid enthält, unter pH-, Temperatur- und Konzentrationsbedingungen, vorgewählt, daß sie schaffen:(i) Bedingungen, unter denen die Chemikalien in der genannten zweiten Imprägnierlösung in der zweiten Imprägnierlösung löslich sind; und(ii) wenn die genannte zweite Imprägnierlösung mit der ersten Imprägnierlösung in den Chips gemischt wird, ergibt die Mischung Bedingungen, unter denen eine oder mehrere der stabilisierenden Chemikalien in der Kombination der ersten und zweiten Imprägnierlösung ausfallen oder eine Flockung bilden zum Stabilisieren von Peroxid in den Chips;(c) Imprägnieren der Chips mit einer dritten Imprägnierlösung, die alkalisches Peroxid enthält; und(d) mechanisches Raffinieren der mit alkalischem Peroxid imprägnierten Chips zur Herstellung von Pulpe.
- Verfahren wie in Anspruch 1 beansprucht, wobei die erste Imprägnierlösung ein wasserlösliches Magnesiumsalz enthält und einen pH zwischen 5 und 10 aufweist, und die zweite Imprägnierlösung Natriumsilicat enthält und einen pH aufweist, der höher ist als der pH der ersten Imprägnierlösung und zwischen 9 und 12.
- Verpulpungsverfahren mit hoher Ausbeute für Lignincellulosematerial in Chipform umfassend in der folgenden Reihenfolge:(a) Imprägnieren der Chips mit einer ersten Imprägnierlösung, die stabilisierende Chemikalien für Peroxid enthält, unter pH-, Temperatur- und Konzentrationsbedingungen für die stabilisierenden Chemikalien, so daß sie in der ersten Imprägnierlösung löslich sind;(b) Imprägnieren der Chips mit einer zweiten Imprägnierlösung, die alkalisches Peroxid und stabilisierende Chemikalien für Peroxid enthält, unter pH-, Temperatur- und Konzentrationsbedingungen, vorgewählt, daß sie schaffen:(i) Bedingungen, unter denen die Chemikalien in der genannten zweiten Imprägnierlösung in der zweiten Imprägnierlösung löslich sind; und(ii) wenn die genannte zweite Imprägnierlösung mit der ersten Imprägnierlösung in den Chips gemischt wird, ergibt die Mischung Bedingungen, unter denen eine oder mehrere der stabilisierenden Chemikalien in der Kombination der ersten und zweiten Imprägnierlösung ausfallen oder eine Flockung bilden zum Stabilisieren von Peroxid in den Chips; und(c) mechanisches Raffinieren der mit alkalischem Peroxid imprägnierten Chips zur Herstellung von Pulpe. Imprägnierlösung löslich sind; und
(ii) wenn die genannte zweite Imprägnierlösung mit der ersten Imprägnierlösung in den Chips gemischt wird, ergibt die Mischung Bedingungen, unter denen eine oder mehrere der stabilisierenden Chemikalien in der Kombination der ersten und zweiten Imprägnierlösung ausfallen oder eine Flockung bilden zum Stabilisieren von Peroxid in den Chips; und
(c) mechanisches Raffinieren der mit alkalischem Peroxid imprägnierten Chips zur Herstellung von Pulpe. - Verfahren wie in Anspruch 3 beansprucht, wobei die erste Imprägnierlösung ein wasserlösliches Magnesiumsalz enthält und einen pH zwischen 5 und 10 aufweist, und die zweite Imprägnierlösung Natriumsilicat enthält und einen pH aufweist, der höher ist als der pH der ersten Imprägnierlösung und zwischen 9 und 13.
- Verfahren nach Anspruch 1, wobei(a) die erste Imprägnierlösung einen pH aufweist, der höher ist als der pH der zweiten Imprägnierlösung und zwischen 9 und 12, und enthält:(i) Natriumsilicat in einer Konzentration an Silicaten zwischen 1,0 Gramm pro Liter und 100 Gramm pro Liter, berechnet und ausgedrückt als Siliciumdioxid, und(ii) ein Chelatbildungs-Mittel für Metallionen ausgewählt aus Diethylentriaminpentaessigsäure, Ethylendiamintetraessigsäure, Hydroxyethylethylendiamintriessigsäure, Nitrilotriessigsäure, Natriumtripolyphosphat oder Phosphonsäurederivate in einer Konzentration an Chelatbildner in der ersten Imprägnierlösung von 0,01 Gramm pro Liter bis 20 Gramm pro Liter;(b) die zweite Imprägnierlösung einen pH zwischen 5 und 10 aufweist und enthält:(i) wasserlösliche Magnesiumsalze in einer Konzentration von zwischen 0,01 Gramm pro Liter und 2,0 Gramm pro Liter, bezogen auf das Gewicht des Magnesiums, und(ii) ein Chelatbildungs-Mittel für Metallverunreinigungen ausgewählt aus Diethylentriaminpentaessigsäure, Ethylendiamintetraessigsäure, Hydroxyethylethylendiamintriesssigsäure, Nitrilotriessigsäure, Natriumtripolyphosphat oder Phosphonsäurederivate in einer Konzentration an Chelatbildner von 0,01 Gramm pro Liter bis 20 Gramm pro Liter;(c) die Imprägnierungen der Chips eine Temperatur zwischen 15 °C und 100 °C haben;(d) die zweite Imprägnierung zu einem Magnesiumgehalt in den Chips zwischen 0,001 % und 0,2 %, bezogen auf das Trockengewicht der Chips, und zu einem Chelatbildnergehalt in den Chips von 0,01 % bis 2 % Chelatbildner, bezogen auf das Trockengewicht der Chips, führt;(e) die erste Imprägnierung der Chips zu von 0,01 % bis 2,0 % Chelatbildner, bezogen auf das Trockengewicht der Chips, und zwischen 0,1 % und 10 % Silicaten, bezogen auf das Trockengewicht der Chips, führt;(f) die dritte Imprägnierungslösung einen pH zwischen 11 und 13 aufweist und Peroxid in einer Konzentration von 10 Gramm pro Liter bis 100 Gramm pro Liter enthält, berechnet als Wasserstoffperoxid, um zwischen 0,5 % und 10 % Peroxid zu ergeben, berechnet als Wasserstoffperoxid und bezogen auf das Trockengewicht der Chips, und Stabilisatoren für Peroxid.
- Verfahren wie in Anspruch 2 oder 4 beansprucht, wobei die erste Imprägnierungslösung eine Konzentration von zwischen 0,01 Gramm pro Liter und 2,0 Gramm pro Liter des genannten Magnesiumsalzes hat, bezogen auf das Gewicht des Magnesiums.
- Verfahren wie in Anspruch 6 beansprucht, wobei die Imprägnierungen der Chips eine Temperatur zwischen 15 °C und 100 °C haben.
- Verfahren wie in Anspruch 6 beansprucht, wobei die erste Imprägnierung der Chips zu einem Magnesiumgehalt der Chips zwischen 0,001 % und 0,2 %, bezogen auf das Trockengewicht der Chips, führt.
- Verfahren wie in Anspruch 6 beansprucht, wobei die erste Imprägnierungslösung ein Chelatbildungs-Mittel in einer Konzentration von 0,01 Gramm pro Liter bis 20 Gramm pro Liter enthält.
- Verfahren wie in Anspruch 9 beansprucht, wobei das Chelatbildungs-Mittel ausgewählt ist aus Diethylentriaminpentaessigsäure, Ethylendiamintetraessigsäure, Hydroxyethylethylendiamintriessigsäure, Nitrolotriessigsäure, Natriumtripolyphosphat oder Phosphonsäurederivaten.
- Verfahren wie in Anspruch 9 beansprucht, wobei die erste Imprägnierung der Chips zu von 0,001 % bis 2,0 % Chelatbildner, bezogen auf das Trockengewicht der Chips, führt.
- Verfahren wie in Anspruch 2 beansprucht, wobei die zweite Imprägnierungslösung einen pH zwischen 10 und 11 aufweist und genügend Natriumsilicat enthält, um eine Konzentration an Silicaten zwischen 1,0 Gramm pro Liter und 100 Gramm pro Liter, berechnet als Siliciumdioxid, zu erreichen.
- Verfahren wie in Anspruch 4 beansprucht, wobei die zweite Imprägnierungslösung ein Magnesiumsalz enthält und genügend Natriumsilicat, um eine Konzentration an Silicaten zwischen 1,0 Gramm pro Liter und 100 Gramm pro Liter, berechnet als Siliciumdioxid, zu erreichen, und Peroxid in einer Konzentration von 10 Gramm pro Liter bis 100 Gramm pro Liter, berechnet als Wasserstoffperoxid, enthält.
- Verfahren wie in Anspruch 12 oder 13 beansprucht, wobei die genannte zweite Imprägnierungslösung ein Chelatbildungs-Mittel in einer Konzentration von 0,01 Gramm pro Liter bis 20 Gramm pro Liter enthält.
- Verfahren wie in Anspruch 14 beansprucht, wobei das genannte Chelatbildungs-Mittel ausgewahlt ist aus Diethylentriaminpentaessigsäure, Ethylendiamintetraessigsäure, Hydroxyethylethylendiamintriessigsäure, Nitrilotriessigsäure, Natriumtripolyphosphat oder Phosphonsäurederivaten.
- Verfahren wie in Anspruch 14 beansprucht, wobei die zweite Imprägnierung der Chips zu von 0,001 % bis 2,0 % Chelatbildner in den Chips, bezogen auf das Trockengewicht der Chips, führt.
- Verfahren wie in Anspruch 12 oder 13 beansprucht, wobei die zweite Imprägnierung der Chips zu zwischen 0,1 % und 10 % Silicaten, bezogen auf das Trockengewicht der Chips und ausgedruckt als Siliciumdioxid, führt.
- Verfahren wie in Anspruch 13 beansprucht, wobei die zweite Imprägnierung zu Chips mit zwischen 0,5 % und 10 % Peroxid, berechnet als Wasserstoffperoxid und bezogen auf das Trockengewicht der Chips, führt.
- Verfahren wie in Anspruch 1 oder 6 beansprucht, wobei die dritte Imprägnierungslösung Peroxid in einer Konzentration von 10 Gramm pro Liter bis 100 Gramm pro Liter, berechnet als Wasserstoffperoxid, enthält und einen pH zwischen 9 und 13 aufweist.
- Verfahren wie in Anspruch 19 beansprucht, wobei die dritte Imprägnierung zu Chips mit zwischen 0,5 % und 10 % Peroxid, berechnet als Wasserstoffperoxid und bezogen auf das Trockengewicht der Chips, führt.
- Verfahren wie in Anspruch 19 beansprucht, wobei die dritte Imprägnierungslösung einen Stabilisator enthält, ausgewählt aus Magnesium- und Silicatstabilisatoren für Peroxid und ein Chelatbildungs-Mittel zum Stabilisieren gegen Zerfall durch Metallionen.
- Verfahren wie in Anspruch 1 beansprucht, wobei(a) die erste Imprägnierungslösung einen pH zwischen 5 und 10 aufweist und enthält:(i) wasserlösliche Magnesiumsalze in einer Konzentration zwischen 0,01 Gramm pro Liter und 2,0 Gramm pro Liter, bezogen auf das Gewicht des Magnesiums, und(ii) ein Chelatbildungs-Mittel für Metallverunreinigungen ausgewählt aus Diethylentriaminpentaessigsäure, Ethylendiamintetraessigsäure, Hydroxyethylethylendiamintriessigsäure, Nitrilotriessigsäure, Natriumtripolyphosphat oder Phosphonsäurederivaten in einer Konzentration an Chelatbildner in der ersten Imprägnierungslösung von 0,01 Gramm pro Liter bis 20 Gramm pro Liter,(b) die zweite Imprägnierungslösung einen pH aufweist, der höher ist als der pH der ersten Imprägnierungslösung und zwischen 9 und 12, und enthält:(i) Natriumsilicat in einer Konzentration zwischen 1,0 Gramm pro Liter und 100 Gramm pro Liter an Silicaten, berechnet und ausgedrückt als Siliciumdioxid, und(ii) ein Chelatbildungs-Mittel für Metallionen ausgewählt aus Diethylentriaminpentaessigsäure, Ethylendiamintetraessigsäure, Hydroxyethylethylen- diamintriessigsäure, Nitrilotriessigsäure, Natriumtripolyphosphat oder Phosphonsäurederivaten in einer Konzentration von 0,01 Gramm pro Liter bis 20 Gramm pro Liter;(c) die Imprägnierungen der Chips eine Temperatur zwischen 15 °C und 100 °C haben;(d) die erste Imprägnierung zu einem Magnesiumgehalt in den Chips zwischen 0,001 % und 0,2 %, bezogen auf das Trockengewicht der Chips, führt und zu einem Chelatbildnergehalt in den Chips von 0,01 %, bis 2 % Chelatbildner, bezogen auf das Trockengewicht der Chips;(e) die zweite Imprägnierung der Chips zu von 0,01% bis 2,0 % Chelatbildner, bezogen auf das Trockengewicht der Chips, und zwischen 0,1 % und 10 % Silicaten, bezogen auf das Trockengewicht der Chips, führt;(f) die dritte Imprägnierungslösung einen pH zwischen 11 und 13 aufweist und Peroxid in einer Konzentration von 10 Gramm pro Liter bis 100 Gramm pro Liter, berechnet als Wasserstoffperoxid, enthält, um zwischen 0,5 % und 10 % Peroxid, berechnet als Wasserstoffperoxid und bezogen auf das Trockengewicht der Chips, zu ergeben.
- Verfahren wie in Anspruch 3 beansprucht, wobei(a) die erste Imprägnierungslösung einen pH zwischen 5 und 10 aufweist und enthält:(i) wasserlösliche Magnesiumsalze in einer Konzentration zwischen 0,01 Gramm pro Liter und 2,0 Gramm pro Liter, bezogen auf das Gewicht des Magnesiums, und(ii) ein Chelatbildungs-Mittel für Metallverunreinigungen ausgewählt aus Diethylentriaminpentaessigsäure, Ethylendiamintetraessigsäure, Hydroxyethylethylendiamintriessigsäure, Nitrilotriessigsäure, Natriumtripolyphosphat oder Phosphonsäurederivaten bei einer Konzentration an Chelatbildner in der ersten Imprägnierungslösung von 0,01 Gramm pro Liter bis 20 Gramm pro Liter;(b) die zweite Imprägnierungslösung einen pH aufweist, der höher ist als der pH der ersten Imprägnierungslösung und zwischen 9 und 13, und enthält:(i) Natriumsilicat in einer Konzentration zwischen 1,0 Gramm pro Liter und 100 Gramm pro Liter an Silicaten, berechnet und ausgedrückt als Siliciumdioxid,(ii) ein Chelatbildungs-Mittel für Metallionen ausgewählt aus Diethylentriaminpentaessigsäure, Ethylendiamintetraessigsäure, Hydroxyethylethylendiamintriessigsäure, Nitrilotriessigsäure, Natriumtripolyphosphat oder Phosphonsäurederivaten bei einer Konzentration an Chelatbildner von 0,01 Gramm pro Liter bis 20 Gramm pro Liter,(iii) Peroxid in einer Konzentration von 10 Gramm pro Liter bis 100 Gramm pro Liter, berechnet als Wasserstoffperoxid, was zu zwischen 0,5 % und 10 % Peroxid, berechnet als Wasserstoffperoxid und bezogen auf das Trockengewicht der Chips, führt, und(iv) ein wasserlösliches Magnesiumsalz in einer Konzentration von zwischen 0,01 Gramm pro Liter und 2,0 Gramm pro Liter, bezogen auf das Gewicht an Magnesium.
- Verfahren wie in Anspruch 22 oder 23 beansprucht, wobei das Lignincellulosematerial ausgewählt ist aus Weichholz, Hartholz, Kiefer, Fichte, Espe, Eukalyptus, Gmelina, Buche, Eiche, Esche, Tanne, Hemlocktanne, Bagasse und Stroh.
- Verfahren wie in Anspruch 22 oder 23 beansprucht, wobei die Pulpe nach dem Raffinieren konzentriert wird, um verbliebene Imprägnierungslösung zu entfernen, und die genannte verbliebene Imprägnierungslösung recycelt wird als Peroxidquelle zur Verwendung in der genannten dritten Imprägnierungslösung.
- Verfahren wie in Anspruch 1 beansprucht, wobei die zweite Imprägnierungslösung ein wasserlösliches Magnesiumsalz enthält und einen pH zwischen 5 und 10 aufweist, und die erste Imprägnierungsl ösung Natriumsilicat enthält und einen pH aufweist, der höher ist als der pH der zweiten Imprägnierungslösung und zwischen 9 und 12.
- Verfahren wie in Anspruch 2 beansprucht, wobei die zweite Imprägnierungslösung eine Konzentration von zwischen 0,01 Gramm pro Liter und 2,0 Gramm pro Liter an den genannten Magnesiumsalzen, bezogen auf das Gewicht des Magnesiums, hat.
- Verfahren wie in Anspruch 6 beansprucht, wobei die Imprägnierungen der Chips eine Temperatur zwischen 15 °C und 100 °C haben.
- Verfahren wie in Anspruch 6 beansprucht, wobei die zweite Imprägnierung der Chips zu einem Magnesiumgehalt in den Chips zwischen 0,001 % und 0,2 %, bezogen auf das Trockengewicht der Chips, führt.
- Verfahren wie in Anspruch 6 beansprucht, wobei die zweite Imprägnierungslösung ein Chelatbildungs-Mittel in einer Konzentration von 0,01 Gramm pro Liter bis 20 Gramm pro Liter enthält.
- Verfahren wie in Anspruch 9 beansprucht, wobei die zweite Imprägnierung der Chips zu von 0,001 % bis 2,0 % Chelatbildner, bezogen auf das Trockengewicht der Chips, führt.
- Verfahren wie in Anspruch 12 beansprucht, wobei die genannte erste Imprägnierungslösung ein Chelatbildungs-Mittel für Metallionen in einer Konzentration von 0,01 Gramm pro Liter bis 20 Gramm pro Liter enthält.
- Verfahren wie in Anspruch 14 beansprucht, wobei das genannte Chelatbildungs-Mittel ausgewählt ist aus Diethylentriaminpentaessigsäure, Ethylendiamintetraessigsäure, Hydroxyethylethylendiamintriessigsäure, Nitrilotriessigsäure, Natriumtripolyphosphat oder Phosphonsäurederivaten.
- Verfahren wie in Anspruch 14 beansprucht, wobei die erste Imprägnierung der Chips zu von 0,001 % bis 2,0 % Chelatbildner in den Chips, bezogen auf das Trockengewicht der Chips, führt.
- Verfahren wie in Anspruch 5 beansprucht, wobei die Pulpe nach dem Raffinieren konzentriert wird, um verbliebene Imprägnierungslösung zu entfernen und die genannte verbliebene Imprägnierungslösung recycelt wird als Peroxidquelle zur Verwendung in der genannten dritten Imprägnierungslösung.
- Neue nichtsulfonierte Kiefern-Pulpe mit einer Ausbeute von mindestens 85 %, einem Weißgrad von mehr als 70 % und einer Reißlänge von mindestens 3,0 km bei einem Mahlungsgrad von 600.
- Neue nichtsulfonierte Espen-Pulpe mit einer Ausbeute von mindestens 80 %, einem Weißgrad von mehr als 80 % und einer Reißlänge von mindestens 4,0 km bei einem Mahlungsgrad von 500.
- Neue nichtsulfonierte Eukalyptus-Pulpe mit einer Ausbeute von mindestens 80 %, einem Weißgrad von mehr als 80 % und einer Reißlänge von mindestens 3,0 km bei einem Mahlungsgrad von 500.
- Neue nichtsulfonierte Gmelina-Pulpe mit einer Ausbeute von mindestens 80 %, einem Weißgrad von mehr als 75 % und einer Reißlänge von mindestens 2,0 km bei einem Mahlungsgrad von 500.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US77845785A | 1985-09-20 | 1985-09-20 | |
US778457 | 1985-09-20 |
Publications (4)
Publication Number | Publication Date |
---|---|
EP0239583A1 EP0239583A1 (de) | 1987-10-07 |
EP0239583A4 EP0239583A4 (de) | 1988-03-22 |
EP0239583B1 EP0239583B1 (de) | 1991-01-02 |
EP0239583B2 true EP0239583B2 (de) | 1994-01-12 |
Family
ID=25113415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19860905113 Expired - Lifetime EP0239583B2 (de) | 1985-09-20 | 1986-08-13 | Vorbehandlungsverfahren von pulpe mit stabilisierungsmitteln und peroxid vor der mechanischen raffinierung |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP0239583B2 (de) |
AR (1) | AR243622A1 (de) |
AU (3) | AU605745B2 (de) |
BR (1) | BR8606875A (de) |
CA (1) | CA1274657A (de) |
DE (1) | DE3676490D1 (de) |
ES (1) | ES2002755A6 (de) |
MX (1) | MX174399B (de) |
PT (1) | PT83406B (de) |
WO (1) | WO1987001746A1 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE458690B (sv) * | 1986-11-06 | 1989-04-24 | Sunds Defibrator | Saett att framstaella mekanisk massa fraan lignocellulosahaltigt material i styckeform med en laengd i fiberriktningen av minst 200 mm |
CA2057231A1 (en) * | 1991-01-07 | 1992-07-08 | Ulrike Tschirner | Method of pretreating lignocellulosic materials prior to alkaline peroxide high yield pulping |
FR2672315B1 (fr) * | 1991-01-31 | 1996-06-07 | Hoechst France | Nouveau procede de raffinage de la pate a papier. |
US8268122B2 (en) | 2005-12-02 | 2012-09-18 | Akzo Nobel N.V. | Process of producing high-yield pulp |
BRPI0619765B1 (pt) * | 2005-12-02 | 2016-12-13 | Akzo Nobel Nv | processo para preparar uma polpa de alto rendimento |
US9273270B2 (en) | 2014-02-20 | 2016-03-01 | Church & Dwight Co., Inc. | Unit dose cleaning products for delivering a peroxide-containing bleaching agent |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE496197C (de) * | 1928-05-15 | 1930-04-17 | Carl G Schwalbe Dr | Verfahren zur Herstellung von Zellstoff aus verholzten Fasern |
CA895757A (en) * | 1970-04-03 | 1972-03-21 | E. Worster Hans | Single-stage soda-oxygen pulping |
US4187141A (en) * | 1975-02-24 | 1980-02-05 | Alf Societe Anonyme | Method of producing bleached mechanical pulp |
SE436368B (sv) * | 1979-01-12 | 1984-12-03 | Sunds Defibrator | Sett att framstella blekta, mekaniska, kemimekaniska och halvkemiska massor av lignocellulosahaltiga fibermaterial |
JPS63402A (ja) * | 1986-06-18 | 1988-01-05 | Toyota Motor Corp | 焼結鍛造用原料粉末およびその粉末を使用した焼結鍛造法 |
-
1986
- 1986-08-13 DE DE8686905113T patent/DE3676490D1/de not_active Expired - Lifetime
- 1986-08-13 EP EP19860905113 patent/EP0239583B2/de not_active Expired - Lifetime
- 1986-08-13 AU AU62253/86A patent/AU605745B2/en not_active Ceased
- 1986-08-13 BR BR8606875A patent/BR8606875A/pt not_active IP Right Cessation
- 1986-08-13 WO PCT/US1986/001659 patent/WO1987001746A1/en active IP Right Grant
- 1986-09-18 CA CA000518592A patent/CA1274657A/en not_active Expired
- 1986-09-19 PT PT8340686A patent/PT83406B/pt not_active IP Right Cessation
- 1986-09-19 ES ES8602010A patent/ES2002755A6/es not_active Expired
- 1986-09-19 AR AR30530786A patent/AR243622A1/es active
- 1986-09-19 MX MX377486A patent/MX174399B/es unknown
-
1990
- 1990-11-14 AU AU66582/90A patent/AU6658290A/en not_active Abandoned
-
1993
- 1993-05-26 AU AU39844/93A patent/AU663781B2/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
AR243622A1 (es) | 1993-08-31 |
ES2002755A6 (es) | 1988-10-01 |
PT83406B (pt) | 1989-05-12 |
CA1274657A (en) | 1990-10-02 |
AU3984493A (en) | 1993-08-19 |
PT83406A (en) | 1986-10-01 |
AU663781B2 (en) | 1995-10-19 |
BR8606875A (pt) | 1987-11-03 |
AU6225386A (en) | 1987-04-07 |
EP0239583A1 (de) | 1987-10-07 |
WO1987001746A1 (en) | 1987-03-26 |
DE3676490D1 (de) | 1991-02-07 |
EP0239583A4 (de) | 1988-03-22 |
AU6658290A (en) | 1991-01-31 |
AU605745B2 (en) | 1991-01-24 |
MX174399B (es) | 1994-05-13 |
EP0239583B1 (de) | 1991-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5002635A (en) | Method for producing pulp using pre-treatment with stabilizers and refining | |
US4599138A (en) | Process for pretreating particulate lignocellulosic material to remove heavy metals | |
US6743332B2 (en) | High temperature peroxide bleaching of mechanical pulps | |
US4849053A (en) | Method for producing pulp using pre-treatment with stabilizers and defibration | |
US4486267A (en) | Chemithermomechanical pulping process employing separate alkali and sulfite treatments | |
US6881299B2 (en) | Refiner bleaching with magnesium oxide and hydrogen peroxide | |
FI84634B (fi) | Foerfarande foer framstaellning av kemimekanisk eller semikemisk fibermassa i en en-fas impregneringsprocess. | |
US4160693A (en) | Process for the bleaching of cellulose pulp | |
NO300929B1 (no) | Fremgangsmåte for bleking av lignocellulosematerialer | |
FI83794C (fi) | Foerfarande foer framstaellning av kemimekanisk eller semikemisk fibermassa i en tvao-fas impregneringsprocess. | |
EP0501059A1 (de) | Aufschlussverfahren durch Dampfexplosion zur Papierherstellung | |
EP0056263B1 (de) | Verfahren zur Verbesserung des Waschens von Cellulosepulpen, hergestellt aus Lignocellulosematerial | |
EP0494519A1 (de) | Hochausbeute Aufschlussverfahren | |
JP2588495B2 (ja) | 製紙用高収率高漂白度パルプの製造方法 | |
EP0239583B2 (de) | Vorbehandlungsverfahren von pulpe mit stabilisierungsmitteln und peroxid vor der mechanischen raffinierung | |
US4406735A (en) | Process for alkaline oxygen gas bleaching of cellulose pulp | |
CA1173604A (en) | Production of chemimechanical pulp | |
CA2721612C (en) | Processes for preparing mechanical pulps having high brightness | |
CA1096559A (en) | Process for pretreating particulate lignocellulosic material | |
CA1078558A (en) | Process for producing bleached mechanical pulp having high strength and brightness and with low discharge of oxygen consuming substances | |
Bäckström et al. | Effect of primary fines on cooking and TCF-bleaching | |
JPH0114357B2 (de) | ||
Scott et al. | Biosulfite pulping using Ceriporiopsis subvermispora | |
Mašura | Alkaline degradation of spruce and beech wood | |
JPH05279978A (ja) | リグノセルロース物質の漂白方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19870515 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB IT SE |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19880322 |
|
17Q | First examination report despatched |
Effective date: 19891016 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT SE |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 3676490 Country of ref document: DE Date of ref document: 19910207 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: ANDIRTZ SPROUT BAUER INC. Effective date: 19911002 Opponent name: EKA NOBEL AB Effective date: 19910927 |
|
ITF | It: translation for a ep patent filed | ||
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 19940112 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): BE DE FR GB IT SE |
|
ET3 | Fr: translation filed ** decision concerning opposition | ||
EAL | Se: european patent in force in sweden |
Ref document number: 86905113.6 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
BECA | Be: change of holder's address |
Free format text: 20000126 *KIMBERLY-CLARK WORLDWIDE INC.:401 NORTH LAKE STREET, NEENAH WISCONSIN 54956 |
|
BECH | Be: change of holder |
Free format text: 20000208 *KIMBERLY-CLARK WORLDWIDE INC. |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010629 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010802 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010831 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20010912 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20020802 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020813 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020831 |
|
BERE | Be: lapsed |
Owner name: *KIMBERLY-CLARK WORLDWIDE INC. Effective date: 20020831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030301 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020813 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030814 |
|
EUG | Se: european patent has lapsed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050813 |